直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

gpt-4和文心一言

回答

GPT-4 是由 OpenAI 开发的先进且广泛使用的大型语言模型,在多种任务上表现卓越,如文本生成、理解、翻译及专业和创意写作等,通过大量数据学习,能处理复杂问题和理解上下文。

文心一言是百度开发的语言模型,文心一言 4.0 有网页版和 API 版本。在 2023 年,百度的“文心 4.0”是国内能力较好的模型之一。

除了 GPT-4 和文心一言,还有其他重要的大型语言模型,如 Anthropic 公司的 Claude 3、谷歌的 Gemini、阿里巴巴的通义大模型等。在 2023 年度中文大模型基准测评报告中,对众多模型进行了评测和列举。2023 年中美在 AGI 技术上仍有差距,国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT-4 有差距。国内大厂在冲击 AGI 方面虽有资源,但实际效果尚不明确,且受多种因素影响。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:目前最火最好用的的大语言模型是哪个

[OpenAI](https://openai.com/)的GPT-4是其中一个最先进和广泛使用的大型语言模型。它在多种任务上展示了卓越的性能,包括文本生成、理解、翻译以及各种专业和创意写作任务。GPT-4通过大量数据的学习,能够理解和生成人类语言,展示了在处理复杂问题和理解上下文方面的深度能力。除了OpenAI的GPT系列,还有其他一些重要的大型语言模型,如Anthropic公司[Claude 3](https://www.anthropic.com/news/claude-3-family)、谷歌的Gemini、百度的文心一言、阿里巴巴的通义大模型等,它们在特定领域和任务上也表现出了卓越的能力。如果想了解国内的大模型效果,可以参考第三方基准评测报告:[2023年度中文大模型基准测评报告.pdf](https://waytoagi.feishu.cn/wiki/ANF7wRcJPixR00kWJINcoP1GnGf)内容由AI大模型生成,请仔细甄别。类似问题:最强大语言模型是哪个?

2023年度中文大模型基准测评报告.pdf

模型机构简介模型机构简介1.GPT4-Turbo OpenAI 2023年11月7日发布的GPT4的升级版本14.通义千问2.0阿里巴巴官方公开发布的API版本:qwen-max-longcontext2.GPT4(网页版)OpenAI GPT4官方网页版本,支持联网功能15.Claude2Anthropic官方发布的API 2.0版本3.GPT4(API)OpenAI GPT4官方API版本,不支持联网功能16.云雀大模型(豆包)字节跳动官方网页版产品【豆包】4.文心一言4.0(API)百度官方付费使用的文心一言V4.0的API版本17.Gemini-pro Google官方发布的API版本Gemini-pro5.文心一言4.0(网页版)百度官方文心一言网页4.0版本18.GPT3.5-Turbo OpenAI GPT3.5官方API版本6.智谱清言清华&智谱AI官方网页版产品【智谱清言】19.Qwen-14B-Chat阿里巴巴开源的14B的Chat版本7.AndesGPT OPPO OPPO小范围内测API版本20.Baichuan2-13B-Chat百川智能开源的第二代13B的Chat版本8.Moonshot(KimiChat)月之暗面搭载Moonshot的网页版本【KimiChat】21.XVERSE-13B-2-Chat元象科技开源的第二代13B的Chat版本

