Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

可以给出国内出名的大语言模型的信息吗,包括其模型名称,版本,发布时间,发布公司,模型参数,性能特点等信息,尽可能覆盖更多的大模型,使用表格输出,并按照发布时间排序

Answer

|模型名称|版本|发布时间|发布公司|模型参数|性能特点|适合应用| |----|----|----|----|----|----|----| |Baichuan2-13B-Chat|Baichuan2192K|10月31日|百川智能|未提及|在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名200亿参数量级国内模型第一,在计算和代码能力上有一定优化空间|场景相对广泛且可以私有化部署,重点推荐在小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,可部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务| |文心一言|V4.0|10月17日|百度|未提及|在计算、逻辑推理、生成与创作、传统安全这4大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且绝大部分能力有很高的水平|能力栈较为广泛,可应用的场景较多,重点推荐在查询搜索知识应用、任务拆解规划Agent、文案写作以及代码编写及纠错等方面的应用,由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力| |通义千问 2.0|2.0|10月31日|阿里云|千亿级参数|未提及|未提及|

Content generated by AI large model, please carefully verify (powered by aily)

References

2023年度中文大模型基准测评报告.pdf

AndesGPT聚焦在移动设备端的应用。主要涵盖四个方向:知识、记忆、工具、创作。目前AndesGPT已支持使用“系统设置、一方应用、三方服务、代码解释器”等各类工具。并且AndesGPT已全面支持文生文、文生图等场景,可以为用户提供真实有用的技能。优秀模型:Baichuan2-13B-Chat(百川智能)简介:Baichuan2-13B-Chat是百川智能自主训练的开源大语言模型。百川智能于6月15日开源Baichuan1、9月6日开源Baichuan2,10月31日发布Baichuan2192K。是中文开源模型的主导力量。模型特点:Baichuan2-13B-Chat在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名200亿参数量级国内模型第一,其中逻辑推理能力超过34B参数量级的大模型,生成与创作能力超过72B参数量级的模型,表现不俗。在计算和代码能力上有一定优化空间。综合来看,Baichuan2-13B-Chat在同等量级开源模型中非常有竞争力。适合应用:Baichuan2-13B-Chat可应用的场景相对广泛且可以私有化部署。重点推荐在小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景。另外,Baichuan2-13B-Chat可以部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务。优秀模型:智谱清言(清华&智谱AI)简介:

2023年度中文大模型基准测评报告.pdf

文心一言(英文名:ERNIE Bo t)是百度全新一代知识增强大语言模型。于2023年3月16日正式发布,已进行多个版本迭代,10月17日发布V4.0版本。据百度官方介绍,文心一言目前已有7000万用户。模型特点:文心一言4.0在计算、逻辑推理、生成与创作、传统安全这4大基础能力上排名国内第一。另外在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。文心一言4.0各项能力上表现非常均衡且绝大部分能力有很高的水平,综合来看是国内非常有竞争力的大模型。适合应用:文心一言4.0的能力栈较为广泛,可应用的场景较多。基于在SuperCLUE测评上的表现,重点推荐在查询搜索知识应用、任务拆解规划Agent、文案写作以及代码编写及纠错等方面的应用。另外文心一言4.0由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力。优秀模型:通义千问2.0(阿里云)简介:通义千问,是阿里云推出的大语言模型,于2023年4月11日在阿里云峰会上正式发布1.0。9月13日,阿里云宣布通义千问大模型已首批通过备案。10月31日,阿里云正式发布千亿级参数大模型通义千问2.0,8大行业模型同步上线。模型特点:

问:目前最火最好用的的大语言模型是哪个

[OpenAI](https://openai.com/)的GPT-4是其中一个最先进和广泛使用的大型语言模型。它在多种任务上展示了卓越的性能,包括文本生成、理解、翻译以及各种专业和创意写作任务。GPT-4通过大量数据的学习,能够理解和生成人类语言,展示了在处理复杂问题和理解上下文方面的深度能力。除了OpenAI的GPT系列,还有其他一些重要的大型语言模型,如Anthropic公司[Claude 3](https://www.anthropic.com/news/claude-3-family)、谷歌的Gemini、百度的文心一言、阿里巴巴的通义大模型等,它们在特定领域和任务上也表现出了卓越的能力。如果想了解国内的大模型效果,可以参考第三方基准评测报告:[2023年度中文大模型基准测评报告.pdf](https://waytoagi.feishu.cn/wiki/ANF7wRcJPixR00kWJINcoP1GnGf)内容由AI大模型生成,请仔细甄别。类似问题:最强大语言模型是哪个?

