Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

生成式AI

Answer

生成式 AI 是一种能够生成新内容的人工智能技术,其内容可以是多模态的,包括文本、图像、音频、视频等。

Gen AI/Generative AI 是“生成式人工智能”的正式称呼,它和 AIGC 有所不同。AIGC 指的是由人工智能生成的内容的创作方式,是 Generative AI 的应用结果。

ChatGPT 是 OpenAI 推出的,早期是一种模型,目前逐渐演变成一种可以兼容多种 GPT 模型的聊天应用(服务)。

生成式 AI 可以应用于广泛的场景,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。

其工作方式包括训练阶段和应用阶段。训练阶段通过从大量现有内容中学习生成基础模型,应用阶段基础模型可用于生成内容和解决一般性问题,也可使用特定领域新数据集进一步训练以解决特定问题。

在工具方面,如 Google Cloud 的 Vertex AI 是端到端机器学习开发平台,Generative AI Studio 允许快速制作原型和自定义生成式 AI 模型,Model Garden 可发现和交互基础及第三方开源模型。

以 Midjourney 为代表的工具在图形领域,可根据用户提供的文本描述生成高度相关和创造性的图像,这种通过文本命令获得图像的方式叫 Prompting,是全新形态的人机交互。其背后的原理涉及数据、映射和扩散三个概念。首先是数据,包括获取各种图像存档和创建特定数据集以获得足够基础来特征化物体、风格或概念。其次是映射,AI 使用算法识别和提取图片关键视觉特征。最后是扩散,AI 能通过创造性扩散过程探索和创造新的视觉表达形式。

Content generated by AI large model, please carefully verify (powered by aily)

References

十七问解读生成式人工智能

Gen AI/Generative AI是“生成式人工智能”正式称呼。Generative AI是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而AIGC指的是由人工智能生成的内容的创作方式,实际上是Generative AI的应用结果。[heading1]问题四、ChatGPT是什么?[content]从OpenAI的官网中可以查询到,在2022年宣发时,OpenAI称ChatGPT是一种模型。但是同样是在官网中查询帮助页面,发现这里称ChatGPT是一种服务。而我们使用的ChatGPT目前是依赖GPT系列模型来运转的。不做任何怀疑论上的揣摩,从公开收集的资料中可以看出,早些年OpenAI推出了一个叫ChatGPT的模型,但目前我们所熟知的ChatGPT逐渐演变成了一种可以兼容多种GPT模型的聊天应用(服务)。

9. 生成式 AI Studio 简介

生成式人工智能是一种人工智能技术,它能够生成新的、未曾存在的内容。这些内容可以是多模态的,包括:文本:例如文章、报告、诗歌等图像:例如绘画、设计图、合成照片等音频:例如音乐、语音、环境声音等视频:例如电影剪辑、教程、仿真等[heading3]应用场景[content]Generative AI可以应用于广泛的场景,例如:文档摘要:将长篇文章或报告总结为简短、精准的摘要信息提取:从大量数据中识别并提取关键信息代码生成:根据用户的描述自动编写代码营销活动创建:生成广告文案、设计图像等虚拟协助:例如智能聊天机器人、虚拟客服等呼叫中心机器人:能够处理客户的电话请求[heading3]如何工作?[content]1.训练阶段:Generative AI通过从大量现有内容(文本、音频、视频等)中学习,进行训练。训练的结果是一个“基础模型”。2.应用阶段:基础模型可以用于生成内容并解决一般性问题。它还可以使用特定领域的新数据集进一步训练,以解决特定问题,这样就可以得到一个量身定制的新模型。[heading3]Google Cloud的工具[content]Vertex AI:这是Google Cloud上的端到端机器学习开发平台,旨在帮助开发人员构建、部署和管理机器学习模型。Generative AI Studio:这是一个工具,允许应用程序开发人员或数据科学家快速制作原型和自定义生成式AI模型,无需代码或代码量少。Model Garden:这是一个平台,可以让你发现Google的基础和第三方开源模型,并与之交互。它提供了一组MLOps工具,用于自动化机器学习管道。