AGI万字长文(上)| 2023回顾与反思

从业内人的角度,ChatGPT和GPT4的出现时最令人惊讶的,不是它的能力,而是保密工作做的太好。2023之前国内AI行业还处在沾沾自喜,自认为和美国只有个把月差距,而且还有人口数据优势;这种论调一下子被GPT4打回了原形。OpenAI在国内完全没有预警的情况下,直接拉开2年技术差距。具体原因,可能是国内的骄傲自大,可能是被之前Google主推的T5技术路线带偏,也可能是因为AGI实在是影响过于巨大,FBI、美国国防部这些国家机关不可能没和OpenAI打过招呼。OpenAI的成功是大力出奇迹,所以23年上半年国内也笃信只要有卡有钱就可以“大炼钢铁”。那时不论是纷纷囤卡招人,研究类GPT架构的大厂们,还是讲着中国OpenAI的故事,拿着巨额融资的创业公司们,都想要第一个创造国产AGI。而到了下半年,在试验了一番发现不容易之后,又纷纷转向要做“垂直应用”、“商业化”;反而不提AGI了。这个转向是短视的,甚至是致命的。2023年,中美在AGI技术的差距并没有缩小。现在,国内最领先的模型水平大概在准ChatGPT3.5的水平,和GPT4还有不小差距;甚至还不如临时拼凑的Mistral团队的水平。大厂。大厂们无论是人才、GPU、数据,还是资金储备都是可以冲击AGI的,不过从实际效果上来看还并没有明确亮点。但与此同时,受内部短期考核压力的裹挟,大多数力量应该都放在卷新产品圈地盘和向上汇报工作上了。从另一个角度,这些模型虽然能力一般,但和业务的结合都是比较充分的。最后,大厂们同时背负了太多其他业务和政治考量:对于是否做大模型的出头鸟,很多公司都是要三思的。具体来讲,百度和阿里是大厂里比较高调:百度的“文心4.0”是当前国内能力最好的模型之一,即将发布的阿里的“通义千问

