Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型 关键性能指标

Answer

对比不同大模型的性能需要考虑多个维度,包括但不限于以下方面:

  1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。
  2. 生成质量:检查生成文本的流畅性、相关性和准确性。
  3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。
  4. 泛化能力:测试处理未见过任务或数据时的表现。
  5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。
  6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。
  7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话能力。
  8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。
  9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。

为了进行有效的比较,可以采用以下方法:

  1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。
  2. 自定义任务:根据特定需求设计任务,评估在特定领域的表现。
  3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。
  4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。
  5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等量化比较。

例如,通义千问开源的 Qwen2.5-1M 大模型,推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT-4o-mini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.5-1M 能够准确地从 1M 长度的文档中检索出隐藏信息。

Google DeepMind 的 Gemini 2.0 Flash 多模态大模型支持图像、视频、音频等多模态输入,可生成图文混合内容和多语言 TTS 音频。模型原生支持 Google 搜索、代码执行及第三方 API 调用等工具链能力,处理速度较 Gemini 1.5 Pro 提升一倍,关键性能指标已超越前代产品。作为 Gemini 2.0 系列首发模型,在多模态理解与生成方面实现重要突破。产品入口目前通过 Google AI Studio 和 Vertex AI 平台提供实验版 API 接口,预计 2025 年 1 月起全面商用,并将陆续发布 Gemini 2.0 系列其他版本。

Content generated by AI large model, please carefully verify (powered by aily)

References

问: 如何对比不同大语言模型的性能

对比不同大型语言模型的性能需要考虑多个维度,包括但不限于以下几个方面:1.理解能力:评估模型对语言的理解程度,包括对语法、语义、上下文和隐含意义的理解。2.生成质量:检查模型生成的文本的质量,包括文本的流畅性、相关性和准确性。3.知识广度和深度:评估模型对广泛主题的知识掌握程度,以及它对特定领域或话题的理解深度。4.泛化能力:测试模型在处理未见过的任务或数据时的表现,这反映了模型的泛化能力。5.鲁棒性:检查模型对错误输入、对抗性输入或模糊不清的指令的应对能力。6.偏见和伦理:评估模型生成文本时是否存在偏见,以及模型是否遵循伦理标准。7.交互性和适应性:评估模型在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。8.计算效率和资源消耗:考虑模型的大小、训练和运行所需的计算资源。9.易用性和集成性:评估模型是否易于集成到不同的应用和服务中,以及提供的API和工具的易用性。为了进行有效的比较,可以采用以下方法:标准基准测试:使用标准的语言模型评估基准,如GLUE、SuperGLUE、SQuAD等,这些基准提供了统一的测试环境和评分标准。自定义任务:根据特定需求设计任务,以评估模型在特定领域的表现。人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。A/B测试:在实际应用场景中,通过A/B测试比较不同模型的表现。性能指标:使用包括准确率、召回率、F1分数、BLEU分数等在内的性能指标来量化比较。

通义千问发布一个模型开源两个模型-一个AI视觉智能体能力大幅增强,一个百万Tokens处理速度提升近7倍

本次开源的Qwen2.5-1M大模型,我们推出7B、14B两个尺寸,均在处理长文本任务中稳定超越GPT-4o-mini;同时开源推理框架,在处理百万级别长文本输入时可实现近7倍的提速。这也是我们首次将开源Qwen模型的上下文扩展到1M长度。1M长度≈100万个单词≈150万个汉字≈2部《红楼梦》[heading2]长文本处理能力[content]在上下文长度为100万Tokens的大海捞针(Passkey Retrieval)任务中,Qwen2.5-1M能够准确地从1M长度的文档中检索出隐藏信息,仅有7B模型出现了少量错误。对于更复杂的长上下文理解任务,通义官方选择了[RULER](https://github.com/hsiehjackson/RULER)、[LV-Eval](https://github.com/infinigence/LVEval)和[LongbenchChat](https://github.com/THUDM/LongAlign),这些测试集也在[此博客](https://qwenlm.github.io/zh/blog/qwen2.5-turbo/#more-complex-long-text-tasks)中进行了介绍。从这些结果中,我们可以得出以下几点关键结论:1.显著超越128K版本:Qwen2.5-1M系列模型在大多数长上下文任务中显著优于之前的128K版本,特别是在处理超过64K长度的任务时表现出色。2.性能优势明显:Qwen2.5-14B-Instruct-1M模型不仅击败了Qwen2.5-Turbo,还在多个数据集上稳定超越GPT-4o-mini,因此可以作为现有长上下文模型的优秀开源替代。

