以下是关于 ChatGPT 入门的相关知识:
具体来说就是给他任意⻓的上文,他会用自己的模型去生成下一个词那他是怎么回答那些⻓内容的呢?答案是把它自己生成的下一个词,和之前的上文组合成新的上文,再让它生成下一个词,不断重复就可以生成任意⻓的下文。该过程也叫做自回归生成。上文:我爱下文:香菜?中国?原神?每一次的回答就像掷骰子或抽卡,训练模型可以让答案更接近用户想要的答案(当然提示词的撰写也非常重要,后面的直播会说到)[heading2]🌐大型模型的训练方式[heading3]Chat GPT 🙅🏻♀️搜索引擎[content]难道说要把所有的提问回答组合都给chat GPT t来做单字接⻰吗?其实不需要训练的主要目的不是记忆,而是学习以单字接⻰的方式来训练模型。不仅仅是为了让模型记住某个提问和回答,数据库已经将所有信息都记忆好了,直接搜索就可以得到回答非要训练单字接⻰,为的就是让模型学习提问和回答的通用规律。以便在遇到没记忆过的提问时,也能利用所学的规律生成用户想要的回答,这种举一反三的目的也叫做泛化。学习材料的作用只是调整模型,以得到通用模型,为的是能处理未被数据库记忆的情况因此chat GPT也被称为生成模型,生成模型与搜索引擎非常不同,搜索引擎无法给出没被数据库记忆的信息,但生成语言模型可以创造不存在的文本。
ChatGPT的基本概念在某种程度上相当简单。从网络、书籍等来源中获取大量人类创作的文本样本。然后训练神经网络生成“类似”的文本。特别是让它能够从“提示”开始,然后继续生成“类似于训练内容”的文本。正如我们所见,ChatGPT中的实际神经网络由非常简单的元素组成,尽管有数十亿个。神经网络的基本操作也非常简单,基本上是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。但是,这个过程能够产生成功地“类似于”网络、书籍等内容的文本,这是非常卓越和出乎意料的。它不仅是连贯的人类语言,而且“说的话”是“遵循其提示”的,利用其“读到”的内容。它并不总是说出“全局意义上的话”(或对应于正确的计算),因为(例如,没有访问Wolfram|Alpha的“计算超能力”)它只是根据训练材料中的“声音类似”的东西“说出”“听起来正确”的东西。ChatGPT的具体工程使其相当引人入胜。但是,最终(至少在它可以使用外部工具之前),ChatGPT仅仅从它积累的“传统智慧统计数据”中提取了一些“连贯的文本线索”。但是,其结果有多么类似于人类。正如我所讨论的,这表明了一些至少在科学上非常重要的事情:人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”。ChatGPT已经隐含地发现了它。但是我们可能可以用语义语法、计算语言等明确地揭示它。ChatGPT在生成文本方面的表现非常出色,结果通常非常接近我们人类所产生的。那么这是否意味着ChatGPT像大脑一样工作呢?它的基本人工神经网络结构最终是基于大脑的理想化模型的。当我们人类生成语言时,许多方面的工作似乎是相当相似的,这似乎是非常可能的。
|任务名|内容摘要|链接|标签|分类|必读星标|<br>|-|-|-|-|-|-|<br>|ChatGPT中,G、P、T分别是什么意思?|GPT:Generative Pre-Training Transformer,分别代表生成式、预训练和转换器。|[https://mp.weixin.qq.com/s/vXoYeA7w6l_WiKmDHogdTA](https://mp.weixin.qq.com/s/vXoYeA7w6l_WiKmDHogdTA)|ChatGPT|入门||<br>|大白话聊ChatGPT|逐字稿:[2023/3/6大白话聊ChatGPT直播逐字稿(Sarah &王建硕)](https://d58hixvcd6.feishu.cn/docx/HfMEds7Z1ov37wxqM19czTBinWg)|[https://www.xiaoyuzhoufm.com/episode/641183b5bb1fc0cb68f810c6](https://www.xiaoyuzhoufm.com/episode/641183b5bb1fc0cb68f810c6)|ChatGPT|入门||<br>|AI的时代已经到来|在比尔·盖茨的一生中,他说看到了两次技术演示,让他感到革命性。一次是图形界面,而另一次呢,是他在2022年感受到的。中文译稿:[比尔·盖茨:人工智能时代已经到来](https://36kr.com/p/2184264733720713)|[The Age of AI has begun | Bill Gates(gatesnotes.com)](https://www.gatesnotes.com/The-Age-of-AI-Has-Begun)|AI|未来||<br>|万物摩尔定律| Sam Altman|想象一个世界,在几十年里,所有的东西——住房、教育、食品、衣物等——每两年变得只有原来一半的价格,我们该如何去应对如此巨大的社会经济变革?|[万物摩尔定律| Sam Altman](https://ywh1bkansf.feishu.cn/wiki/TVuEw0miti0ZuTkzsJsczEA8nVr)|AI|未来||<br>|人工智能教父Hinton:关于ChatGPT与AI发展的11个核心观点|本文是Hinton关于ChatGPT和AI发展的访谈内容整理而成。|[https://www.ccvalue.cn/article/1410713.html](https://www.ccvalue.cn/article/1410713.html)|ChatGPT|进阶|⭐️|