Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI可以通过扫描我从而精准的判断出我骨头的位置并基于丰富的医疗学识制作出医疗思路,从而使我避免人工的失误且人类医生的刻意为难

Answer

目前的 AI 技术在医疗领域虽然取得了显著的进展,但还无法仅仅通过扫描您就精准判断出骨头的位置,并基于丰富的医疗学识直接制作出完整的医疗思路。AI 在医疗中的应用更多是辅助医生进行诊断和治疗决策,例如通过图像识别技术帮助医生更准确地识别病变部位,但最终的诊断和治疗方案仍需要人类医生综合多方面的因素进行判断和制定。而且,大多数人类医生都是秉持着职业道德和专业精神为患者服务的,不存在刻意为难的情况。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
临床医疗deepseek使用手册
以下是关于 DeepSeek 在临床医疗方面的使用手册: 使用案例: 借助 AI 分析好的文章: 找出最喜欢的文章,投喂给 deepseek R1(适合大多数有推理模型的 AI)。 第一次询问:请从写作角度分析这篇文章。 第二次询问:请再从读者角度分析这篇文章。 第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对自己写的文章点评:“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。” 根据文章内容对作者心理侧写:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 提升 DeepSeek 能力的方法: 用 Coze 做效果对比测试。 使用步骤: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不太稳定)。 特别鸣谢: 李继刚:【思考的七把武器】在前期为我提供了很多思考方向。 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源。 Claude 3.5 Sonnet:最得力的助手。
2025-02-13
目前最好的用于医疗的AI
目前在医疗领域,有以下一些出色的 AI 应用: 1. 蛋白质结构预测和合成方面: AlphaFold 是由 DeepMind 开发的 AI 系统,在蛋白质结构预测方面准确度超过其他系统,为科学家和药物开发提供巨大帮助。 Meta 的蛋白质结构预测 AI 模型 ESMFold 截至目前已经进行了 7 亿次预测。 多伦多大学研究人员开发了利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质的新 AI 系统。 华盛顿大学的 David Baker 教授的团队开发了基于 DALLE 的人工智能系统 RF Diffusion,用于根据科学家的需求生成合适的蛋白质结构。 洛桑联邦理工学院的科学家们开发了基于神经网络的新工具 PeSTo,可以预测蛋白质如何与其他物质相互作用,速度快且通用性强。 在 Surrey 大学开发了一种人工智能系统,用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 肯特大学的研究团队使用名为 talin 的蛋白质制成凝胶,该凝胶具有吸收冲击的能力,目标是将其制成防弹材料。 2. 疾病诊断与预测、药物研发以及个性化医疗方面: 麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin,它能有效杀灭对现有抗生素产生耐药性的细菌,且不会使细菌产生新的耐药性。研究者通过训练集让 AI 学习分子特点,总结规律,从大量分子中识别出符合要求的分子,之后实验证明其有效性,很快将用于临床。 为了在医疗保健中产生真正的改变,AI 应像人类一样学习,投资创建模型生态系统,例如“专家”AI,通过学校教育和经验获得有助于在复杂情况下确定最佳答案的直觉。不应仅仅依靠大量数据和生成模型解决所有问题,而应通过堆叠模型进行训练,如先训练生物学、化学模型,再添加特定于医疗保健或药物设计的数据点。
2025-02-10
在医疗场景,现在有哪些应用
在医疗场景中,AI 有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 5. 疾病的诊断与预测:例如利用大模型进行疾病的早期诊断和病情发展预测。 6. 新药物发现:如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 7. 中医应用:将人工智能与中医结合,辅助看诊,提高诊疗效率,未来有望实现 24 小时独立问诊开药。 8. 医学问答:像 DoctorGPT 这样的模型,能够准确回答各种医学问题。
2025-01-20
AI医疗
AI 在医疗领域有广泛的应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能加速药物研发过程,如识别潜在药物候选物和设计新治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术精度和安全性。 在医疗健康生物制药的研究方面,AI 也发挥着重要作用,取得了一些最新进展: 1. 提前三年诊断胰腺癌。 2. 两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因。 3. 帮助筛选抗衰老的高效药物候选物。 4. 用于寻找阿尔兹海默症的治疗方法。 5. 帮助早期诊断帕金森。 为了在医疗保健中产生真正的改变,AI 应像人类一样学习。成为医疗领域顶尖人才通常需要多年密集信息输入和实践学习,AI 也应投资创建模型生态系统,如“专家”AI,通过分层训练模型,而非仅依靠大量数据和生成模型解决所有问题。就像医学生从基础课程开始,科学家需要多年化学和生物学学习及实践指导,这种学习方式有助于培养处理细微差别决策的直觉。