生成式人工智能艺术形态想象 | 精简版

生成式人工智能是一种全新的信息获取方式,而midjourney等工具所代表的是图形领域的信息获取通过背后的人工智能模型,可以根据用户提供的文本描述生成高度相关和创造性的图像。这种通过文本命令获得图像的方式叫做Prompting,是一种全新形态的人机交互。比如我输入:想象:安塞尔亚当斯的风光摄影,平遥,全景图,云隙光,丁达尔光,史诗的,明暗对照法就能获得以上图像。为什么能达成这样的能力。我们把复杂的计算机专业领域概念拆解成为三个简单的词汇。数据,映射和扩散。首先是数据,包括从公共数据库中获取世界上万事万物的图像存档、历史文献图片,或者创建特定的数据集以覆盖特定的风格或元素。最终,收集数据的目的是,获得足够的基础。用以特征化每一个世界上的物体、风格或概念。第二个部分是映射,在数据处理阶段,AI使用如卷积神经网络的算法,来识别和提取图片中的关键视觉特征,如颜色、形状、纹理等。这个过程涉及到从原始数据中学习到的特征的映射这些映射后的特征将用于生成新的艺术作品。核心本质是将信息进行蒸馏,抛弃干扰的部分将特征得以呈现。比如我们现在看到的这个苹果。最后一个概念是扩散(Diffusion)利用学习到的数据和视觉特征,AI能够通过创造性扩散的过程,不仅仅是复制或模仿已知的艺术风格,而是在现有数据的基础上,通过AI的内部处理机制,探索和创造新的视觉表达形式。归根结底,这样的核心机制,授予了创作者一只自己会动的笔。本雅明把摄影时代称作为机械复制时代,那也许我们这个时代就是人工智能执笔时代。不需要笔也能画画,拍电影。只需站在“画架”之前思考我们的观念,题材,实现路径。

