Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是生成式ai?

Answer

生成式 AI 是一种人工智能技术,能够生成新的、未曾存在的内容,这些内容可以是多模态的,包括文本(例如文章、报告、诗歌等)、图像(例如绘画、设计图、合成照片等)、音频(例如音乐、语音、环境声音等)、视频(例如电影剪辑、教程、仿真等)。

生成式 AI 可以应用于广泛的场景,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。

其工作方式包括训练阶段和应用阶段。在训练阶段,通过从大量现有内容(文本、音频、视频等)中学习进行训练,得到一个“基础模型”。在应用阶段,基础模型可用于生成内容并解决一般性问题,还可使用特定领域的新数据集进一步训练以解决特定问题,从而得到一个量身定制的新模型。

AIGC 又称为生成式 AI,意为人工智能生成内容,例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等都属于 AIGC 的应用。

Gen AI/Generative AI 是“生成式人工智能”的正式称呼,它是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。

Content generated by AI large model, please carefully verify (powered by aily)

References

9. 生成式 AI Studio 简介

生成式人工智能是一种人工智能技术,它能够生成新的、未曾存在的内容。这些内容可以是多模态的,包括:文本:例如文章、报告、诗歌等图像:例如绘画、设计图、合成照片等音频:例如音乐、语音、环境声音等视频:例如电影剪辑、教程、仿真等[heading3]应用场景[content]Generative AI可以应用于广泛的场景,例如:文档摘要:将长篇文章或报告总结为简短、精准的摘要信息提取:从大量数据中识别并提取关键信息代码生成:根据用户的描述自动编写代码营销活动创建:生成广告文案、设计图像等虚拟协助:例如智能聊天机器人、虚拟客服等呼叫中心机器人:能够处理客户的电话请求[heading3]如何工作?[content]1.训练阶段:Generative AI通过从大量现有内容(文本、音频、视频等)中学习,进行训练。训练的结果是一个“基础模型”。2.应用阶段:基础模型可以用于生成内容并解决一般性问题。它还可以使用特定领域的新数据集进一步训练,以解决特定问题,这样就可以得到一个量身定制的新模型。[heading3]Google Cloud的工具[content]Vertex AI:这是Google Cloud上的端到端机器学习开发平台,旨在帮助开发人员构建、部署和管理机器学习模型。Generative AI Studio:这是一个工具,允许应用程序开发人员或数据科学家快速制作原型和自定义生成式AI模型,无需代码或代码量少。Model Garden:这是一个平台,可以让你发现Google的基础和第三方开源模型,并与之交互。它提供了一组MLOps工具,用于自动化机器学习管道。

AIGC常见名词解释(字典篇)

AIGC:AI generated content,又称为生成式AI,意为人工智能生成内容。例如AI文本续写,文字转图像的AI图、AI主持人等,都属于AIGC的应用。类似的名词缩写还有UGC(普通用户生产),PGC(专业用户生产)等。能进行AIGC的产品项目也很多,能进行AIGC的媒介也很多包括且不限于语言文字类:OpenAI的GPT,Google的Bard,百度的文心一言,还有一种国内大佬下场要做的的LLM都是语言类的。语音声音类:Google的WaveNet,微软的Deep Nerual Network,百度的DeepSpeech等,还有合成AI孙燕姿大火的开源模型Sovits。图片美术类:早期有GEN等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的Midjourney,先驱者谷歌的Disco Diffusion,一直在排队测试的OpenAI的Dalle·2,以及stability ai和runaway共同推出的Stable Diffusion...[heading1]SD是什么?[content]SD是Stable Diffusion的简称。是它是由初创公司StabilityAI、CompVis与Runway合作开发,2022年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。SD的代码模型权重已公开发布,可以在大多数配备有适度GPU的电脑硬件上运行。当前版本为2.1稳定版(2022.12.7)。源代码库:github.com/Stability-AI/stablediffusion我们可以通过一系列的工具搭建准备,使用SD进行想要的图片aigc(心想事成的魔法施与)。