Others are asking
想在comfyui搭建一个音频节奏生成ai抽象粒子视觉效果的工作流,应该使用哪些模型节点?如何搭建?
在 ComfyUI 搭建音频节奏生成 AI 抽象粒子视觉效果的工作流,您可以参考以下内容: 1. 大模型节点: 您可以根据自己的风格选择不同的大模型,推荐使用: AWPainting,链接:https://civitai.com/models/84476/awpainting primemixanything,链接:https://civitai.com/models/75089/primemixanything xxmix9realistic v40,链接:https://civitai.com/models/47274/xxmix9realistic 2. 关键词节点: 可以使用工作流内的关键词,也可以输入自己的正负面关键词。 3. Lora 节点: 可根据自己风格搭配进行选择,如需多个 Lora 可进行串联。 4. ControlNet 节点: 选用 qrcode_monster V2 版本,相比于 V1 版本 V2 版本识别性更强。下载需要魔法,没有魔法的同学文末领取模型。下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 5. 采样器节点: 所有生图的老演员了,Step 要选择高步数,35 50 即可。采样器默认的 euler a /dpmpp 2m sde 基础节点介绍: 1. Checkpoint 基础模型(大模型/底模型)节点: 属于预调模型,决定了 AI 图片的主要风格。输出连接:Model 连接 KSampler 采样器的 Model;Clip 连接终止层数的 Clip;Vae 连接 VaeDecode 的 Vae。 2. Clip 终止层数(clip skip)节点: ComfyUI 的是负数的,webUI 的是正数。输出入点:Clip 连接 Checkpoint 基础模型的 Clip。输出节点:Clip 连接 Prompt 节点的 Clip。正向提示词和负面提示词各一个。 3. Prompt 节点: 输出入点:Clip 连接 Clip 终止层数节点的 Clip。输出节点:正向提示词和负面提示词各连接一个。 4. KSampler 采样器: 输出入点:Model 连接 Checkpoint 基础模型;Positive 连接正向提示词;negative 连接负面提示词;latent_imageL 连接 Empty Latent Image 潜空间图像的 Latent。输出节点:Latent 连接一个 VAE 的 Samples。 5. Empty Latent Image 潜空间图像: 设置出图尺寸,例如 10241024。输出入点:Latent 连接 KSampler 采样器的 Latent。 此外,还有一些根据插件整理的工作流,您可以先随便选择一个“文生图”中的“基础+自定 VAE”。选好之后,点击“替换节点树”。界面中就会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒您是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。
2025-03-15
知名的AI模型广场有哪些
以下是一些知名的 AI 模型广场: 1. Liblibai 模型广场: 首页展示了其他用户炼成的模型,收藏和运行数较多的模型在首页前排。 包含 Checkpoint(生图必需的基础模型)、lora(低阶自适应模型)、VAE(编码器)、CLIP 跳过层、Prompt 提示词、负向提示词 Negative Prompt 等多种模型和元素。 采样方法决定了让 AI 用何种算法生图。 2. 阿里云百炼模型广场: 涵盖文本生成、视觉理解、音频理解、语音合成、语音识别、图像生成和 Embedding 等多种技术的丰富 AI 模型。 语音识别模型可将音视频中的人类声音转换为文本,适用于会议记录、客户服务、媒体制作、市场研究及多样化的实时交互场景,如会议、课堂录音记录、客服电话分析、字幕生成、市场研究与数据分析等。切换到实时语音模型后,可用于会议、直播、客服、游戏、社交聊天、人机交互等场景。
2025-03-15
现在最强最新的文本模型是什么,如何免费使用