赛博月刊@24年12月:AI行业大事记

Gemini 2.0 Flash支持图像、视频、音频等多模态输入,可生成图文混合内容和多语言TTS音频。模型原生支持Google搜索、代码执行及第三方API调用等工具链能力。模型处理速度较Gemini 1.5 Pro提升一倍,关键性能指标已超越前代产品。作为Gemini 2.0系列首发模型,在多模态理解与生成方面实现重要突破。产品入口:目前通过Google AI Studio和Vertex AI平台提供实验版API接口。预计2025年1月起全面商用,并将陆续发布Gemini 2.0系列其他版本。补充信息:Google Gemini模型家族发展历史:2023年12月发布Gemini 1.0(包含Nano、Pro、Ultra三个版本),2024年2月推出Gemini 1.5(Flash和Pro版本)。2024年模型性价比No.1👍https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024

Others are asking
(二) 性能指标(包括服务性能指标、网络性能指标、云性能指标)
对比不同大语言模型的性能需要从多个维度进行考量,具体包括: 1. 理解能力:评估模型对语言的理解程度,涵盖语法、语义、上下文及隐含意义的理解。 2. 生成质量:检查生成文本的质量,如流畅性、相关性和准确性。 3. 知识广度和深度:衡量模型对广泛主题的知识掌握情况,以及对特定领域或话题的理解深度。 4. 泛化能力:测试模型处理未见过任务或数据时的表现,反映其泛化能力。 5. 鲁棒性:查看模型对错误输入、对抗性输入或模糊指令的应对能力。 6. 偏见和伦理:评估生成文本是否存在偏见,以及是否遵循伦理标准。 7. 交互性和适应性:评估在交互环境中的表现,包括对用户反馈的适应性和持续对话能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:评估是否易于集成到不同应用和服务中,以及提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用标准的语言模型评估基准,如 GLUE、SuperGLUE、SQuAD 等,这些基准提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用包括准确率、召回率、F1 分数、BLEU 分数等在内的性能指标来量化比较。
2024-12-26
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
如果调教ai助力成为网文作家?选用市面上哪种ai模型好一些
如果想调教 AI 助力成为网文作家,以下是一些建议和可选用的 AI 模型: 借助 AI 分析好的文章: 找出您最喜欢的文章,投喂给 DeepSeek R1(理论上来说适合大多数 AI,尤其是有推理模型)。 分三次询问:第一次从写作角度分析;第二次从读者角度分析;第三次指出文章的缺点、不足及改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对您写的文章进行点评:使用类似“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述”的提示词。 分享一个根据文章内容对作者心理侧写的提示词:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 在模型选择方面: 目前只推荐 Claude 3.7 Sonnet,Anthropic 对 Claude 在编程和美学方面有深度优化,效果较好。但您也可以使用 DeepSeek 等模型进行尝试。 对于模型的选用,没有强制必须用某个模型的说法。而是根据自己的习惯、实测的响应速度、生成质量、调用费用进行综合选择。比如 Doubao Function Call 模型,对于插件调用、Coze 内 json 格式输出比较擅长;MiniMax 处理文字速度很快;GLM 对于用户提示词的理解比较好。每个模型都有自己擅长的特点,而且每家模型都在不断的迭代。所以模型的选用,需要根据实测情况综合调整。一般可选择豆包·function call 32k,“function call”代表有着更好的 Coze 的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本时,比如是 array、object 结构,请根据实测情况,考虑替换上豆包 function call 版本,其他的 LLM 可能会输出格式比较混乱。
2025-03-25
怎么用大模型赚钱