十七问解读生成式人工智能

Gen AI/Generative AI是“生成式人工智能”正式称呼。Generative AI是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而AIGC指的是由人工智能生成的内容的创作方式,实际上是Generative AI的应用结果。[heading1]问题四、ChatGPT是什么?[content]从OpenAI的官网中可以查询到,在2022年宣发时,OpenAI称ChatGPT是一种模型。但是同样是在官网中查询帮助页面,发现这里称ChatGPT是一种服务。而我们使用的ChatGPT目前是依赖GPT系列模型来运转的。不做任何怀疑论上的揣摩,从公开收集的资料中可以看出,早些年OpenAI推出了一个叫ChatGPT的模型,但目前我们所熟知的ChatGPT逐渐演变成了一种可以兼容多种GPT模型的聊天应用(服务)。

Others are asking
生成式AI
生成式 AI 是一种能够生成新内容的人工智能技术,其内容可以是多模态的,包括文本、图像、音频、视频等。 Gen AI/Generative AI 是“生成式人工智能”的正式称呼,它和 AIGC 有所不同。AIGC 指的是由人工智能生成的内容的创作方式,是 Generative AI 的应用结果。 ChatGPT 是 OpenAI 推出的,早期是一种模型,目前逐渐演变成一种可以兼容多种 GPT 模型的聊天应用(服务)。 生成式 AI 可以应用于广泛的场景,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 其工作方式包括训练阶段和应用阶段。训练阶段通过从大量现有内容中学习生成基础模型,应用阶段基础模型可用于生成内容和解决一般性问题,也可使用特定领域新数据集进一步训练以解决特定问题。 在工具方面,如 Google Cloud 的 Vertex AI 是端到端机器学习开发平台,Generative AI Studio 允许快速制作原型和自定义生成式 AI 模型,Model Garden 可发现和交互基础及第三方开源模型。 以 Midjourney 为代表的工具在图形领域,可根据用户提供的文本描述生成高度相关和创造性的图像,这种通过文本命令获得图像的方式叫 Prompting,是全新形态的人机交互。其背后的原理涉及数据、映射和扩散三个概念。首先是数据,包括获取各种图像存档和创建特定数据集以获得足够基础来特征化物体、风格或概念。其次是映射,AI 使用算法识别和提取图片关键视觉特征。最后是扩散,AI 能通过创造性扩散过程探索和创造新的视觉表达形式。
2025-01-02
欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟人工智能法案对我国在生成式人工智能方面立法具有以下启示: 1. 立法理念方面:我国与欧盟在人工智能立法上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现,欧盟法案对我国立法工作具有重要参考意义。 2. 特殊领域监管方面: 算法推荐、深度合成、生成式人工智能是我国规制人工智能的具体领域。欧盟法案对这些领域的某些产品或服务有特殊回应,一定程度上印证了我国特别监管的必要性。 对于深度合成,欧盟法案强化了系统使用主体信息透明度的要求,与我国相关规定有一致性,但我国规定更全面,不过存在规定交叉重复适用的问题。 对于生成式人工智能,欧盟法案将其视为“基础模型”的一种类型,并规定了额外义务,我国相关规定在义务上更为全面。 3. 监管体系方面: 中国针对不同涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体。 欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估划分风险层级,并匹配不同责任措施和差异化监管,进一步界定了各类主体的义务。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟《人工智能法案》对我国在生成式人工智能方面立法的启示主要体现在以下几个方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任作为基本落脚点,将“服务提供者”作为相关义务的履行主体。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同的责任措施和差异化监管。 2. 风险分类分级监管与算法安全评估:在我国,相关指导意见和法规已提出风险防控和算法分级分类安全管理的要求,以及对生成式人工智能服务的分类分级监管要求。欧美在这方面的路径和方法虽有争议,但总体上对我国仍具借鉴意义。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国相关立法的启示。可以举例