目前较为强大和新的文本模型包括: BERT:由谷歌推出,是“来自Transformer的双向编码器表示”的缩写。可在免费下载和使用。能用于文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户查询等多种自然语言处理任务。 GPT3:由 OpenAI 创建,生成真实文本的能力令人惊讶。 GPT4:OpenAI 目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。 Gemini Ultra:Google 的多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等。 Claude 3 Opus:Anthropic 的多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能,实现了接近完美的召回率。 “悟道・天鹰”:北京智源人工智能研究院推出,是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 文心一言:百度的大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 需要注意的是,免费使用这些模型可能存在一定限制,部分模型可能需要特定的条件或授权。同时,模型的性能和适用性也会因具体应用场景和需求而有所不同。
2025-03-15
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
希望找到一个可以帮助我写论文的模型
以下是一些关于利用模型写论文的信息: 可以向 LLM 寻求写作建议,甚至直接要求它帮您写论文。例如提供关于个人背景的信息,让其生成大学申请论文。但需要注意,这种方式可能存在道德问题。 可以直接给模型相关论文,让其完成任务,如写出论文中的例子。模型能够理解复杂的信息,不需要过度简化。 例如用 ChatGPT 撰写“宇宙类比大规模语言模型”的论文时,可以给出相关提示词,从宏观天文学、微观量子力学、哲学等角度展开讨论,并明确探讨方向。
2025-03-14
有没有ai调色的大模型
以下为您介绍一些有关 AI 调色的大模型: 1. 在最近新上线的 controlnet 模型中,新增了名为 Recolor 的模型,可将黑白图片重新上色。在处理人物照片还原时,可选择 realisian 的写实大模型,通过提示词描述颜色和对应内容。ControlNet 选择 Recolor 时,预处理器选择“recolor_luminance”效果较好。 2. 星流一站式 AI 设计工具的基础模型中,允许使用更多的微调大模型,如基础模型 F.1、基础模型 XL、基础模型 1.5 等。同时,还具有高清分辨率修复、脸部/手部修复等功能,以及多种参数如采样器、采样步数、随机种子、CFG Scale 等可调整。 3. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,可在显存不够时放大图片。处理复杂照片时,可放弃人物服装颜色指定,只给场景方向,如加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,通过简单关键词控制色调。
2025-03-14
OpenAl 发布 Agent 工具包
OpenAI 刚发布了全新的 Agent 工具包,这标志着 AI 智能体进入了新时代。新推出的 Responses API 及相关工具,简化了开发者构建多功能 AI Agent 的流程,实现了自动化任务处理。其中,网络搜索、文件搜索及计算机使用工具相结合,使 AI 不仅能获取实时信息,还能执行复杂操作。这不仅是对 Assistants API 的全面升级,也意味着智能体进入统一接口、标准化开发的新阶段。OpenAI 表示,2025 年将是 Agent 的元年,让 AI 超越聊天框,成为工作中的“数字助理”与“数字同事”。开发智能体不再需要拼凑繁杂代码,只需 4 行代码即可实现。
2025-03-13
COZE智能体全自动制造视频发布媒体
以下是关于 COZE 智能体全自动制造视频发布媒体的相关内容: 一、概述 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建。感谢开源,现提供教程。 二、先看效果 可查看 三、功能 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 四、涉及工具 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 五、大体路径 1. 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 coze 智能体到飞书多维表格。 工作流调试完成后,加入到智能体中。可选择工作流绑定卡片数据,智能体通过卡片回复。发布时选择飞书多维表格,填写上架信息,等待审核。 3. 在多维表格中使用字段捷径,引用该智能体。创建飞书多维表格,添加相关字段,选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。点击多维表格右上角的“自动化”,创建想要的自动化流程。 六、【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 1. 三、创建智能体 3. 知识库 本次创建知识库使用手动清洗数据。 3.1 在线知识库:点击创建知识库,创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义,输入,可编辑修改和删除,点击添加 Bot,在调试区测试效果。 3.2 本地文档:注意拆分内容提高训练数据准确度,将海报内容训练到知识库,按固定方式人工标注和处理。 3.3 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-03-12