以下是关于如何用大模型赚钱的一些分析和建议: 1. 面向各国政府做基础大模型本土化预训练:很多 Global 的量化基金在中国会水土不服,大模型也存在类似情况。OpenAI、Google、Meta 的模型在中文能力和对中国国情的优化上存在不足,不符合政策要求。这给了国内大模型公司做本土化预训练的机会,只要做到国内领先,即使和世界领先的模型有代际差,也能有市场。 2. 关注行业应用:大模型在企业中的落地应用是关键。目前大模型是典型的赢家通吃领域,巨头在资金、技术和数据方面有优势。但大模型企业需要将技术与更多场景结合,打造落地应用。例如,Gartner 预测到 2028 年至少有 15%的日常工作决策将由代理型 AI 自主做出。 3. 竞争格局与成绩:国内大模型行业已形成以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。2024 年是国内大模型落地元年,中标项目数量和金额大幅增长。如百度在中标数量和金额上排名领先,在金融等细分行业也表现出色。 需要注意的是,大模型领域竞争激烈,只有极少数公司能成功,且需要将大模型商业化,否则企业可能在赛道比拼中失败。同时,大模型的发展与国家政策密切相关,需要受到有效监管才能健康发展。
2025-03-25
Qwen 多模态模型哪一个最顶?
目前阿里发布的 Qwen 多模态模型中,Qwen2.5VL 较为突出。它可处理长达数小时的视频,并在电脑上执行自动化任务。提供 3B、7B、72B 三种规模,旗舰版对标 GPT4o、Claude 3.5 Sonnet。具备全文档解析能力,支持手写、表格、图表、化学公式等多场景识别,还可操作电脑或手机界面,执行自动化任务,如点击按钮、填表等。详情可参考:https://www.xiaohu.ai/c/xiaohuai/qwen25vl285cee 。此外,Qwen2.5Max 也是阿里通义千问的大型专家模型(MoE),基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。更多体验方式包括支持官方 Chat、API 接口、Hugging Face Demo 等,详情可参考:https://qwenlm.github.io/blog/qwen2.5max/ 、https://chat.qwenlm.ai 、https://alibabacloud.com/help/en/modelstudio/gettingstarted/firstapicalltoqwen?spm=a2c63.p38356.helpmenu2400256.d_0_1_0.1f6574a72ddbKE 、https://huggingface.co/spaces/Qwen/Qwen2.5MaxDemo 。
2025-03-25
我想搭建个人rag知识库,实现本地化部署,可以调用本地大模型去分析知识库的内容进行解答
以下是搭建个人 rag 知识库并实现本地化部署,调用本地大模型分析知识库内容进行解答的详细步骤: 一、通过 Open WebUI 使用大模型 1. 访问相关网址,使用邮箱注册账号。 2. 登陆成功后,Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题,这是构建知识库的基础之一)。 3. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现与大模型对话。ChatGPT 访问速度快且回答效果好的原因在于其服务器配置高、训练参数多、数据更优及训练算法更好。 二、本地知识库进阶 1. 若要更灵活掌控知识库,需使用额外软件 AnythingLLM,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 3. 在 AnythingLLM 中有 Workspace 的概念,可创建独有 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 三、RAG 是什么 利用大模型搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需对 RAG 有大概了解。RAG 应用可抽象为 5 个过程: 1. 文档加载:从多种来源加载文档,LangChain 提供 100 多种不同的文档加载器,包括非结构化、结构化数据及代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 文本加载器是将用户提供的文本加载到内存中,便于后续处理。
2025-03-25
大神解读大模型底层
大模型的底层原理主要包括以下几个方面: 1. 生成式:大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从给定的提示词“how”开始,通过计算推理依次输出“are”“you”等,直到计算出下一个词是“”时结束输出。 2. 预训练:大模型“脑袋”里存储的知识都是预先学习好的,这个预先学习并把对知识的理解存储记忆在“脑袋”里的过程称为预训练。以 GPT3 为例,训练它使用了约 4990 亿 token 的数据集,相当于 86 万本《西游记》。预训练需要花费大量时间和算力资源,且在没有外部帮助的情况下,大模型所知道的知识信息是不完备和滞后的。 3. 转换器模型(Transformer):Transformer 是一种处理文本内容的经典模型架构,虽然其具体细节不清楚不影响使用大模型,但感兴趣的可以通过相关链接进一步了解。 4. 参数规模:依靠概率计算逐字接龙的方法看似难以生成高质量回答,但随着参数规模的增加,如从 GPT1 的 1.5 亿到 GPT3.5 的 1750 亿,实现了量变到质变的突破,“涌现”出惊人的“智能”。这种“涌现”现象在人类的进化和个体学习成长历程中也存在。