欧盟《人工智能法案》对我国相关立法的启示主要体现在以下方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体,如《互联网信息服务算法推荐管理规定》《生成式人工智能服务管理办法》等。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同责任措施和差异化监管。 2. 风险分级管理:我国与欧盟在立法理念上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现。 3. 对拓展市场的影响:如果我国的AI项目有意拓展欧洲市场,由于针对不同市场重新训练特有模型的效率不高,将因“木桶原理”而不得不根据欧盟《人工智能法案》对产品进行调整。 总之,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考意义。
2024-12-31
关于京东的生成式AI,你知道些什么
生成式 AI 是一种能够生成新内容的人工智能技术,生成的内容可以是多模式的,包括文本、图像、音频和视频。当给出提示或请求时,它可以帮助完成各种任务,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人等。它从大量现有内容中学习,学习的过程称为训练,其结果是创造的“基础模型”,如为 Bard 等聊天机器人提供支持的 LLM 或大型语言模型。基础模型可用于生成内容并解决一般问题,还可以使用所在领域的新数据集进一步训练以解决特定问题。 Google Cloud 提供了多种易于使用的工具,如 Vertex AI,这是一个端到端机器学习开发平台,可帮助构建、部署和管理机器学习模型。 此外,生成式 AI Studio 具有一些特性,如定义场景和响应格式、提供 API 和 SDK 帮助构建应用程序、调整语言模型等。在使用中,提示的设计很重要,但可能存在一定的复杂性和不确定性。 Gen AI/Generative AI 是“生成式人工智能”的正式称呼,而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 从 OpenAI 的官网来看,在 2022 年宣发时被称为一种模型,但在官网的帮助页面中又被称为一种服务,目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。
2024-12-31
我国关于生成式人工智能的立法规定有哪些
我国关于生成式人工智能的立法规定主要包括以下方面: 1. 监管框架:由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》等共同监管。 2. 已发布的规定及生效时间: 《互联网信息服务算法推荐管理规定》于 2023 年 3 月 1 日生效。 《互联网信息服务深度合成管理规定》于 2023 年 1 月 10 日生效。 《生成式人工智能服务管理暂行办法》于 2023 年 7 月 13 日公布,2023 年 8 月 15 日生效。 《生成式人工智能服务安全基本要求(征求意见稿)》于 2023 年 10 月 11 日公开征求意见,意见反馈截止日期为 2023 年 10 月 25 日。 《科技伦理审查办法(试行)(征求意见稿)(伦理审查办法(草案)》于 2023 年 4 月 14 日公开征求意见,意见反馈截止时间为 2023 年 5 月 3 日。 《国家人工智能产业综合标准化体系建设指南(征求意见稿)》于 2024 年 1 月 17 日公开征集意见,意见反馈截止时间为 2024 年 1 月 31 日。 3. 适用范围: 《算法推荐规定》适用于任何使用算法推荐技术在中国境内提供互联网信息服务的行为。 《深度合成规定》适用于任何使用深度合成技术在中国境内提供互联网信息服务的行为。 《生成式 AI 办法》适用于使用生成式人工智能技术在中国境内向公众提供服务的行为,但不包括尚未用于在中国境内向公众提供服务的生成式人工智能技术的研究和开发。 