AI音乐发布要准备哪些材料
发布 AI 音乐通常需要准备以下材料: 1. 音频文件:确保音频质量良好。 2. 歌词: 文本歌词需做成 TXT 格式上传。 可通过自带功能将文本歌词同步为逐字歌词 TRC,修正错别字后提交。 3. 描述音乐风格:如民谣、流行、嘻哈、国风等。 4. 若为人声歌曲,还需准备歌词:可以自己创作,也可让 AI 帮忙写作。 5. 选择音乐库中的合适音乐。 此外,在一些相关教程中还提到: 收藏过的满意音乐素材、音效素材以及抖音里收藏的音乐。 音效库方面,可通过搜索相应音效,如开门声,并添加到音轨。
2025-03-11
AI智能体怎么发布到企业微信
以下是将 AI 智能体发布到企业微信的步骤: 1. 组装和测试“AI 前线”Bot 机器人: 返回个人空间,在 Bots 栏下找到刚刚创建的“AI 前线”,点击进入。 将写好的 prompt 粘贴到【编排】模块,prompt 可随时调整。 在【技能】模块添加需要的技能,如工作流、知识库。 在【预览与调试】模块,直接输入问题,即可与机器人对话进行测试。 2. 发布“AI 前线”Bot 机器人: 测试 OK 后,点击右上角“发布”按钮,即可将“AI 前线”发布到微信、飞书等渠道。 3. 发布到微信公众号上: 选择微信公众号渠道,点击右侧“配置”按钮。 根据截图,去微信公众号平台找到自己的 App ID,填入确定即可,不用解绑。 完成以上步骤后,就可以在企业微信等渠道使用发布的 AI 智能体了。
2025-03-07
GitHub发布的ai软件叫什么
以下是一些在 GitHub 发布的 AI 软件: :集成了主流大语言模型以及绘图模型的 AI 应用。 :无需登录即可直接使用 New Bing,拥有与 Bing 一致的 UI 体验,并支持 ChatGPT 提示词。 :开源的命令行工具,借助 AI 能力快速移除图像和视频背景。 :短视频生成和编辑工具,结合 ChatGPT、Stable Diffusion 和多模态搜索实现多种功能。 :可以跟 GitHub 仓库进行对话的 Python 工具。 :在线测试多种开源大语言模型的工具。 :让 ChatGPT 不再报错的插件。 :拥有类似 GPT4 图像对话能力的项目。 :借助人工智能技术让绘画作品动起来的有趣 AI 工具。 :集成到 VSCode 和 IntelliJ IDEA 等代码编辑器上使用的 AI 编程助手,个人版对所有开发者免费开放。 此外,GitHub 发布的还有: GitHub Spark 新产品,类似 Bolt 或者 V0 这种输入需求直接生成。新增对多个 AI 模型的支持,如 Claude 3.5 Sonnet、Gemini 1.5 Pro、o1preview 和 o1mini。开发者可以自由选择最适合的模型,组织和企业可以控制团队使用的模型范围。增强了 AI 原生开发体验,如 Copilot Workspace、Copilot Code Review 等。 :可打造成企业内部知识库的私人专属 GPT。 :有获取 GPTs 的 Prompt、Knowledge 以及防护教程,对破解官方 GPTs 的 Prompt 进行分类。 :收集了超级多被破解的 GPTs Prompt。 :精心收集整理的优秀 AI 助手列表。 :只需一张角色图片,即可生成与角色一致且动作可控的生动视频。 :可以安装在电脑(和安卓手机)上的用户界面,与文本生成的人工智能互动,并与社区创建的角色聊天/玩角色扮演游戏。 :微软开源的用于简化大模型应用开发周期的工具。 :开源的计算机视觉 AI 工具箱。
2025-03-03
如何搭建一个自动把录音文件转文字的agent,然后发布到飞书多维表格字段捷径
