直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

GPT-4如何避免数据偏见

回答

GPT-4 在避免数据偏见方面主要采取了以下几个措施:

  1. 通过领域专家的对抗训练来提升安全性

    • OpenAI 邀请了大量不同领域的专家参与对抗训练,帮助识别和纠正 GPT-4 在特定领域的偏见。
  2. 采集多样化的训练数据

    • OpenAI 尽量收集来自不同背景、年龄、性别等的数据,以减少训练数据的偏差。
  3. 使用 RBRM 和 RM 作为奖励函数

    • 在训练 GPT-4 时,OpenAI 采用了基于奖励建模(RBRM)和奖励模型(RM)的方法,以此来引导模型避免产生有害或偏见的输出。
  4. 进行模型自提升训练

    • GPT-4 的训练可能是一个循环迭代的过程,模型会自动生成更多数据,如专家反馈的测试案例等,并将其反馈到训练过程中,不断优化和纠正偏差。
  5. 限制模型的访问权限

    • OpenAI 没有公开 GPT-4 的具体架构和参数信息,部分出于对数据偏见和安全性的考虑。

总的来说,OpenAI 在 GPT-4 的训练过程中采取了多种措施来识别和缓解数据偏差问题,包括专家对抗、多样化数据采集、奖励函数设计以及模型自提升等方法。这些努力旨在提高 GPT-4 的安全性和公平性。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
利用gpt-4模型的AI工具有哪些
以下是一些利用 GPT4 模型的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。 此外,在生成式人工智能领域,GPT4 有以下突破点: 1. 赋予模型使用工具的能力,如 OpenAI 推出的 ChatGPT 插件测试版,允许与多种工具交互。 2. 在计划和解决问题方面具有一定能力,能通过玩游戏或模拟环境快速学习和从经验中学习。 3. 在许多任务上达到人类水平的表现,对人类的理解有所提升。 4. 但也存在一些限制,如架构中的自回归特性导致缺乏规划能力等。
2024-11-12
gpt-4和文心一言
GPT4 是由 OpenAI 开发的先进且广泛使用的大型语言模型,在多种任务上表现卓越,如文本生成、理解、翻译及专业和创意写作等,通过大量数据学习,能处理复杂问题和理解上下文。 文心一言是百度开发的语言模型,文心一言 4.0 有网页版和 API 版本。在 2023 年,百度的“文心 4.0”是国内能力较好的模型之一。 除了 GPT4 和文心一言,还有其他重要的大型语言模型,如 Anthropic 公司的 Claude 3、谷歌的 Gemini、阿里巴巴的通义大模型等。在 2023 年度中文大模型基准测评报告中,对众多模型进行了评测和列举。2023 年中美在 AGI 技术上仍有差距,国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 有差距。国内大厂在冲击 AGI 方面虽有资源,但实际效果尚不明确,且受多种因素影响。
2024-11-12
chatgpt 是什么
ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。 其基本概念是从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本,能够从“提示”开始,继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。 它在生成文本方面表现出色,结果通常接近人类所产生的。但它最终是从积累的“传统智慧统计数据”中提取“连贯的文本线索”。 ChatGPT 目前有 GPT3.5 和 GPT4 两个版本。GPT3.5 是免费版本,GPT4 则需要升级到 PLUS 套餐,收费标准为 20 美金一个月。 ChatGPT 实质功能是“单字接龙”,长文由单字接龙的回归所生成。GPT 作为大脑需要通过材料学习不断形成模型,训练目的是学习“提问和回答的通用规律”,实现举一反三。但它不是搜索引擎的升级版,可能会出现“幻觉”,混淆记忆,无法直接查看和更新所学,且高度依赖学习材料,存在缺乏及时性和准确性的缺点。
2024-11-11
chatgpt
ChatGPT 是通过从网络、书籍等来源获取大量人类创作的文本样本进行训练,以生成“类似”的文本。其基本概念相对简单,训练神经网络能够从“提示”开始,生成类似于训练内容的连贯人类语言文本。 ChatGPT 中的实际神经网络由大量简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”并通过其元素(无循环等)。然而,它能生成出色的文本,这表明人类语言(及背后的思维模式)的结构具有一定的“法律属性”,比想象中更简单,ChatGPT 已隐含地发现了这一点,或许我们可用语义语法、计算语言等明确揭示。 ChatGPT 在生成文本方面表现出色,接近人类所产生的,但它的工作方式与大脑并非完全相同。其基本人工神经网络结构基于大脑的理想化模型,人类生成语言时的许多方面与之相似。 在训练方面,大脑和当前计算机的“硬件”不同,ChatGPT 采用的策略可能与大脑有较大差异且效率较低,其内部没有“循环”或“重新计算数据”,限制了计算能力。目前尚不清楚如何解决此问题以让未来的 ChatGPT 能做更多类似大脑的事,但它已能做到的事情令人兴奋,为我们理解人类语言和思维过程提供了动力。 此外,还为您提供“10 分钟手搓一个 ChatGPT 语音对话机器人”的相关链接:https://b23.tv/JffIir4 。