2025-01-07
关于医疗辅助诊断的AI有哪些
以下是一些关于医疗辅助诊断的 AI 应用: 1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:用于加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 5. 平安好医生 APP 中的 AI 医疗诊断辅助系统:辅助医生进行疾病诊断,提高诊断准确性。用户上传症状描述和检查报告后,系统能给出初步的诊断建议和治疗方案,为医生提供参考。
2025-01-02
举例说明,医疗人工智能应用的风险及其法理防范
医疗人工智能应用存在以下风险: 1. 可能对受欧盟法律保护的公共利益和基本权利造成损害,包括身体、心理、社会或经济方面的损害。 2. 在决定是否给予、拒绝、减少、取消或收回医疗保健服务等福利时,可能对人们的生计产生重大影响,并侵犯基本权利,如社会保护权、不受歧视权、人的尊严权或有效补救权。 3. 用于评估自然人信用分数或信用度的人工智能系统可能导致对个人或群体的歧视,并延续历史上的歧视模式或造成新形式的歧视性影响。 法理防范措施包括: 1. 为所有高风险人工智能系统制定统一的规则,这些规则应与《宪章》保持一致,是非歧视性的,并符合欧盟的国际贸易承诺,同时考虑相关的伦理准则。 2. 明确价值链上相关经营者的作用和具体义务,促进对法规的遵从,确保法律的确定性。 3. 在特定条件下,明确高风险人工智能系统提供者的责任和义务。 需要注意的是,欧盟法律规定的用于检测提供金融服务过程中的欺诈行为以及用于计算信贷机构和保险企业资本要求的尽职审慎目的的人工智能系统,以及用于自然人健康和人寿保险风险评估和定价的人工智能系统,在符合一定条件时不视为高风险系统。
2025-01-02
Ai工具英文不熟悉,怎么提升自己,快速掌握,可替代的中文ai工具推荐
如果您对 AI 工具的英文不熟悉,想要快速掌握并寻找可替代的中文 AI 工具,以下是一些建议和推荐: 提升英语能力以更好地掌握 AI 工具: 多进行英语阅读,包括 AI 相关的文章和文档。 参加英语培训课程或学习在线教程。 中文 AI 工具推荐: 秘塔写作猫(https://xiezuocat.com/):是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作(https://ibiling.cn/):是智能写作助手,能应对多种写作需求,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作(https://effidit.qq.com/):由腾讯 AI Lab 开发的创作助手,能提升写作效率和创作体验。 此外,使用 AI 学习一门外语可以通过以下方法和工具: 方法: 利用语言学习应用,根据个性化体验和进度调整练习内容。 借助 AI 对话助手模拟对话练习,提高交流能力。 工具: 语言学习应用: Duolingo:使用 AI 个性化学习体验,提供词汇、语法、听力和口语练习。下载应用,选择语言,按课程指引学习。 Babbel:结合 AI 技术提供个性化课程和练习,注重实际交流技能。注册账户,选择课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析进度提供练习和反馈。注册并选择语言,使用多种练习模式学习。 AI 对话助手: ChatGPT:可模拟对话练习,询问语法、词汇等问题,模拟交流场景。在聊天界面选择目标语言进行对话。 Google Assistant:支持多种语言,可进行日常对话和词汇学习。设置目标语言,通过语音或文本输入互动。 另外,Trae Win+Mac 版已全量上线,标配 Claude3.5sonnet 模型免费不限量,编辑器所有功能原生支持中文,是一款对中文用户友好的 AI 编程工具。
2025-02-19
如何用Ai工具做好产品营销,适合新媒体运营
使用 AI 工具做好产品营销,适合新媒体运营,可参考以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速获取关键信息,如受欢迎的产品、价格区间、销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提升搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具,根据市场趋势和用户偏好生成吸引人的产品页面布局。 4. 内容生成:依靠 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:利用 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:让 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:依靠 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:利用 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 在电子商务领域,AI 工具已成为重要助力。像 Flair、Booth 和 Bloom 等工具能帮助品牌创建吸引人的产品照片。除产品照片外,AdCreative、Pencil 可制作营销材料,Frase 或 Writesonic 能编写 SEO 优化的产品描述。未来,用户有望仅通过描述期望的审美并点击按钮,就能创建完整的电商商店及营销材料。
2025-02-19
AI在强业务规则的公文写作场景可以如何应用?