Others are asking
什么是生成式ai?
生成式 AI 是一种人工智能技术,能够生成新的、未曾存在的内容,这些内容可以是多模态的,包括文本(例如文章、报告、诗歌等)、图像(例如绘画、设计图、合成照片等)、音频(例如音乐、语音、环境声音等)、视频(例如电影剪辑、教程、仿真等)。 生成式 AI 可以应用于广泛的场景,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 其工作方式包括训练阶段和应用阶段。在训练阶段,通过从大量现有内容(文本、音频、视频等)中学习进行训练,得到一个“基础模型”。在应用阶段,基础模型可用于生成内容并解决一般性问题,还可使用特定领域的新数据集进一步训练以解决特定问题,从而得到一个量身定制的新模型。 AIGC 又称为生成式 AI,意为人工智能生成内容,例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等都属于 AIGC 的应用。 Gen AI/Generative AI 是“生成式人工智能”的正式称呼,它是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。
2025-01-02
欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟人工智能法案对我国在生成式人工智能方面立法具有以下启示: 1. 立法理念方面:我国与欧盟在人工智能立法上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现,欧盟法案对我国立法工作具有重要参考意义。 2. 特殊领域监管方面: 算法推荐、深度合成、生成式人工智能是我国规制人工智能的具体领域。欧盟法案对这些领域的某些产品或服务有特殊回应,一定程度上印证了我国特别监管的必要性。 对于深度合成,欧盟法案强化了系统使用主体信息透明度的要求,与我国相关规定有一致性,但我国规定更全面,不过存在规定交叉重复适用的问题。 对于生成式人工智能,欧盟法案将其视为“基础模型”的一种类型,并规定了额外义务,我国相关规定在义务上更为全面。 3. 监管体系方面: 中国针对不同涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体。 欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估划分风险层级,并匹配不同责任措施和差异化监管,进一步界定了各类主体的义务。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟《人工智能法案》对我国在生成式人工智能方面立法的启示主要体现在以下几个方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任作为基本落脚点,将“服务提供者”作为相关义务的履行主体。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同的责任措施和差异化监管。 2. 风险分类分级监管与算法安全评估:在我国,相关指导意见和法规已提出风险防控和算法分级分类安全管理的要求,以及对生成式人工智能服务的分类分级监管要求。欧美在这方面的路径和方法虽有争议,但总体上对我国仍具借鉴意义。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国相关立法的启示。可以举例
欧盟《人工智能法案》对我国相关立法的启示主要体现在以下方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体,如《互联网信息服务算法推荐管理规定》《生成式人工智能服务管理办法》等。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同责任措施和差异化监管。 2. 风险分级管理:我国与欧盟在立法理念上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现。 3. 对拓展市场的影响:如果我国的AI项目有意拓展欧洲市场,由于针对不同市场重新训练特有模型的效率不高,将因“木桶原理”而不得不根据欧盟《人工智能法案》对产品进行调整。 总之,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考意义。
2024-12-31
关于京东的生成式AI,你知道些什么