2025-03-24
模型理解汉字能力很差
目前模型在理解汉字方面存在一些问题,主要表现为: 1. 语义理解较差,例如在某些应用场景中对中文的理解不够准确。 2. 中文汉字的集合较大,纹理结构更复杂,增加了理解难度。 3. 缺少中文文字的图文对数据,影响了模型对汉字的学习和理解。 为了提升模型对中文文字的生成能力,采取了以下措施: 1. 选择 50000 个最常用的汉字,机造生成千万级的中文文字图文对数据集,但机造数据真实性不足。 2. 实用 OCR 和 MLLM 生成海报、场景文字等真实中文文字数据集,约百万量级。通过结合高质量真实数据,提升了中文文字生成能力的真实性,即使是真实数据中不存在的汉字的真实性也有所提高。
2025-03-24
使用coze提取包含我指定的几个关键词的小红书内容数据进行汇总及分析
以下是关于使用 Coze 提取包含指定关键词的小红书内容数据进行汇总及分析的相关内容: 首先,在“一枚扣子:Coze 应用+多维表格的高速数据分析”中提到: 1. 需求是根据博主链接获取笔记并自动写入多维表格,然后进行批量分析。 2. 完成后端准备工作后,需找到博主地址,批量读取笔记并写入多维表格的 note_url 列。 3. 打开 Coze 创建应用,可选择 PC 模式,需要几个参数如多维表格地址、数据表名、小红书博主首页地址。 4. 设计读取博主笔记列表的工作流,包括创建应用、开发工作流等步骤。工作流实际上只有读取、转换、写入三步,开始节点设置三个参数,第二步需进行数据转换,添加代码节点,最后在插件市场选择多维表格插件并配置参数。 其次,在“舆情管理大师汽车 bot 小队.pptx”中: 1. 提到采集结果实时更新、智能总结链接内容、智能打分辅助判断等功能。 2. 构建高效数据流转体系,包括数据入表、关键词库等。 3. 任意关键词的工作流都适配,只需要调整 prompt。 最后,在“一枚扣子:2.0Coze 应用+多维表格+数据分析”中: 1. 介绍了配置管理,通过用户变量保存设置用于其他工作流。 2. 编排工作流,在开始节点添加变量接收 UI 输入的配置参数。 3. 包括账号分析、关键词/赛道分析等工作流,基础工作流用于查询,同步数据工作流涉及代码节点。 综上所述,使用 Coze 提取小红书内容数据进行汇总及分析需要创建应用、配置参数、设计工作流,并结合多维表格等工具实现相关功能。
2025-03-25
我要写论文,想看看知网有哪些关键词应该怎么样提问ai
以下是关于知网关键词提问以及相关 AI 应用的一些信息: 知网关键词提问: 对于论文写作,在知网中提问关键词时,可以参考以下方面:书籍、报告、文件、详细信息、查询、主题、作者、出版日期、出版社、问题、方面、原则、方法、概括、主要观点、解释。 提问模板: 第一步:输入信息。向 ChatGPT 提供您要查询的书籍、报告或文件的详细信息,提供越详细,越能针对问题提供准确答案。例如:书籍:(书名)+(作者)+(出版日期)+(出版社);报告:(时间)+(主题);文件:(名称)。 第二步:提出问题。例如:这本书当中提到了关于 XXX 的哪些方面/原则/方法?根据 XXX 报告,XXX 行业的增长趋势是怎样的?请给我一个关于《XXX》报告的简要概括等。 AI 应用: 在图片生成方面,为了生成想要的图片,一般图片内容会分为二维插画以及三维立体两种主要表现形式。生成图片时,主题描述可以包括场景、故事、物体、人物的细节和搭配等。设计风格可以通过找风格类的关键词参考或垫图/喂图让 AI 生成相应风格的图片。但一个大场景中有多个角色的细节不太容易通过关键词生成。 开搜 AI 搜索是一款免费无广告、直达结果的搜索工具,具有以下应用场景: 帮助在校学生快速搜集专业领域的学术资料,智能总结关键信息,助力撰写论文和报告,同时支持查看来源出处,参考价值高。 方便教育教师群体获取丰富的教学资源,自动生成教案和课题研究报告,提高教学内容的准备效率。 助力职场办公人群高效查找工作所需信息,简化文案撰写、PPT 制作和工作汇报的准备工作。 为学术研究人员提供深入的行业分析,通过 AI 技术整合和总结大量数据,形成有深度的研究报告。
2025-03-21
快速帮我补充下大模型的发展时间线和关键节点,以及当前最前沿的新闻