在强业务规则的公文写作场景中,AI 可以通过以下方式应用: 1. 先梳理传统公文写作工作流,包括选题、搜资料、列提纲、起标题、配图片、排版发布等环节。 2. 在资料搜集环节,可以使用 AI 搜索工具辅助,提高搜集效率和准确性。 3. 在写作环节,可引入如 Claude 等工具辅助创作。 4. 对于公文润色,AI 能够在保留文章结构和准确性的基础上,提升公文质量。 5. 例如“学习强国公文助手”,可以帮助用户进行文汇检索、AI 公文书写等。 需要注意的是,在引入 AI 之前要先理清传统工作流,明确每个环节的因果逻辑和输入输出关系,以业务逻辑为先,让 AI 为更高效地达成业务目标服务。
2025-02-19
AI在垂直领域的应用
AI 在垂直领域有广泛的应用,以下为您详细介绍: 1. 医疗保健: 医学影像分析:用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,辅助贷款决策。 投资分析:分析市场数据,帮助投资者做出明智投资决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题,解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:暂未提及具体应用。 在 2024 年,AI 在以下领域有新的应用与发展趋势: 1. 机器人研究:苹果 Vision Pro 成为必备工具,用于远程操作控制机器人的运动和动作。 2. 医学:利用大模型生成合成数据,如微调 Stable Diffusion 生成高保真度和概念正确的合成 X 射线扫描数据。 3. 企业自动化:新方法如 FlowMind 和 ECLAIR 使用基础模型解决传统机器人流程自动化的限制,提高工作流理解准确率和完成率。 在电子商务领域,AI 工具已被广泛整合,如 Flair、Booth 和 Bloom 帮助品牌创建产品照片,AdCreative、Pencil 制作营销材料,Frase 或 Writesonic 编写产品描述,未来有望通过简单描述创建完整电商商店及营销材料。
2025-02-19
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
ai作画中, 如何把一个建筑物变成jellycat
要将一个建筑物变成 Jellycat 风格,您可以按照以下步骤操作: 1. 打开即梦 AI,选择图片生成,网址为:https://jimeng.jianying.com/ 2. 输入提示词,格式为:Jellycat 风+毛茸茸的建筑物名称,例如“Jellycat 风+毛茸茸的埃菲尔铁塔”,您可以充分发挥创意。 3. 选择最新的模型,将精细度拉到最大值。 4. 点击生成,几秒钟后就能看到您想要的图片效果。 以下是一些案例参考: 提示词:jellycat 风格,一个毛茸茸的埃菲尔铁塔 提示词:jellycat 风格,一个毛茸茸的锅子和饺子 提示词:jellycat 风格,一个毛茸茸的星巴克咖啡杯 提示词:jellycat 风格,一个毛茸茸的水蜜桃 原文链接:https://mp.weixin.qq.com/s/4w1dEvlH1l6mqTrPLGPC4g
2025-02-19
如何精准提问解决问题