搭建一个自动把录音文件转文字的 agent 并发布到飞书多维表格字段捷径的步骤如下: 1. 工作流调试完成后,加入到智能体中。可以选择工作流绑定卡片数据,智能体通过卡片回复。绑定卡片数据可自行研究,如有疑问可留言。 2. 发布:选择需要的发布渠道,重点是飞书多维表格。记得智能体提示词的 4 个变量,填写上架信息(为快速审核,选择仅自己可用),确认发布并等待审核。审核通过后即可在多维表格中使用。 3. 创建飞书多维表格,添加相关字段。配置选择“自动更新”,输入 4 个字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 4. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 5. 点击多维表格右上角的“自动化”,创建想要的自动化流程。 此外,关于 Coze 应用与多维表格的结合还有以下相关内容: 1. Coze 智能体(字段捷径)获取笔记+评论信息:创建智能体,使用单 Agent 对话流模式,编排对话流,配置相关节点和插件,进行数据处理和测试,最后发布。 2. Coze 应用:完成后端准备工作后,创建应用,设计界面和工作流,包括读取博主笔记列表的工作流,进行相关配置和参数设置。
2025-02-27
自动转换信息为表格
以下是关于自动转换信息为表格的相关内容: Andrej Karpathy 亲授:大语言模型入门 在讨论 LLM 的未来部分提到,使用 ChatGPT 收集有关规模人工智能及其创始轮次的信息,并整理成表格。ChatGPT 不是直接作为语言模型回答问题,而是使用工具,如浏览器进行搜索,将信息组织成表格,包括 A、B、C、D 和 E 系列,有日期、筹集的金额以及该系列中的隐含估值,并提供引用链接,同时会标注无法找到的信息。 50 个 ChatGPT 指令,提升工作效率 其中包括将文本转成 CSV 表格的相关提示:“从下面粘贴的列表中,创建一个包含”
2025-03-15
利用AI,快速提取信息的核心内容
以下是关于利用 AI 快速提取信息核心内容的相关介绍: 伊登: 工作流程: 输入新闻链接,系统自动提取核心内容。 利用添加的网页图片链接提取插件获取网页图片,以 1ai.net 资讯为例,提取主要图片。 对图片进行格式转换。 使用链接读取节点提取文字内容。 接上大模型节点重写新闻为口播稿子,可使用 DeepseekR1 模型,也可在提示词中加入个性化台词。 通义千问: Qwen2.5VL 特色文档解析:设计了更全面的文档解析格式,能精准识别文本和提取文档元素位置信息,还原版面布局,可对多种场景进行鲁棒的文档解析。 增强的视频理解:支持最长 1 小时视频理解,具备秒级事件定位能力,能对视频不同时间段进行要点总结。 能够操作电脑和手机的视觉 Agent:利用内在能力执行任务,为创建视觉代理提供参考。 生成式 AI Studio: 生成式人工智能:能够生成新的、未曾存在的多模态内容,包括文本、图像、音频、视频等。 应用场景:文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 工作方式:通过从大量现有内容中学习进行训练,分为训练阶段和应用阶段,应用阶段基础模型可用于生成内容和解决一般性问题,也可针对特定领域进一步训练。 Google Cloud 的工具:包括 Vertex AI 端到端机器学习开发平台、Generative AI Studio 工具、Model Garden 平台。
2025-03-10
如何通过与AI的对话获取高质量的信息?有没有相关书籍或者文章推荐,请给出相关链接。
以下是关于如何通过与 AI 的对话获取高质量信息以及相关书籍和文章推荐的内容: 在与 AI 对话获取高质量信息方面: 作为普通用户,语言在大模型中不是关键,核心是向量空间中的游走脉络,输出时的语言翻译是次要的,且训练语料的中英文差异在于 embedding 环节。 通过合适的模型、prompt 和 test 入口表达,用大模型公式调试出好效果以替代垂类模型,但微调垂类模型可能使大模型泛化能力下降,需分场景看待。 写提示词未挖掘出大模型的天花板,还有提升空间。 相关书籍和文章推荐: 从数学、作家、代码、原理角度写大模型的四本书。 介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章。 关于 AI 知识库及学习路径的介绍中提到的经典必读文章,如软件 2.0 时代相关内容。 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 获取信息的渠道: 可以关注赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,订阅获取最新信息并投稿。 可通过“通往 AGI 之路”知识库获取相关内容,该知识库涵盖了 AI 多方面知识及社区共创项目,如人工智能简史、AI 会话简史等,还有 10 篇精选文章助于理解 AI。 您还可以通过参加社区共创项目,如 AIPU、CONFIUI 生态大会,每月的切磋大会等活动,以及新活动 AIPO,与他人交流获取更多信息。同时,鼓励整理学习笔记并分享交流,以促进对知识的吸收和理解。
2025-03-09
怎样建造定时往微信发送信息的智能体?