《伦理审查办法(草案)》一旦实施,将适用于任何涉及人类、实验室动物或其他涉及伦理风险的科学技术活动。 4. 《生成式人工智能服务管理暂行办法》的相关规定: 第一条:为促进生成式人工智能健康发展和规范应用,维护国家安全和社会公共利益,保护公民、法人和其他组织的合法权益,根据相关法律、行政法规制定本办法。 第二条:利用生成式人工智能技术向中华人民共和国境内公众提供生成文本、图片、音频、视频等内容的服务适用本办法。国家对利用生成式人工智能服务从事新闻出版、影视制作、文艺创作等活动另有规定的,从其规定。行业组织、企业、教育和科研机构、公共文化机构、有关专业机构等研发、应用生成式人工智能技术,未向境内公众提供生成式人工智能服务的,不适用本办法的规定。 第三条:国家坚持发展和安全并重、促进创新和依法治理相结合的原则,采取有效措施鼓励生成式人工智能创新发展,对生成式人工智能服务实行包容审慎和分类分级监管。 第四条:提供和使用生成式人工智能服务,应当遵守法律、行政法规,尊重社会公德和伦理道德,遵守以下规定: 坚持社会主义核心价值观,不得生成法律、行政法规禁止的内容。 在算法设计、训练数据选择、模型生成和优化、提供服务等过程中,采取有效措施防止产生歧视。 尊重知识产权、商业道德,保守商业秘密,不得实施垄断和不正当竞争行为。 尊重他人合法权益,不得危害他人身心健康,不得侵害他人肖像权、名誉权、荣誉权、隐私权和个人信息权益。 基于服务类型特点,采取有效措施,提升生成式人工智能服务的透明度,提高生成内容的准确性和可靠性。
2024-12-29
如何学习ai视频
以下是关于学习 AI 视频的相关内容: 入门教程: 交流群:需要学习 AI 视频,参与 AI 视频挑战赛,参与 AI 视频提示词共创的小伙伴,直接扫二维码或联系三思或小歪【备注:AI 视频学社】,必须有 AI 视频账号才能进群,请勿随便申请好友。 直播:AI 视频学社每周 1 次直播(周五直播),例如: AI 视频学社的相关介绍: 说明书:这个板块是为 AI 视频建立,方便大家测试学习 AI 视频的相关知识和内容。 学社简介:小伙伴们可以在 AI 视频学社通过参与每周举办的比赛,快速学习 AI 视频的相关知识。并且每周有高手直播直播分享,会分享 AI 视频和影视创作领域最前沿的知识。欢迎大家来 AI 视频学社一起学习,一起共创属于自己的 AI 视频。 学社目标: 有直播:不定期直播,AI 视频方向高手直播分享。 赛中学:每周固定 1 次,video battle 视频挑战赛,每周一发布主题,每周日 18 点前交稿,有奖品。 有活动:不定期组织 AI 视频线上或者线下活动。 学知识:大家一起学习 AI 视频最新软件和最新知识,学习图生视频,视频生视频等的技巧。 软件教程: 每周一赛: 此外,在通往 AGI 之路知识库的智能纪要中也有部分相关内容,如推荐 B 站 up 主 Nally 的课程,二十四节气相关教程和关键词已开源,14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等,16 号晚上中老师将带大家动手操作炼丹等。
2025-01-04
如何用AI回答我的科学问题的提问
沃尔夫勒姆在探讨人工智能能否解决科学问题时提到了以下观点: 1. 在多重计算过程中,存在许多可能的结果,目标是找到通向某些最终结果的路径。例如从 A 到 BABA 的最短路径,在简单例子中可显式生成整个多路图,但实际中多数情况图会太大,挑战在于不追踪整个可能性图的情况下弄清楚行动。常见方法是为不同状态或结果分配分数,追求分数最高的路径,在自动定理证明中,“从初始命题向下”和“从最终定理向上”工作也常见,还可建立“引理”,将 X→Y 添加为新规则。 2. 人工智能可以提供帮助的一种方法是训练语言模型人工智能生成代表路径的标记序列,向其提供有效序列,呈现新序列的开头和结尾,要求其填充中间部分。 3. 从历史上看,成功科学的一个决定性特征是能预测将会发生什么。在最简单的情况中,用人工智能做归纳推理,输入一系列测量结果,让其预测尚未完成的测量结果。将人工智能视为黑匣子,虽希望其不做假设只遵循数据,但不可避免会存在底层结构使其最终假设某种数据模型。
2025-01-04
最新的AI新闻有哪些