要精准提问解决问题,可以参考以下几点: 1. 在使用类似 Cursor 等工具时,如果在提示栏中按 Option/Alt Enter,它将回答您关于选择和附加上下文的任何问题。此对话内容可在后续生成中进一步使用,在其提出响应后键入“do it”即可在快速提问后生成代码。 2. 相信类似 GPT 等工具的能力,大胆提要求让其帮忙完成。 3. 明确自己的需求,向 GPT 提的要求尽量准确,如同给员工安排工作。 4. 不断追问,只要不明白,就目标明确、表达精确地追问。 5. 对于 GPT 不了解您工作环境和个性需求的情况,提供准确信息,如直接贴出文件目录地址,请其直接处理。 6. 锻炼语言表述能力,更精准地用语言描述问题。因为在语言模型时代,一个好的问题某些时候比答案更重要,语言本身也代表着人类思维的外放,与文明诞生有关联。 7. 具备业务理解和 AI 嵌入能力,找到业务中应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 8. 培养维度转换能力,将各种问题转化为语言问题,将业务中的数据转化为语言描述,将通用模块问题转化为通用问题模块,把所有信息都转化为语言信息后再交流。 9. 在业务助手中,可采用助手方式,主要进行工作辅助,不在主业务流程内,大模型负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考;也可采用业务环方式,大模型经过调整和 prompt 工程后,作为接口服务,进入到主业务流程中,自动处理内容并生成结果。
2025-01-30
请问我该怎么用精准的提示词
以下是关于如何使用精准提示词的相关内容: 一、星流一站式 AI 设计工具中的提示词 1. 提示词的定义:用于描绘您想生成的画面。 2. 输入语言: 星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发)。 支持中英文输入。 3. 提示词优化:启用提示词优化后,可帮助扩展提示词,更生动地描述画面内容。 4. 写好提示词的方法: 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 二、DALL·E 自动优化提示词 1. 提示词生成指南:创建能为图像生成绘制清晰画面的提示词。使用精确、视觉化的描述(而非难以捉摸的概念)。尽量保持提示词简短、精确且令人惊叹。 2. 提示词结构:“一个” 媒介:考虑图像应模仿的艺术形式。 主题:主要焦点,包括颜色、姿势、视角等。 背景:环境如何补充主题。 环境:室内、室外、抽象等。 颜色:与主题的对比或和谐关系。 光线:一天中的时间、强度、方向等。 风格特点:独特的艺术特点。 影响:启发作品的艺术流派或艺术家。 技术:对于绘画,如何操纵画笔;对于数字艺术,特定的数字技术。 照片:描述摄影类型、相机设备和相机设置等。 绘画:提及使用的颜料类型、画布的质地和笔触的形状/质地。 数字:注明使用的软件、阴影技术和多媒体方法。 三、【SD】文生图中的提示词 1. 描述逻辑:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 2. 辅助方法: 下次作图时,先选择模板,点击倒数第二个按钮快速输入标准提示词。 对于新手,可通过功能型辅助网站书写提示词,如 http://www.atoolbox.net/ (通过选项卡快速填写关键词信息)、https://ai.dawnmark.cn/ (每种参数有缩略图参考,更直观选择提示词)、C 站(https://civitai.com/ )(可抄作业,复制每一张图的详细参数并粘贴到正向提示词栏,然后点击生成按钮下的第一个按键,Stable Diffusion 会自动匹配所有参数,但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同。也可取其中较好的描述词使用,比如人物描写、背景描述、一些小元素或者画面质感之类的。 希望以上内容对您有所帮助,祝您在使用提示词生成图像时取得满意的效果!
