以下是 AI 的子领域:
机器学习的子领域包括:
LLM大家都已经再熟知不过了,为了承上启下,这里针对LLM再做一些简单的概念以及自认为一些关键内涵的回顾。从概念分类角度上看,大语言模型是深度学习的分支。其中:机器学习是人工智能(AI)的一个子领域,它的核心是让计算机系统能够通过对数据的学习来提高性能。在机器学习中,我们不是直接编程告诉计算机如何完成任务,而是提供大量的数据,让机器通过数据找出隐藏的模式或规律,然后用这些规律来预测新的、未知的数据。深度学习是机器学习的一个子领域,它尝试模拟人脑的工作方式,创建所谓的人工神经网络来处理数据。这些神经网络包含多个处理层,因此被称为“深度”学习。深度学习模型能够学习和表示大量复杂的模式,这使它们在诸如图像识别、语音识别和自然语言处理等任务中非常有效。大语言模型是深度学习的应用之一,尤其在自然语言处理(NLP)领域。这些模型的目标是理解和生成人类语言。为了实现这个目标,模型需要在大量文本数据上进行训练,以学习语言的各种模式和结构。如ChatGPT,文心一言,就是一个大语言模型的例子。被训练来理解和生成人类语言,以便进行有效的对话和解答各种问题。如下图所示中LLM与ML、DL的关系:同时,LLM还有一个可以说独有的特点,即生成式AI,这也是区别与其它传统模型或训练任务的Uniqueness,表面上看,这种技术包括用于生成文本、图像、音频和视频等各种类型的内容的模型,其关键特性是,它不仅可以理解和分析数据,还可以创造新的、独特的输出,这些输出是从学习的数据模式中派生出来的。
机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近30多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。[heading1]自然语言是什么?[content]自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。[heading1]AI的推理是什么?[content]推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。[heading1]AI的训练是什么?[content]训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。
对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。