生成式 AI 是一种能够生成新内容的人工智能技术,生成的内容可以是多模式的,包括文本、图像、音频和视频。当给出提示或请求时,它可以帮助完成各种任务,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人等。它从大量现有内容中学习,学习的过程称为训练,其结果是创造的“基础模型”,如为 Bard 等聊天机器人提供支持的 LLM 或大型语言模型。基础模型可用于生成内容并解决一般问题,还可以使用所在领域的新数据集进一步训练以解决特定问题。 Google Cloud 提供了多种易于使用的工具,如 Vertex AI,这是一个端到端机器学习开发平台,可帮助构建、部署和管理机器学习模型。 此外,生成式 AI Studio 具有一些特性,如定义场景和响应格式、提供 API 和 SDK 帮助构建应用程序、调整语言模型等。在使用中,提示的设计很重要,但可能存在一定的复杂性和不确定性。 Gen AI/Generative AI 是“生成式人工智能”的正式称呼,而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 从 OpenAI 的官网来看,在 2022 年宣发时被称为一种模型,但在官网的帮助页面中又被称为一种服务,目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。
2024-12-31
我国关于生成式人工智能的立法规定有哪些
我国关于生成式人工智能的立法规定主要包括以下方面: 1. 监管框架:由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》等共同监管。 2. 已发布的规定及生效时间: 《互联网信息服务算法推荐管理规定》于 2023 年 3 月 1 日生效。 《互联网信息服务深度合成管理规定》于 2023 年 1 月 10 日生效。 《生成式人工智能服务管理暂行办法》于 2023 年 7 月 13 日公布,2023 年 8 月 15 日生效。 《生成式人工智能服务安全基本要求(征求意见稿)》于 2023 年 10 月 11 日公开征求意见,意见反馈截止日期为 2023 年 10 月 25 日。 《科技伦理审查办法(试行)(征求意见稿)(伦理审查办法(草案)》于 2023 年 4 月 14 日公开征求意见,意见反馈截止时间为 2023 年 5 月 3 日。 《国家人工智能产业综合标准化体系建设指南(征求意见稿)》于 2024 年 1 月 17 日公开征集意见,意见反馈截止时间为 2024 年 1 月 31 日。 3. 适用范围: 《算法推荐规定》适用于任何使用算法推荐技术在中国境内提供互联网信息服务的行为。 《深度合成规定》适用于任何使用深度合成技术在中国境内提供互联网信息服务的行为。 《生成式 AI 办法》适用于使用生成式人工智能技术在中国境内向公众提供服务的行为,但不包括尚未用于在中国境内向公众提供服务的生成式人工智能技术的研究和开发。 《伦理审查办法(草案)》一旦实施,将适用于任何涉及人类、实验室动物或其他涉及伦理风险的科学技术活动。 4. 《生成式人工智能服务管理暂行办法》的相关规定: 第一条:为促进生成式人工智能健康发展和规范应用,维护国家安全和社会公共利益,保护公民、法人和其他组织的合法权益,根据相关法律、行政法规制定本办法。 第二条:利用生成式人工智能技术向中华人民共和国境内公众提供生成文本、图片、音频、视频等内容的服务适用本办法。国家对利用生成式人工智能服务从事新闻出版、影视制作、文艺创作等活动另有规定的,从其规定。行业组织、企业、教育和科研机构、公共文化机构、有关专业机构等研发、应用生成式人工智能技术,未向境内公众提供生成式人工智能服务的,不适用本办法的规定。 第三条:国家坚持发展和安全并重、促进创新和依法治理相结合的原则,采取有效措施鼓励生成式人工智能创新发展,对生成式人工智能服务实行包容审慎和分类分级监管。 第四条:提供和使用生成式人工智能服务,应当遵守法律、行政法规,尊重社会公德和伦理道德,遵守以下规定: 坚持社会主义核心价值观,不得生成法律、行政法规禁止的内容。 在算法设计、训练数据选择、模型生成和优化、提供服务等过程中,采取有效措施防止产生歧视。 尊重知识产权、商业道德,保守商业秘密,不得实施垄断和不正当竞争行为。 尊重他人合法权益,不得危害他人身心健康,不得侵害他人肖像权、名誉权、荣誉权、隐私权和个人信息权益。 基于服务类型特点,采取有效措施,提升生成式人工智能服务的透明度,提高生成内容的准确性和可靠性。
2024-12-29
我想把照片变成漫画形式,可以帮我找一个ai做吗