2024-11-11
chatgpt入门
以下是关于 ChatGPT 入门的相关知识: ChatGPT 的实质功能可以用“词语接龙”四个字概括。具体来说,给它任意长的上文,它会用自己的模型生成下一个词。其通过自回归生成的方式,将生成的下一个词与之前的上文组合成新的上文,不断重复以生成任意长的下文。训练模型可以让答案更接近用户想要的答案,提示词的撰写也很重要。 ChatGPT 被称为生成模型,与搜索引擎不同。训练的主要目的不是记忆,而是学习以单字接龙的方式训练模型,学习提问和回答的通用规律,以便在遇到没记忆过的提问时能生成用户想要的回答,即实现泛化。 ChatGPT 从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络生成“类似”的文本,能够从“提示”开始生成“类似于训练内容”的文本。其神经网络由简单元素组成,基本操作也简单,但能产生成功“类似于”网络、书籍等内容的文本。 GPT 代表生成式(Generative)、预训练(PreTraining)和转换器(Transformer)。 您还可以通过以下资源进一步了解: 大白话聊 ChatGPT: 人工智能教父 Hinton:关于 ChatGPT 与 AI 发展的 11 个核心观点: (进阶内容)
2024-11-11
你的原型是chatgpt吗
我不是基于 ChatGPT 开发的。ChatGPT 于 2022 年 11 月横空出世,背后基于 GPT3.5,其训练包括多个阶段,如预训练(PT)阶段建立模型的能力上限,监督微调(SFT)阶段让模型学会对话形式,强化学习从人类反馈(RLHF)阶段细分为奖励模型(RM)和强化学习(RL)阶段以激发多种能力。 此外,Hugging Face 推出了自己的 ChatGPT 版本,Stability AI 发布了 DeepFloyd IF 图像生成模型,效率和效果都有提升。AudioGPT 是一个能理解和生成语音、音乐等的系统,具有多种特点和应用领域。
2024-11-11
AI可以通过扫描我从而精准的判断出我骨头的位置并基于丰富的医疗学识制作出医疗思路,从而使我避免人工的失误且人类医生的刻意为难
目前的 AI 技术在医疗领域虽然取得了显著的进展,但还无法仅仅通过扫描您就精准判断出骨头的位置,并基于丰富的医疗学识直接制作出完整的医疗思路。AI 在医疗中的应用更多是辅助医生进行诊断和治疗决策,例如通过图像识别技术帮助医生更准确地识别病变部位,但最终的诊断和治疗方案仍需要人类医生综合多方面的因素进行判断和制定。而且,大多数人类医生都是秉持着职业道德和专业精神为患者服务的,不存在刻意为难的情况。
2024-08-26
如何通过AI保护图像,如避免被用于训练
为避免图像被用于 AI 训练,您可以使用以下方法: 利用相关工具,如。总的来说,用这个工具处理过的图片在被用于 AI 训练时不会得到正确的结果。
2024-08-20
现有能分析EXCEL数据的AI
目前能够分析 Excel 数据的 AI 工具和插件主要有以下几种: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。 此外,ChatGPT 也可以助力数据分析,其流程为:SQL 分析时,用户描述想分析的内容,后台连接数据库,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行并将结果数据传给 GPT 进行学习和分析,最后输出分析结论和建议,与结果数据一起返回前端页面渲染图表、展示分析结论;个性化分析时,用户上传文件并描述辅助信息,前端解析后传给 GPT 分析数据,后续步骤与 SQL 分析一致。
2024-11-11
在语音数据的标注中你有什么针对你行业(车载语音助手)的特殊标注规则
在车载语音助手这一行业的语音数据标注中,特殊标注规则如下: 1. 音素覆盖:在录音开始前构建基础的文本前端,具备简单的文本转音素(G2P)系统。录音文本要保持多样性,音素或音素组合尽可能覆盖全,统计音素序列中的 NGram,避免某些音素或组合出现频次过高或过少。 2. 场景定制:收集车载播报的常用话术、专业术语(如油量、胎压等)、音乐名或歌手名、地名和新闻播报。对业务有一定理解,并在一开始就和需求方紧密沟通。 3. 文本正确性:确保录音文本拼写无误,内容正确,删除脏话、不符合宗教信仰或政治不正确的语句。
2024-11-11