大模型的发展时间线和关键节点如下: 2017 年:发布《Attention Is All You Need》论文。 2018 年: Google 提出 BERT,创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模。 OpenAI 提出 GPT,开创仅使用自回归语言建模作为预训练目标的方式。 2021 年:Meta 提出 Large LAnguage Model Approach(LLAMA),成为首个开源模型。 2022 年 11 月 30 日:ChatGPT 发布,在全球范围内掀起人工智能浪潮。 2022 年 12 月:字节云雀大模型等出现。 2023 年: 国内大模型发展大致分为准备期(国内产学研迅速形成大模型共识)、成长期(数量和质量逐渐增长)、爆发期(开源闭源大模型层出不穷,形成百模大战态势)。 关键进展包括:Meta 开源 Llama2、OpenAI 发布多模态 GPT4V 及 GPT4 Turbo、百川智能开源 Baichuan7B 及 Baichuan2、百度升级文心一言 4.0、清华&智谱 AI 开源 ChatGLM2 及清华开源 ChatGLM3、腾讯发布混元助手等。 当前最前沿的新闻包括:过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,到 11 月份测评时已在总分上超越 GPT3.5。
2025-03-14
怎么学ai关键词
学习 AI 关键词可以从以下几个方面入手: 1. 主题描述: 可以描述场景、故事、元素、物体或人物的细节和搭配。 对于场景中的人物,要进行独立描述,避免用一长串文字,将其拆分为多个部分,如“一个男孩、穿着红色盔甲、站在山顶”,这样更易接近想要的场景。但大场景中多个角色的细节不太容易通过关键词生成。 2. 设计风格: 设计师可能难以直接表达设计风格,可找风格类关键词参考或用垫图/喂图的方式,让 AI 根据给出的图片风格结合主题描述生成相应风格的图片。 研究特定材质如玻璃、透明塑料、霓虹色彩等的关键词,某些情况下可能需要加入设计师风格,单纯控制材质较难达到要求。 3. 视频镜头: 例如黑白镜头,提示词可为“黑白镜头,展示一个老街区的复古场景,增强怀旧感”。 特写镜头,如“特写镜头展示一双男性眼睛”。 微距镜头,如“微距镜头,超近距离拍摄一个蚂蚁的触角,背景虚化,增强画面的细腻感和真实感”。 掌握并理解提示词中的核心关键词并不困难,只要方法正确,就能独立还原并创新创作过程。大家可以一起收集和测试适用 AI 绘画提示词中的核心关键词,根据关键词做创意,收录不错的作品。
2025-03-10
正在搭建客户CRM系统,对于客户拜访跟进记录表格,希望平衡销售人员的录入便捷性和信息完整性,如何通过多维表格接入的AI功能来简化信息录入,比如通过语音录音,直接解析内容。推荐我具体方法,包括怎么解析语音,输出的关键字段,以及提示词
以下是一种通过多维表格接入的 AI 功能来简化客户拜访跟进记录信息录入的方法: 1. 定义任务目标:让 AI 成为您的私人 CRM,即客户管理系统。 2. 编写指令: 定义角色:希望 AI 作为一名顶级的客户服务与销售总监,负责记住客户的爱好与信息。 提供背景信息:简单描述自己的身份,例如负责什么产品的销售。 明确任务目标和输出要求:在每次拜访客户后,把重要信息发送给 AI,要求 AI 每次接到新的客户消息后,只用回复一句“收到,知道了。” 3. 信息录入方式:可以通过语音录音的方式将拜访客户的信息传达给 AI。 4. 语音解析:利用 AI 的语音识别和自然语言处理能力,对语音内容进行解析。 5. 输出的关键字段:可能包括客户姓名、联系方式、拜访时间、拜访内容要点、客户需求、客户反馈等。 6. 提示词:例如“请整理本次拜访客户的关键信息”“提取重要内容并生成表格”等。 您可以参考以上方法,根据实际需求进行调整和优化。
2025-03-07
如何用ai准确无误的提取一本书中的关键内容
以下是一些利用 AI 提取一本书中关键内容的方法: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 内容获取:对于新闻类内容,输入新闻链接,系统可自动提取核心内容。例如,添加网页图片链接提取插件,获取网页里的图片,利用大模型节点提取图片链接集合中的第一条作为新闻主图。对于文字部分,使用链接读取节点提取,并通过大模型节点重写新闻成为口播稿子。 3. 多领域应用:在视觉与语言结合方面,可通过文字和图像推导因果关系;在专业领域,能精准提取技术报告和图表关键信息,高效解析物体的空间关系和细节;在数学能力方面,可显著减少数学推理任务中的错误率。 4. 文档处理:如 Fireworks AI 发布的 Document Inlining 功能,可将 PDF、截图、表格等非结构化文档转换为 LLMs 可理解的结构化文本,在复杂文档中实现精准的内容提取,且与 OpenAI API 完全兼容,仅需一行代码即可启用。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问相关工具网址获取最新信息和使用指南。
2025-03-07