以下是 OpenAI 春季发布会中关于将照片转换为漫画的一些示例: 输入:一名留着中长棕色头发、留着胡须的年轻白人男子表情中性。他戴着眼镜,穿着浅灰色 T 恤。背景是简单的米色,方形。图像整体基调卡通俏皮。 输出:相应的漫画。 输入:一位黑发、笑容灿烂的年轻人摆出专业的头像。他穿着深色西装外套,系着图案领带,散发出优雅而专业的气息。他的眼睛明亮,笑容真诚,传达出幸福和自信的感觉。背景是中性灰色,将焦点放在拍摄对象的脸上。 输出:相应的漫画。 输入:一位留着及肩黑发的年轻亚洲女性摆出姿势拍照。她穿着绿色高领毛衣,表情中性。她的眉毛修整整齐,涂着淡粉色的口红。背景是一面朴素的白墙。 输出:相应的漫画。 输入:一位留着整洁黑发、戴着眼镜的年轻亚洲男子摆出姿势拍照。他表情温和,穿着一件休闲的靛蓝色 T 恤。柔和的灯光在中性背景下突出了他的五官,给照片带来了平静的感觉。 输出:相应的漫画。 输入:一名浅棕色头发的年轻白人对着镜头微笑。他穿着一件简单的黑色 T 恤,表情随意、轻松。背景似乎是一个郁郁葱葱的绿色花园,为肖像增添了一种充满活力和自然的感觉。 输出:相应的漫画。 输入:一位年轻的印度男子站在他的家中,脸上挂着欢迎的微笑。他有一头深色短发,穿着一件带有热带图案的蓝色衬衫。背景中的厨房为图像增添了舒适和居住的感觉。 输出:相应的漫画。 输入:一位年轻的白人男子在户外摆姿势,笑容温暖,留着浅棕色短发。他穿着一件经典的蓝色衬衫,给人一种利落又平易近人的感觉。背景柔和模糊,将注意力集中在他友好的表情和随意的举止上。 输出:相应的漫画。 您可以参考以上示例,了解 OpenAI 在照片转漫画方面的能力。但需要注意的是,目前 OpenAI 暂未直接提供将照片转换为漫画的公共服务。您还可以尝试其他专门用于照片转漫画的工具或软件,如 Adobe Photoshop、Prisma 等。
2025-01-03
如何构建一个AI数字人分身
构建一个 AI 数字人分身主要包括以下两个方面: 一、构建数字人躯壳 数字人的躯壳建模有多种方式: 1. 2D 引擎:风格偏向二次元,亲和力强,定制化成本低,在日本、东南亚等国家比较受欢迎,也深受年轻人喜欢。能将喜欢的动漫人物变成数字人的躯壳。代表是 Live2D Cubism。 2. 3D 引擎:风格偏向超写实的人物建模,拟真程度高,定制化成本高。目前有很多公司都在做这个方向的创业,已经可以实现用户通过手机摄像头快速创建一个自己的虚拟人身体。如 NextHuman、Unity,虚幻引擎 MetaHuman 等。但个人学习在电脑配置和学习难度上有一定门槛。 3. AIGC:虽然省去了建模流程,直接生成数字人的展示图片,但弊端也明显,算法生成的数字人很难保持 ID 一致性,帧与帧的连贯性上会让人有虚假的感觉。如果项目对人物模型真实度要求没有那么高,可以使用这种方案。典型的项目有 wav2lip等。AIGC 还有一个方向是直接生成 2d/3d 引擎的模型,而不是直接生成数字人的最终展示部分,但该方向还在探索中。 建好的模型可以使用 web 前端页面(Live2D 就提供了 web 端的 SDK)或者 Native 的可执行程序进行部署,最后呈现在用户面前的是一个 GUI。 二、构建数字人灵魂 有了数字人躯壳,还需要构建数字人的灵魂,让数字人具备各种智能,比如记得个人信息,充当个人助手;在某个领域具备更专业的知识;能处理复杂的任务等等。实现这些能力有以下几个工程关键点: 1. AI Agent:要想数字人像人一样思考就需要写一个像人一样的 Agent,工程实现所需的记忆模块,工作流模块、各种工具调用模块的构建都是挑战。 2. 驱动躯壳的实现:灵魂部分通过接口定义,躯壳部分通过 API 调用,调用方式可以是 HTTP、webSocket 等,视躯壳部分的实现而定。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对来说成熟一些,但都是闭源的,效果可以参考 Nvidia 的 Audio2Face。 3. 实时性:由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的 API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。 4. 多元跨模态:仅仅是语音交互的数字人是远远不够的,人有五感(听觉、视觉、嗅觉、触觉、味觉),听觉只是其中一种,其他的感官可以根据实际需求来做,比如视觉可以通过添加摄像头数据来获取数据,再通过系列 CV 算法做图像解析等。 5. 拟人化场景:正常和人交流的时候不是线性对话,会有插话、转移话题等情况,这些情景需要通过工程丝滑处理。
2025-01-03
AI数字人
AI 数字人是运用数字技术创造出来的人,虽现阶段不能如科幻作品中的人型机器人般高度智能,但已在生活各类场景中常见,且随 AI 技术发展正迎来应用爆发。目前业界尚无关于数字人的准确定义,一般可根据技术栈不同分为两类: 1. 真人驱动的数字人:重在通过动捕设备或视觉算法还原真人动作表情,主要应用于影视行业及直播带货。其表现质量与手动建模精细程度及动捕设备精密程度直接相关,不过随视觉算法进步,在无昂贵动捕设备时也可通过摄像头捕捉人体骨骼和人脸关键点信息实现不错效果。 2. 算法驱动的数字人:强调自驱动,人为干预更少,技术实现更复杂。一个最简单的算法驱动数字人大致流程包含三个核心算法: ASR(Automatic Speech Recognition,语音识别):能将用户音频数据转化为文字,便于数字人理解和生成回应。