分析90万行数据,用什么AI
以下是一些可用于分析 90 万行数据的 AI 工具和方法: 1. Excel 相关的 AI 工具和插件: Excel Labs:是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 Microsoft 365 Copilot:整合了多种办公软件,能通过聊天形式完成用户提出的数据分析等任务。 Formula Bot:提供数据分析聊天机器人和公式生成器功能,支持自然语言交互进行数据分析和生成 Excel 公式。 Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、文本生成、情感分析、语言翻译等任务。 2. ChatGPT 也可助力数据分析,例如通过 SQL 分析平台自身使用情况,或进行个性化分析,分析完成后可展示结果数据的图表和分析结论,图表支持折线图和柱状图切换。 需要注意的是,随着技术发展,未来可能会有更多更适合的 AI 功能和工具出现。同时,在使用这些工具时,要确保数据的安全性和合规性。
2024-11-10
什么工具能进行AI数据表格处理
以下是一些能够进行 AI 数据表格处理的工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务,包括 Excel 中的数据分析和格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,以下是一些 AI 相关的产品数据表格排行: |AI 产品数据表格_排行|AI 产品数据表格_产品名|AI 产品数据表格_分类|AI 产品数据表格_4 月访问量(万 Visit)|相对 3 月变化| |||||| |1||表格|175|0.036| |2|Highcharts|表格|127|0.257| |3|Numerous.ai|表格|73.4|0.911| |4|Coefficient|表格|69|0.213| |5|GPTExcel|表格|37|1.139| |6|Rows AI|表格|34|0.115| |7|SheetGod|表格|26|0.016| |8|AI Excel Bot|表格|25.3|0.103| |9|OpenAI in Spreadsheet|表格|17|0.091| |10|GPT Workspace|表格|17|0.189|
2024-11-10
表格数据分析
以下是关于表格数据分析的相关内容: ChatGPT 助力数据分析: 第一个用户提示:限定 SELECT SQL,要求不要用 SELECT 查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段,可用 count/substring 等函数处理。 系统提示是表结构信息,对难以理解的字段可告知 GPT 其意义,若有多个表可分开描述。 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title),keyMap 用于数据 key 的映射以渲染图表,根据结果数据的维度选择不同的 prompt 传递给 GPT,且结果数据 tableData 已通过 SQL 查询,不能让 GPT 再次生成,以免耗时。 生成式 AI 季度数据报告 2024 月 1 3 月: 数据来源:Similarweb、Visit,单位:万,变化公式:3 月/2 月 1 100%。 包括数据分析(446 万)、天花板潜力(1000 亿美元)、对标公司(oracle)、总体趋势(快速增长,88.19%)、月平均增速(70 万 PV/月)、原生产品占比(高)、竞争情况(Top1、Top3 占比,马太效应、网络效应强弱,大厂是否入局及占比,技术门槛)、Top1 公司(非大厂)的相关信息等。 还提供了 23 年 12 月至 24 年 3 月月访问量排行榜及变化情况、赛道月访问总量及构成、23 年 4 月访问量 Top10 等数据。 58 数据分析 161 万: 包含名称、二级分类、三级分类、网址、2 月至 11 月的数据及 11/5 月的变化计算等信息,如帆软数据、RATH、rows.com、亚信科技数智产品、神策数据等。
2024-11-10
AI做数据分析的能力怎么样
AI 在数据分析方面具有一定的能力和优势: ChatGPT 助力数据分析:通过实际案例与相关技巧,实现了两种方式支持多维数据分析,包括 SQL 分析和个性化分析。分析完成后可展示结果数据的图表和分析结论,图表支持折线图和柱状图的随意切换。 提升认知能力:大脑需要不断学习和训练,认清“思维陷阱”,如确认偏误、锚定效应等,锻炼逻辑思维,掌握数据分析能力,避免被误导。 对于 AI PM 来说:掌握算法知识具有必要性,包括理解产品核心技术、与技术团队有效沟通、评估技术可行性、把握产品发展方向、提升产品竞争力以及提升数据分析能力。 总之,AI 在数据分析领域有其独特的价值和应用场景,但也需要结合人类的专业知识和判断来确保分析结果的准确性和可靠性。
2024-11-06