要建造定时往微信发送信息的智能体,以下是一些相关步骤和方法: 一、自动总结公众号内容并定时推送到微信的方法 1. 搭建工作流 循环将推送内容插入数据库:将本轮推送给用户的内容写入数据库,下次从 RSS 列表中如果再抓取到相同内容,直接跳过,避免重复推送。使用“循环”节点,输入项为第 8 步代码输出的 content_urls,这里有完整的文章内容信息。循环体设置使用“数据库”节点,输入项为本循环节点 item 中的 url 和 suid,SQL 用 AI 生成。设置循环节点的输出项:output,参数随便选,后边也用不到了。 结束节点:选择第 11 步输出的内容,可以在 bot 中也查看到推送的内容。 2. 试运行 工作流搭建完后,点击右上角的试运行,选择绑定的 bot,输入数据测试。Key 输入您的 server 酱的 sendkey,rss_list 若没有现成的数据,可以使用提供的数据测试。 若工作流设置没问题,会在工作流中看到相应结果,同时微信上也会收到这条推送,可以查看总结内容,点击链接查看公众号原文。 点击右上角发布。 二、用 Coze 实现多模态资讯的跨平台推送并接入微信群 Bot 的方法 1. 技术实现原理 Coze API 接入微信群 Bot:登录宝塔面板后,在宝塔面板当中可视化地控制云服务器,在上面部署 docker 容器,启动 COW 项目与微信取得关联。 chatgptonwechat(简称 CoW)项目是基于大模型的智能对话机器人,可以接入微信公众号、企业微信应用、飞书、钉钉,可选择多种模型,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源。 2. Docker 中配置 COW 组件 点击“Docker”中的“项目模板”中的“添加”按钮。 项目模板代码示例如下:将上面编译好的内容复制进来。 在容器中创建容器,选择容器编排,填入模板和名称,确定。 现实运行成功。 点击容器后,可以看到运行的是两个服务,因为接口文档中启动了两个服务。 然后点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 这个界面不会实时更新显示,需要手动刷新一下。点击“刷新日志”,如果看到 WeChat login success,就成功将 Bot 接入微信中了。 三、让 Coze 智能体机器人连上微信和微信群的方法 1. 绑定微信 需要提前准备一个闲置的微信,因为这种方法是非官方接口,有可能微信号会受到官方限制,用一个闲置微信。 点击容器,可以看到运行的是两个服务,这是因为接口文档中启动了两个服务。 点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 这个界面不会实时数显,为了验证是否成功,需要手动刷新一下。点击“刷新日志”,就能看到 WeChat login success,就是提示微信登录成功的意思。 为了确保微信是否实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”。如果显示“wechat login seccess"则表示微信正常登录中。 2. 效果测试 把绑定的微信号拉到群里或者单独对话,如视频所示就可以激活对话了,训练的数据越好,对话效果越好。
2025-03-09
请给我Auto-GPT的相关信息资料:例如他是什么,他能干什么,他的工作原理
AutoGPT 是一个基于 GPT4 语言模型的开源应用程序。 它能做的事情包括: 当用户输入一个目标后,自主执行任务。 递归地开发和调试代码。 自动化任务,如帮助发展市场、制定营销策略、建立网站等。 创建自主的 AI 代理,如聊天机器人和流程自动化。 完成各种任务,如生成新任务、完成复杂任务、自我改进等。 根据代码仓库以及公开的代码仓库提示可能的输入,增强 IDE 的补全功能。 其工作原理主要为:分解用户提供的任务,选择需要使用的工具,执行任务,整合结果。您可以通过以下地址访问:
2025-03-08
做一个每日收集兴趣信息的工具,如收集agent,从微信公众号上收集,应该怎么做