其他人在问
现在国内语言生成式AI有多少个在做的,比如说百度的文心一言和阿里的通义
目前国内在做语言生成式 AI 的有不少,例如百度的文心一言、阿里的通义千问、讯飞的讯飞星火、智谱华章的智谱清言、字节跳动的豆包、腾讯的元宝、昆仑万维的天工 AI 等。 此外,还有一些在特定时间上线的大模型,如 8 月正式上线的包括北京的百度(文心一言)、抖音(云雀大模型)、智谱 AI(GLM 大模型)、中科院(紫东太初大模型)、百川智能(百川大模型),上海的商汤(日日新大模型)、MiniMax(ABAB 大模型)、上海人工智能实验室(书生通用大模型)。 需要注意的是,不同的大模型具有各自的特点和功能,在使用和应用场景上可能存在差异。
2024-11-06
文心一言和智普清言哪个更好用
文心一言和智谱清言在不同方面各有特点。 在对结构化 prompt 的响应方面: 智谱清言能够按照 prompt 指示回答,理解意图较好,输出格式基本符合要求,内容相对具体,体验感较好。 文心一言在某些任务中可能没有完全执行提示词要求,需要二次提示和引导。 在复杂提示词理解和执行的测评中: 智谱清言表现亮眼,对提示词结构的执行较完整,生成内容丰富,格式美观,但案例部分未完全按要求列举。 文心一言在这轮表现中相对较差。 综合来看,两者的表现取决于具体的使用场景和需求。如果需要更准确和完整地执行提示词,智谱清言可能更具优势;但如果对特定领域的理论性输出有需求,文心一言也可能有一定的价值。
2024-11-03
通义千问和文心一言有什么不一样
通义千问和文心一言的不同点主要体现在以下几个方面: 1. 开发团队:文心一言由百度出品,通义千问由阿里云开发。 2. 功能特点: 文心一言定位为智能伙伴,能写文案、想点子,陪用户聊天、答疑解惑。 通义千问能够与人交互、回答问题及协作创作。 3. 在一些具体应用场景中的表现: 在律师答辩状 prompt 评测中,文心一言 3.5 输入起诉状后,直接给出起诉状范本,未理解 prompt 输出答辩状,提示后主体少、不专业、错误多,输出应诉方案能按 prompt 结构,内容简洁可作框架。 通义千问在律师答辩状 prompt 评测中,欢迎语直接,输入起诉状后两个答辩人正确,能按 prompt 结构输出但专业性稍差,未引用法律条文,提示输出应诉方案能按 prompt 结构,整体内容及格无亮点。
2024-10-20
我该如何利用文心一言、kimi等已有的大语言模型去作个性化训练?
已有的大语言模型如文心一言、kimi 等通常不支持个人进行个性化训练。 大语言模型的相关知识包括: 国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域。 大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强。 Transformer 是大语言模型训练架构,具备自我注意力机制能理解上下文和文本关联。 大模型可能因错误数据导致给出错误答案,优质数据集对其很重要。 Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。 Fine tuning 是基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 学习大型语言模型(LLM)的开发是一个系统性的过程,需要涵盖多个方面的知识和技能: 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。 理解 Transformer 和 BERT 等模型原理,掌握相关论文。 学习 LLM 模型训练和微调,包括大规模文本语料预处理,使用预训练框架,以及微调 LLM 模型进行特定任务迁移。 掌握 LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,以及模型服务化、在线推理、多语言支持等。 进行 LLM 工程实践和案例学习,结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 持续跟踪前沿发展动态。 机器学习是人工智能的一个子领域,深度学习是机器学习的一个子领域,大语言模型是深度学习在自然语言处理领域的应用之一,具有生成式 AI 的特点。
2024-10-18
比较一下豆包和文心一言
以下是豆包和文心一言的一些比较信息: 豆包: 是字节跳动官方网页版产品。 在中文大模型基准测评 2023 年度报告的 SuperCLUE 基准传统安全能力专项中表现优秀。 文心一言: 由百度全新一代知识增强大语言模型,于 2023 年 3 月 16 日正式发布,10 月 17 日发布 V4.0 版本。 目前已有 7000 万用户。 在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。各项能力表现均衡且绝大部分能力有很高水平,综合来看是国内非常有竞争力的大模型。 能力栈较为广泛,可应用的场景较多。重点推荐在查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面的应用。由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力。 此外,文心一言和豆包在国内都有一定的知名度,且文心一言与 Kimi 智能助手、通义千问等都是国内免费的 APP。
2024-10-12
文心一言怎么样
文心一言是百度推出的知识增强大语言模型,已进行多个版本迭代,于 2023 年 10 月 17 日发布 V4.0 版本,目前已有 7000 万用户。 在一些评测中,其表现如下: 在律师答辩状 prompt 评测中: 输入起诉状后,直接给出起诉状范本,未理解 prompt 输出答辩状,提示后输出存在主体少、不专业、错误多等问题,但在提示输出应诉方案时,能按 prompt 结构输出,内容简洁可作框架。 在对当事人提供的证据发表质证意见或制定诉讼方案的评测中: 欢迎语按 prompt 指示输出,对证据分析专业,格式和内容上的质证意见表现出色,结束语和签署委托代理协议的回复也很好。 在中文大模型基准测评 2023 年度报告的 SuperCLUE 基准传统安全能力评测中: 文心一言 4.0 在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且水平较高,能力栈广泛,可应用场景多,重点推荐在查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面的应用,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。