2025-01-29
如何精准向AI进行提问
以下是关于如何精准向 AI 进行提问的一些方法和建议: 1. 明确角色和任务目标:例如,赋予 AI 专注于民商事法律领域的律师角色,并明确其任务是进行案例研究、法律条文检索以及案件策略分析。 2. 提供上下文和背景信息:讲清楚背景和目的,如在处理交通事故案件时,提供案件事实等背景信息。 3. 提出详细需求和细节性信息:使用清晰、具体的语言,避免模糊不清的表述。比如询问“给你一则交通事故案件事实 xxx,根据 xxx 法规,x 方的责任应如何划分?” 4. 明确限制和不需要的内容:如明确限制 AI 的生成范围,在询问名人名言时,指定名人的姓名和相关主题。 5. 确定回答的语言风格和形式:可以要求回答按照特定的格式,如使用引号、分隔符号以及“首先、其次、最后”等连接词来组织。 6. 利用提示词工程: 明确要求 AI 引用可靠来源,如在询问历史事件时,要求引用权威的历史文献。 要求 AI 提供详细的推理过程,例如在询问数学公式时,要求展示推导过程。 明确限制 AI 的生成范围,如在询问新闻事件时,指定事件的时间范围和相关关键词。 7. 对于复杂问题,采用逐步深化和细化的方式提问:先提出宽泛问题,再根据回答进一步细化。 8. 提供参考和学习的内容:包括详细的操作指南、行业最佳实践、案例研究等,并编写详细的流程和知识。 9. 使用专业领域的术语引导:在 Prompt 中使用法律术语来引导回答方向。 10. 进行验证与反馈:对 AI 的回答进行交叉验证,结合自身专业知识进行筛选和判断,确保符合法律伦理、立法目的和实务。
2025-01-23
精准率和召回率有什么区别
精准率和召回率是常见的评估指标,主要区别如下: 精准率(Precision):指返回的检索内容中有用信息的占比。也就是说,在所有被检索出来的内容中,真正有用的信息所占的比例。其计算公式为:精准率 = 真正例 / (真正例 + 假正例)。 召回率(Recall):指相关信息被正确预测出来的比例,即真正例在所有实际相关信息中的占比。其计算公式为:召回率 = 真正例 / (真正例 + 假反例)。 例如,在一个文档检索的场景中,精准率体现的是检索出的文档中有多少是真正有用的;召回率则体现的是相关的文档有多少被包含在返回的检索结果里。 总的来说,精准率关注的是检索结果的准确性,而召回率关注的是检索结果的完整性。
2025-01-23
MJ中如何精准控制颜色
以下是关于在 Midjourney 中精准控制颜色的一些方法和相关信息: 1. 在使用 MJ 生成兔子贴纸的过程中,关键词中限制了颜色,生成的图片会一种情绪对应一种颜色。若不想让模型把情绪和颜色做挂钩,同一种情绪可多生成几张不同色系的;若需要挂钩,也可反其道而行之。 2. 进行 SD 上色时,正关键词主要前面添加了增加照片质感常用的+mj 生成线稿的关键词调整(去掉 mj 里线稿的关键词,一开始嘴巴效果不好,添加了张开嘴巴等关键词,颜色都是可以单独调整控制)+风格参数。负关键词看自己的效果添加,添加一切不想要的东西。 3. 在 MJ 的公式方面: 角色人物公式:人物姓名(命名)+描述词(重要描述词和人物特征描述词)+风格+官方命令词。 3D 公式:主体+描述词(重要描述词和物体特征描述词)+风格+灯光+官方命令词。 插画公式:主题描述词语+风格(风格名称或画家)+描述+颜色灯光+官方命令。 特定公式: 连续场景变化公式: 角色/场景公式:上传图片(喂图)+人物描写(融入其他场景需要关键词 white background,结合场景后换成 walking in a futuristic cyberpunk city)+场景风格描写+官方命令。 木偶公式:人物图片+场景+人物+动作+风格+官方命令。 等距粘土公式: 等距+物体+max emoji(表情符号),soft(柔和)lighting soft(柔和光线)pastel colors/pastel background(背景)+3Dicon+clay(粘土)+blender 3d+背景颜色=等距粘土物体。 安子布莱斯娃娃/也可以换成其他知道的娃娃名称+灯光/颜色/背景/材质+clay(粘土)+良奈吉友画风/或者其他名人风格=人。 3D 图标公式(未测试,可用):喂图(1~3 张相似的风格)+描述的 icon(和喂图一致的关键词)+颜色(和喂图颜色一致的)+渲染词+官方命令。 通用公式:角色/物体描述+背景描述+灯光风格+官方命令。
2025-01-17
哪些大模型对做精准的数据分析和可视化上比较好
以下是一些在精准的数据分析和可视化方面表现较好的大模型: 1. GLM4AllTools:这是智谱 AI 大模型开放平台中的模型,其代码沙盒 Code Interpreter 工具能很大程度加强数据计算能力,可处理日常数据分析,能对行业收入、利润数据进行可视化,并计算利润率并排序。 2. 谷歌的 T5:属于 encoderdecoder 架构的模型,适用于翻译和摘要等任务。 需要注意的是,不同的大模型在不同的应用场景和数据特点下可能会有不同的表现,您可以根据具体需求进行选择和测试。
2024-12-31