以下是一种通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答的方式来做每日收集兴趣信息的工具: 1. 安装 Docker(假设已经装上) 浏览器打开:http://127.0.0.1:4000 或 http://wewerss 服务的 IP:端口(为上面设置的外部端口) 点开后,输入 Dash 管理页面密码 先点帐号管理,然后点“添加读书帐号”(即使用微信读书来实现公众号订阅),扫码添加帐号 然后在公众号源上,点添加 将您想订阅的公众号的一篇文章链接粘贴并点确定即可订阅公众号文章。但建议不要短时间订阅太多公众号(最好不超 40 个),然后在本地 data/目录会生成一个 SQLite 数据库文件 wewerss.db 2. 关于 Coze 工作流和 Bot 因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。得到机器人的 app_id 和 app_secret 即可获得租用 token:tenant_access_token 来获取多维表格数据和编辑能力。 工作流一:通过微信文章链接进行文章解读成摘要报告。通过 LLM 能力,开源提示词如下。由于 Coze 使用 LLM 和批量执行任务延时的约束,建议不要同时处理太多文章(如 6 篇左右)。这样执行后,将多维表格的文章状态转换成“已通知”并生成简报。 消息情报官 Bot:最后可以通过 Coze,建定时任务,执行工作流二,并添加其他如分析文章和搜索文章的能力,即可变成一个消息情报官的 Agent,我们即可以获得想要的领域或行业情报,也可以深入挖掘相关情报的信息。然后发布到想要的平台,如:Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等,即可使用。可以构建多个分身,就能收集整理不同领域和行业的情报信息。 如感兴趣欢迎联系交流合作。
2025-03-08
AI如何结合业务数据,输出一些汇总表格?
AI 结合业务数据输出汇总表格通常需要以下步骤: 1. 数据收集与整理:首先,需要收集相关的业务数据,并对其进行清洗和预处理,以确保数据的质量和一致性。 2. 选择合适的 AI 技术和工具:根据数据特点和业务需求,选择适合的 AI 算法和工具,如机器学习中的分类、回归算法,或者数据挖掘工具等。 3. 数据建模:运用选定的 AI 技术对数据进行建模,建立能够分析和处理数据的模型。 4. 训练模型:使用预处理后的数据对模型进行训练,不断优化模型的参数,以提高模型的准确性和性能。 5. 数据应用与输出:将训练好的模型应用于新的数据,生成分析结果,并将结果以汇总表格的形式进行输出。 在实际操作中,还需要注意数据的安全性和隐私保护,以及对模型结果的评估和验证,确保输出的汇总表格准确、有用且符合业务需求。
2025-03-14
飞书多维表格生成小红书图文笔记
以下是关于使用飞书多维表格生成小红书图文笔记的相关内容: 一、Coze 应用+多维表格的高速数据分析 1. 动手实践 Coze 应用 创建应用:打开 Coze,可选择 PC 模式,需要几个参数,包括多维表格地址、数据表名、小红书博主首页地址,界面设计为三个输入框和一个按钮。 开发工作流:包括读取博主笔记列表的工作流,工作流实际上只有三步,读取、转换、写入。开始节点设置三个参数,分别代表多维表格地址,表名称,博主首页地址。第二步的节点需要把数据转换为符合多维表格插件接收的数据格式,需添加一个代码节点并复制代码。在插件市场搜索官方的多维表格插件,选择 add_records 并分配配置参数。结束节点配置一个值即可。 Coze 智能体(字段捷径)获取笔记+评论信息 创建智能体:使用单 Agent 对话流模式。 编排对话流:创建新的对话流并与智能体关联,配置两个小红书插件,在获取笔记详情节点和笔记评论节点分别配置 cookie,使用代码节点进行数据处理,注意代码节点输出的配置格式。 测试:找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据,回到智能体的编排页面同样测试,确保对话流执行成功。 发布:点发布后选择多维表格,进行配置,包括输出类型选文本、输入类型选字段选择器,完善上架信息,选发布范围,提交上架信息。 二、办公提效神器:飞书多维表格字段插件 1. 工作紧任务重 第一步,用 AI 插件理解图片:上传参考的海报图片,用 AI 内容生成插件理解。创建表格列时,选择字段捷径,在 AI 中心找到智谱 AI 的内容生成插件,配置提示文本、上传图片所在列和模型。 第二步,生成视频的指令:用飞书自带的插件总结宣语,生成视频的 prompt 指令。自定义总结要求,生成宣传语后再使用飞书自带的自定义 AI 插件生成视频所需的 prompt 指令。
2025-03-13
有没有表格处理ai?