2024-10-12
利用gpt-4模型的AI工具有哪些
以下是一些利用 GPT4 模型的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。 此外,在生成式人工智能领域,GPT4 有以下突破点: 1. 赋予模型使用工具的能力,如 OpenAI 推出的 ChatGPT 插件测试版,允许与多种工具交互。 2. 在计划和解决问题方面具有一定能力,能通过玩游戏或模拟环境快速学习和从经验中学习。 3. 在许多任务上达到人类水平的表现,对人类的理解有所提升。 4. 但也存在一些限制,如架构中的自回归特性导致缺乏规划能力等。
2024-11-12
chatgpt 是什么
ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。 其基本概念是从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本,能够从“提示”开始,继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。 它在生成文本方面表现出色,结果通常接近人类所产生的。但它最终是从积累的“传统智慧统计数据”中提取“连贯的文本线索”。 ChatGPT 目前有 GPT3.5 和 GPT4 两个版本。GPT3.5 是免费版本,GPT4 则需要升级到 PLUS 套餐,收费标准为 20 美金一个月。 ChatGPT 实质功能是“单字接龙”,长文由单字接龙的回归所生成。GPT 作为大脑需要通过材料学习不断形成模型,训练目的是学习“提问和回答的通用规律”,实现举一反三。但它不是搜索引擎的升级版,可能会出现“幻觉”,混淆记忆,无法直接查看和更新所学,且高度依赖学习材料,存在缺乏及时性和准确性的缺点。
2024-11-11
chatgpt
ChatGPT 是通过从网络、书籍等来源获取大量人类创作的文本样本进行训练,以生成“类似”的文本。其基本概念相对简单,训练神经网络能够从“提示”开始,生成类似于训练内容的连贯人类语言文本。 ChatGPT 中的实际神经网络由大量简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”并通过其元素(无循环等)。然而,它能生成出色的文本,这表明人类语言(及背后的思维模式)的结构具有一定的“法律属性”,比想象中更简单,ChatGPT 已隐含地发现了这一点,或许我们可用语义语法、计算语言等明确揭示。 ChatGPT 在生成文本方面表现出色,接近人类所产生的,但它的工作方式与大脑并非完全相同。其基本人工神经网络结构基于大脑的理想化模型,人类生成语言时的许多方面与之相似。 在训练方面,大脑和当前计算机的“硬件”不同,ChatGPT 采用的策略可能与大脑有较大差异且效率较低,其内部没有“循环”或“重新计算数据”,限制了计算能力。目前尚不清楚如何解决此问题以让未来的 ChatGPT 能做更多类似大脑的事,但它已能做到的事情令人兴奋,为我们理解人类语言和思维过程提供了动力。 此外,还为您提供“10 分钟手搓一个 ChatGPT 语音对话机器人”的相关链接:https://b23.tv/JffIir4 。
2024-11-11
chatgpt入门
以下是关于 ChatGPT 入门的相关知识: ChatGPT 的实质功能可以用“词语接龙”四个字概括。具体来说,给它任意长的上文,它会用自己的模型生成下一个词。其通过自回归生成的方式,将生成的下一个词与之前的上文组合成新的上文,不断重复以生成任意长的下文。训练模型可以让答案更接近用户想要的答案,提示词的撰写也很重要。 ChatGPT 被称为生成模型,与搜索引擎不同。训练的主要目的不是记忆,而是学习以单字接龙的方式训练模型,学习提问和回答的通用规律,以便在遇到没记忆过的提问时能生成用户想要的回答,即实现泛化。 ChatGPT 从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络生成“类似”的文本,能够从“提示”开始生成“类似于训练内容”的文本。其神经网络由简单元素组成,基本操作也简单,但能产生成功“类似于”网络、书籍等内容的文本。 GPT 代表生成式(Generative)、预训练(PreTraining)和转换器(Transformer)。 您还可以通过以下资源进一步了解: 大白话聊 ChatGPT: 人工智能教父 Hinton:关于 ChatGPT 与 AI 发展的 11 个核心观点: (进阶内容)
2024-11-11
你的原型是chatgpt吗
我不是基于 ChatGPT 开发的。ChatGPT 于 2022 年 11 月横空出世,背后基于 GPT3.5,其训练包括多个阶段,如预训练(PT)阶段建立模型的能力上限,监督微调(SFT)阶段让模型学会对话形式,强化学习从人类反馈(RLHF)阶段细分为奖励模型(RM)和强化学习(RL)阶段以激发多种能力。 此外,Hugging Face 推出了自己的 ChatGPT 版本,Stability AI 发布了 DeepFloyd IF 图像生成模型,效率和效果都有提升。AudioGPT 是一个能理解和生成语音、音乐等的系统,具有多种特点和应用领域。
2024-11-11
chatgpt
ChatGPT 是通过从网络、书籍等来源获取大量人类创作的文本样本进行训练,训练神经网络生成“类似”的文本。它能够从“提示”开始,继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由大量简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(无循环等)。 尽管这个过程简单,但其生成的文本不仅连贯,还能遵循提示并利用所读内容。不过,它并非总是说出“全局意义上的话”,只是根据训练材料中的“声音类似”的东西说出“听起来正确”的东西。 ChatGPT 在生成文本方面表现出色,接近人类所产生的。但其基本人工神经网络结构基于大脑的理想化模型,与大脑工作方式有相似之处,但在训练“硬件”和算法上与大脑存在差异,且内部没有“循环”或“重新计算数据”,限制了计算能力。 目前尚不清楚如何解决此问题以让其能做更多“类似于大脑的事情”,但 ChatGPT 已取得的成果令人兴奋,为更好理解人类语言和思维过程提供了动力。 此外,还可参考“10 分钟手搓一个 ChatGPT 语音对话机器人 https://b23.tv/JffIir4 ”。
2024-11-11