开源代码如 openai 的 whisper(https://github.com/openai/whisper)、wenet(https://github.com/wenete2e/wenet)、speech_recognition(https://github.com/Uberi/speech_recognition)。 AI Agent(人工智能体):充当数字人大脑,可接入大语言模型,如 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。Agent 部分可用 LangChain 模块自定义(https://www.langchain.com/)。 TTS(Text to Speech,文字转语音):将数字人依靠 LLM 生成的输出文字转换为语音。开源代码如微软的 edgetts(https://github.com/rany2/edgetts),只能使用预设人物声音且接口免费;VITS(https://github.com/jaywalnut310/vits)及其分支版本,可自己训练想要的人声;sovitssvc(https://github.com/svcdevelopteam/sovitssvc)专注于唱歌。 除算法外,人物建模模型可通过手动建模(音频驱动)或 AIGC 方式生成人物动态效果(如 wav2lip 模型)实现一个最简单的数字人,但这种简单构建方式存在诸多问题,如如何生成指定人物声音、TTS 生成的音频如何精确驱动数字人口型及动作、数字人如何使用知识库做出某个领域的专业性回答等。
2025-01-03
什么AI工具可以帮助我对表格信息进行更好的查重
以下是一些可以帮助您对表格信息进行更好查重的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于 Excel 中的数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了包括 Excel 在内的多种办公软件,用户能以聊天形式告知需求,由 Copilot 自动完成任务,如数据分析、格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-03
AI音乐
AI 生成音乐是利用人工智能技术,特别是机器学习和深度学习算法,来创作、编排和生成音乐的。以下为您介绍一些相关工具和公司: AI 生成音乐的工具: 1. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。 2. Suno AI:是一款革命性的人工智能音乐生成工具,它通过先进的深度学习技术,能够将用户的输入转化为富有情感且高质量的音乐作品。 人工智能音频初创公司(音乐创作与制作领域): 1. (被 Apple 收购)我们的音乐帮助品牌与受众建立更深层次的连接。 2. 下一代音乐制作人。 3. 由 AI 驱动的软件引擎,可以生成音乐。它可以对手势、动作、代码或其他声音作出反应。 4. 全球最大的音乐教育平台。 5. 用于创作歌曲和音频录制的应用程序。 6. 提供无缝录音室体验的一体化在线协作平台。 7. 专业音频、语音、声音和音乐的扩展服务。 8. 视频编辑的音频解决方案。 9. 由 AI 驱动的音乐工作室。 10. 通过直观的软件/硬件生态系统为音乐演奏者提供世界级声音的民主化访问。 11. AI 音频插件和社区,弥合 AI 研究与创意之间的差距。 12. 为音乐人、制作人和内容创作者提供 AI 驱动的混音服务。 13. 为创作者提供的在线音乐软件:音乐母带处理、数字音乐发行、分期付款插件、免费样本包和协作工具。 此外,还有 108 个舞蹈音乐提示词,每个提示精心制作,以有效地封装各种舞蹈音乐流派的具体特点和大气质量,同时确保适应不同的聆听环境。用这些来激发您对我们完全遗漏的流派的描述。结合元素、流派、影响等,进一步深化舞蹈音乐的谱系。 内容由 AI 大模型生成,请仔细甄别。
2025-01-03
哪个AI图形处理能力强?
以下是一些在图形处理方面表现较强的 AI 工具: Photoshop 2023 Beta:具有创成式填充功能,能帮助快速生成素材,有良好的图层管理系统和后期处理能力,但生成的图形质量在某些方面可能不如其他专门的 AI 绘图工具,且需要更多的尝试和后期处理来达到满意效果。 Pika:对奇幻感较强的画面把控较好,自然,但真实环境画面易糊,唇形同步功能便捷。 Pixverse:在高清化方面有优势,对偏风景和纪录、有特定物体移动的画面友好,但生成的视频可能有帧率问题。 Runway:在真实影像质感方面表现出色,战争片全景镜头处理好,控件体验感较好,但光影不稳定,易变色。 需要注意的是,不同的 AI 工具在图形处理方面各有优劣,具体的选择应根据您的具体需求和使用场景来决定。
2025-01-03