以下是一些利用 GPT-4 模型的 AI 工具:
更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。
此外,在生成式人工智能领域,GPT-4 有以下突破点:
有许多AI工具可以帮助你编写简历,以下是一些例子:1.Kickresume的AI简历写作器:这个工具使用OpenAI的GPT-4语言模型自动生成简历。它可以为你的简历摘要、工作经验和教育等专业部分编写内容,并在整个文档中保持一致的语调。2.Rezi:Rezi是一个受到超过200万用户信任的领先AI简历构建平台。Rezi使用先进的AI技术自动化创建可雇佣简历的每个方面——写作、编辑、格式化和优化。3.Huntr的AI简历构建器:这个工具提供了免费的简历模板,以及AI生成的总结/技能/成就生成器和AI驱动的简历工作匹配。更多AI简历产品,还可以查看这里:https://www.waytoagi.com/category/79以上工具都可以帮助你快速、高效地创建出专业的简历。你可以根据自己的需要选择最适合你的工具。希望这个答案对你有所帮助!内容由AI大模型生成,请仔细甄别
LLMs的真正威力在于使自然语言成为行动的媒介。LLMs对常见且有详细文档的系统具有复杂的理解能力,但它们无法执行从这些系统中提取的任何信息。例如,OpenAI的ChatGPT、Anthropic的Claude和Character AI的Lily可以详细描述如何预订航班,但它们本身无法原生地预订航班(尽管像ChatGPT的插件等技术进展正在推动这一边界)。Amodei表示:“这个大脑在理论上拥有所有这些知识,只是缺少从名称到按钮的映射。”他说:“连接这些电缆并不需要太多的训练。你有一个没有实体的大脑,它知道如何移动,但它还没有连接上手臂和腿部。”随着时间的推移,我们已经看到公司不断改善LLMs使用工具的能力。像必应和谷歌这样的老牌公司和Perplexity和You.com这样的初创公司推出了搜索API。AI21 Labs推出了Jurassic-X,它通过将模型与一组预定工具(包括计算器、天气API、维基百科API和数据库)结合起来,解决了独立LLMs的许多缺陷。OpenAI推出了ChatGPT的插件测试版,允许ChatGPT与Expedia、OpenTable、Wolfram、Instacart、Speak、网络浏览器和代码解释器等工具进行交互,这一突破被认为类似于苹果的“应用商店”时刻。最近,OpenAI在GPT-3.5和GPT-4中引入了函数调用,允许开发者将GPT的能力与任何外部工具进行链接。
3.在第5部分,我们测试了该模型在计划和解决问题方面的能力,以及在某种程度上通过让它玩各种游戏(或者说是模拟游戏环境)以及与工具互动来快速学习和从经验中学习的能力。特别是,GPT-4能够使用工具(包括自身),这肯定对使用GPT-4构建真实世界应用程序非常重要。4.我们论证的一个重要部分是,GPT-4在许多任务上达到了人类水平的表现,因此,自然会问GPT-4对人类本身的理解有多好。我们在第6部分展示了关于这个问题的几个实验,既包括理解人类,也包括GPT-4使自己能够被人类理解的问题,即解释性问题。我们特别注意到,这些任务需要大量的常识,这在LLM中迄今为止一直是众所周知的痛点[DM15]。在下图中,我们给出了一个GPT-4在常识问题上表现得比ChatGPT好得多的例子,并在附录A中提供了更多的例子。5.在整个论文中,我们明确讲了发现的所有限制,同时也专门在第8部分对GPT-4架构中的自回归特性导致的缺乏规划能力进行了深入分析。6.最后,在第9部分,我们讨论了这种早期形式的AGI的预期社会影响,而在第10部分,我们分享了该领域的关键挑战、方向和下一步行动。很多读者可能心中仍然有一个问题,即GPT-4是否真正理解了所有这些概念,还是仅仅比以前的模型更擅长即时改进(improvisation),而没有真正或深刻的理解。我们希望在阅读本文后,这个问题几乎应该反过来了,人们可能会想知道真正的理解远比即兴表演复杂得多。如果一个系统能够通过软件工程候选人的考试(下图),难道就不能说它真正具有智能吗?也许理解的唯一真正测试是能否产生新知识,例如证明新的数学定理,这在LLM中目前仍然是不可实现的。