目前有多种可用于表格处理的 AI 工具和插件,例如: 1. Excel Labs:是 Excel 插件,基于 OpenAI 技术,新增生成式 AI 功能,可在 Excel 中进行数据分析和决策支持。 2. Microsoft 365 Copilot:整合了 Word、Excel、PowerPoint 等办公软件,通过聊天形式完成用户需求,如数据分析和格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器功能,支持自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、生成相关文本内容、执行情感分析、语言翻译等任务。 此外,飞书多维表格也能与 AI 协作,帮助处理数据。例如,自带 AI 插件可实现自然语言提取网址和电话、生成 AI 标签等功能。在工作中,可根据具体需求选择合适的工具,如用智谱 AI 表格插件理解图片、生成视频的指令等。随着技术发展,未来可能会有更多 AI 功能集成到表格处理中,提高工作效率和智能化水平。
2025-03-13
飞书多维表格如何关联AI形成工作流
要将飞书多维表格关联 AI 形成工作流,可以参考以下步骤: 前期准备: 1. 设计 AI 稍后读助手的方案思路,包括简化“收集”、自动化“整理入库”和智能“选择”推荐等方面。 简化“收集”:实现跨平台收集功能,支持多端操作,理想方式是输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入。 自动化“整理入库”:入库时自动整理关键信息,支持跨平台查看。 智能“选择”推荐:根据收藏记录和阅读兴趣生成阅读计划。 逐步搭建 AI 智能体: 1. 创建 Bot。 2. 填写 Bot 介绍。 3. 切换模型为“通义千问”。 4. 把配置好的工作流添加到 Bot 中。 5. 新增变量{{app_token}}。 6. 添加外层 bot 提示词(可按需求和实际效果优化调整)。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据。 此外,还有一些关于工作流的分享心得,如起床让 AI 排 TODO 优先级、工作中有傲娇 AI 小助理加油、重点事项拆成 bot 团队组、优化 bot 包括内容选题、短视频脚本、数据分析等,并将相关资产放入飞书的知识库和多维表单中维护,未来还可能将整个公司业务搬入飞书等。
2025-03-13
怎么基于飞书表格数据分析
基于飞书表格进行数据分析可以参考以下步骤: 1. 应用的背景说明 解决的问题:使用 Coze、飞书多维表格、自定义 AI 字段捷径来实现数据的高效抓取与批量 AI 化处理。 技术场景:包括 Coze 定义智能体并发布到飞书多维表格字段捷径,多维表格中使用和配置自定义的 AI 字段捷径,Coze 应用采用交互式界面将数据导入到飞书多维表格并驱动其自动运行,以及多维表格仪表盘对数据的可视化。 期望达到的目的:更多是希望大家能了解“如何最高效率使用 AI”,并将方案泛化到自己的实际工作中,同时选择了最适合的技术路线(不懂代码即可完成)。 2. 动手实践 设计多维表格:进到飞书,新建一个多维表格,配置字段,新建一列,选择编辑列,完成相关设置。配置完后,打开自动更新,若 note_url 有赋值,模型分析会自动触发。 配置其它列:例如在第一列中设置提取标题,同理可新建列提取正文、点赞、转发、评论列表等数据,进行更多自动化处理,包括笔记内容分析、仿写、改写,封面分析、标题拆解、图文复刻、视频提取分析(逐帧解析)分析视频、音频和字幕等数据分析,基于评论列表的舆情分析、情绪分析、线索挖掘、需求挖掘等。 更多资源:关于多维表格相关教程,推荐复习。 3. 创建知识库并上传表格数据 上传方式:本地文档 操作步骤: 在表格格式页签下,选择本地文档,然后单击下一步。 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档,然后单击下一步。目前支持上传.csv 和.xlsx 格式的文件内容,且表格内需要有列名和对应的数据。每个文件不得大于 20M。一次最多可上传 10 个文件。 配置数据表信息后,单击下一步。包括指定数据范围(通过选择数据表、表头、数据起始行指定数据范围)、确认表结构(系统已默认获取了表头的列名,可自定义修改列名,或删除某一列名)、指定语义匹配字段(选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配)。 查看表结构和数据,确认无误后单击下一步。 完成上传后,单击确定。
2025-03-12