以下是一些最新的 AI 新闻: 2024 年 6 月,苹果发布了 AI 原生操作系统,加强了硬件和模型布局;Claude Sonnet 3.5 发布,挑战 OpenAI;视频生成领域 Runway Gen3 和快手可灵表现优秀;AI 3D 技术逐渐崭露头角;Google 和月之暗面推出长上下文缓存技术。整体趋势是技术不断进步,各领域竞争激烈。 快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 红杉资本美国合伙人 Pat Grady 在最新访谈中表示,AI 技术将为服务行业带来变革机遇,而非取代软件公司。AI 的潜力在于赋能服务行业,但人际关系和实际执行仍需人工。对于基础模型公司,Grady 认为它们可能像数据库公司一样发展,提供开发者 API,有机会进入应用层。他认为现有模型已足够强大,关键在于工程化优化和认知架构设计。 2024 年 1 月,斯坦福大学 Mobile Aloha;1 月 10 号 LumaAl Genie 文生 3D;1 月 11 号 GPT store 上线;1 月 MagnificAl 高清放大爆火;1 月最后一天苹果 Vision Pro 宣布发售。 2024 年 9 月,Orange AI 有相关小结,包括鼓励建立自媒体,推出中文版 AI 播客 Demo 并吸引大量参与者,开设 AI 酒吧 Bar2AGI 等。此外,国庆节期间,OpenAI 推出 Canvas 功能和实时 API,微软发布新版 Copilot,具备深度系统集成和实时语音功能;Meta 发布 Meta Movie Gen 视频生成模型,自动配音质量高;LiquidAI 发布非 Transformer 模型 LFMs,推理效率显著提高。此外,Sora 项目负责人离职、多个新模型和工具发布,以及 OpenAI 完成新一轮融资,估值达到 1570 亿美元。
2025-01-04
没有编程基础可以学习ai吗
没有编程基础也可以学习 AI,但会面临一定的挑战。以下是一些建议: 1. 学习基础知识: 数学基础:包括线性代数、概率论、优化理论等。 了解 AI 的基本概念、发展历程、主要技术分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 选择学习路径: 偏向技术研究方向:学习监督学习、无监督学习、强化学习等机器学习基础,以及神经网络、卷积网络、递归网络、注意力机制等深度学习知识。 偏向应用方向:掌握 Python、C++等编程基础,学习监督学习、无监督学习等机器学习基础,熟悉 TensorFlow、PyTorch 等深度学习框架。 3. 工具和平台: 可以从 Python、JavaScript 等编程语言开始学习。 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向初学者的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 4. 学习方式: 阅读入门文章和相关书籍。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习。 特别推荐李宏毅老师的课程。 5. 实践和尝试: 掌握提示词的技巧,上手容易且很有用。 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 需要注意的是,无论是技术研究还是应用实践,数学基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-04
制作一个新手学习ai知识的表格
以下是为新手学习 AI 知识制作的表格: |学习阶段|学习内容|学习资源| |::|::|::| |了解基本概念|熟悉 AI 术语和基础概念,了解其主要分支及联系|阅读「」部分| |浏览入门文章|了解 AI 的历史、当前应用和未来发展趋势|无| |开始学习之旅|学习为初学者设计的课程,推荐李宏毅老师的课程|「」、在线教育平台(Coursera、edX、Udacity)| |选择感兴趣模块|根据兴趣选择特定模块深入学习,掌握提示词技巧|无| |实践和尝试|通过实践巩固知识,分享实践成果|知识库中的相关分享| |体验 AI 产品|与 ChatGPT、Kimi Chat、智谱、文心一言等互动|无| 同时,记住学习 AI 是长期过程,需耐心和持续努力,不要怕犯错。完整学习路径可参考「通往 AGI 之路」的布鲁姆分类法设计自己的路径。
2025-01-04
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-04