AI 在数据分析方面具有一定的能力和优势:
总之,AI 在数据分析领域有其独特的价值和应用场景,但也需要结合人类的专业知识和判断来确保分析结果的准确性和可靠性。
原文地址:https://mp.weixin.qq.com/s/Fld25MxyoFEnUbnDmGJNXg本文作者:krryguo,腾讯IEG前端开发工程师导语|本文将重点介绍AI与数据分析结合的应用,通过实际案例与相关技巧,描述ChatGPT如何助力数据分析,帮助读者更好地理解并掌握这一领域的创新实践。在如今AI爆炸的时代,涌现出各种AIGC能力,可能我们已是司空见惯了。之前分析过一句话生成图表和BI看板,这一次将重点介绍AI数据分析,通过实际案例与相关技巧,描述ChatGPT如何助力数据分析。声明:本文涉及与ChatGPT交互的数据已严格脱敏。[heading2]介绍[content]AI数据分析,我这里实现了两种方式,支持多维数据分析:1.SQL分析:分析平台自身的使用情况,如图表配置化平台,输入一句话可分析用户配置图表相关的数据2.个性化分析:平台上支持上传数据,可提供数据信息(非必填),以此自定义分析用户自己上传的数据分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图,可随意切换。
大脑就像精密仪器,需要不断学习和训练才能高效运转。为了避免“想当然”的错误,我们要不断提升认知能力,就像给大脑定期升级系统、打补丁。认清“思维陷阱”:就像学习识别网络钓鱼邮件一样,我们也需要了解常见的认知偏差,例如:确认偏误:我们会倾向于寻找支持自己已有观点的信息,而忽略反面的证据。例如,相信星座的人更容易关注符合自己星座描述的内容,而忽视不符合的部分。锚定效应:我们容易受第一印象的影响,即使这个印象是错误的。例如,商家先标一个高价,再打折促销,我们会觉得很划算,即使这个折扣后的价格仍然高于市场价。锻炼逻辑思维:就像学习数学一样,我们需要学习如何进行逻辑推理,识别错误的论证。例如,如果有人说“所有天鹅都是白的,因为我见过的天鹅都是白的”,这就是一种不严谨的逻辑,因为存在黑天鹅。掌握数据分析能力:在信息爆炸的时代,我们每天都会接触到大量的数字和统计数据。学习一些基本的统计学知识,可以帮助我们更好地理解和分析数据,避免被误导。例如,一则广告声称某种保健品有效率高达90%,但却没有说明样本量和实验方法,我们就需要保持警惕,不能盲目相信。
随着机器学习、深度学习等AI技术的突破和应用场景的不断拓展,市场对能够将AI技术转化为实际产品和服务的人才需求急剧增加。[heading3]关于AI PM掌握算法知识的必要性[content]传统的软件/互联网PM在面对AI产品时,需要具备更专业的技术知识和独特的产品思维,因此AI PM作为一个更加专业化的PM角色逐渐形成。AI产品通常涉及复杂的算法、大数据处理等技术,同时又需要考虑用户体验、商业模式等因素。这就要求PM具备跨学科的知识背景,能够在技术和业务之间进行有效沟通和决策。1.理解产品核心技术了解基本的机器学习算法原理,有助于PM更好地理解AI产品的核心技术,从而做出更合理的产品决策。2.与技术团队有效沟通掌握一定的算法知识,可以帮助PM与开发团队进行更有效的沟通,减少信息不对称带来的误解。3.评估技术可行性在产品规划阶段,PM需要评估某些功能的技术可行性。了解算法知识可以帮助PM做出更准确的判断。4.把握产品发展方向AI技术发展迅速,了解算法前沿可以帮助PM更好地把握产品的未来发展方向。5.提升产品竞争力了解算法可以帮助PM发现产品的独特优势,提出创新的产品特性,从而提升产品的竞争力。6.数据分析能力很多AI算法都涉及到数据处理和分析,掌握相关知识可以提升PM的数据分析能力。