直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

国内有哪些gpu算力平台,支持快速搭建AI大模型预训练环境 和 微调环境

回答

国内的 GPU 算力平台中,支持快速搭建 AI 大模型预训练环境和微调环境的有:

  1. 阿里云:提供云计算资源,用户可根据需求租用算力服务。
  2. 腾讯云:具备相应的算力支持,为用户提供灵活的选择。
  3. 亚马逊 AWS:基础设施提供商建立的“算力集市”,可满足用户的算力需求。

在搭建环境时,通常需要考虑以下步骤:

  1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。
  2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。
  3. 选择合适的预训练模型作为基础,例如可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。
  4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。
  5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。
  6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。

此外,英伟达还发布了统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽。但模型训练能耗也是一个关键问题,例如由 8 张 A100 GPU 组成的 DGX 服务器,最大功率达到 6.5 千瓦,运行一小时就会消耗 6.5 度电,若有 1000 台这样的服务器同时运行,每天的电费将达到惊人的 20 万元。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:如何部署和训练自己的AI开源模型

根据搜索结果,以下是部署和训练自己的大模型的主要步骤:1.选择合适的部署方式本地环境部署云计算平台部署分布式部署模型压缩和量化公共云服务商部署根据自身的资源、安全和性能需求选择合适的部署方式。2.准备训练所需的数据和计算资源确保有足够的训练数据覆盖目标应用场景准备足够的计算资源,如GPU服务器或云计算资源3.选择合适的预训练模型作为基础可以使用开源的预训练模型如BERT、GPT等作为基础也可以自行训练一个基础模型4.针对目标任务进行模型微调训练根据具体应用场景对预训练模型进行微调训练优化模型结构和训练过程以提高性能5.部署和调试模型将训练好的模型部署到生产环境对部署的模型进行在线调试和性能优化6.注意安全性和隐私保护大模型涉及大量数据和隐私信息,需要重视安全性和合规性总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。内容由AI大模型生成,请仔细甄别

老黄祭出新核弹B200!30倍H100单机可训15个GPT-4模型,AI迎新摩尔时代

这种架构可以为平台中的每个GPU提供高达每秒1,800 GB的带宽。除此之外,英伟达还发布了统一的超算平台DGX B200,用于AI模型训练、微调和推理。它包括8个Blackwell GPU和2个第五代Intel Xeon处理器,包含FP4精度功能,提供高达144 petaflops的AI性能、1.4TB的GPU内存和64TB/s的内存带宽。这使得万亿参数模型的实时推理速度,比上一代产品提高了15倍。用户还可以使用DGX B200系统构建DGX SuperPOD,创建人工智能卓越中心,为运行多种不同工作的大型开发团队提供动力。目前,亚马逊、谷歌、微软已经成为最新芯片超算的首批用户。亚马逊网络服务,将建立一个拥有20,000 GB200芯片的服务器集群。

中国大模型面临的真实问题:登顶路远,坠落一瞬

另一个关键问题是能耗。接触过模型训练的人应该都知道,想练出一个好模型是超级费卡费电的,所以能耗也是一个拦路虎。假设,我们面前有一台由8张A100 GPU组成的DGX服务器。这台服务器就像是AI世界中的"超级跑车",性能强劲,但"油耗"惊人。它的最大功率达到6.5千瓦,这意味着运行一小时就会消耗6.5度电。然而,这仅仅是开始。让我们来做一个具体的计算:假设工业用电的平均价格是每度0.63元。一台服务器(包括散热)每小时消耗约13度电。如果这台服务器24小时不间断运行,每天的电费约为200元。现在,让我们将视野扩大到一个大规模的AI研究中心或大型科技公司:如果有1,000台这样的服务器同时运行,每天的电费将达到惊人的20万元。对于大多数AI创业公司来说,大规模购买和部署GPU就像是攀登珠穆朗玛峰:看似令人向往,实际上充满风险和挑战。但在瞬息万变的AI领域,长期大规模投资可能会成为公司的致命弱点。没准下一波海浪就会把他们拍死在沙滩上。然而,就像每一个挑战都孕育着机遇,GPU资源的稀缺也催生了新的解决方案。云服务平台如阿里云、腾讯云和亚马逊AWS,这些基础设施提供商建立的"算力集市",为AI公司提供了一个灵活的选择。在这些平台上,公司可以直接租用算力服务,而不必承担购买和维护的全部成本。然而,即使是租用模式,许多大模型公司也对大规模算力投入持谨慎态度。这种谨慎背后隐藏着两个深层次的问题,这些问题已经成为AI投资圈的"公开秘密":

其他人在问
gpu算力平台
以下是关于 GPU 算力平台的相关信息: NVIDIA 推出全新 GPU 平台 Blackwell,涵盖与 Hopper 兼容的普通系统和与 Grace CPU 连接的专用系统,提供前所未有的算力,有望突破物理极限,为互联网产业注入新动力。配备第五代 NV Link 的全新 Transformer 引擎速度惊人,新型超算的高速运转离不开早期问题检测和替换机制,数据加密也至关重要。全新的 FP8 格式大幅提升计算速度,NVLink 交换芯片实现所有 GPU 同时全速通信,直接驱动铜技术的突破让系统更加经济实惠。训练一个 1.8 万亿参数的 GPT 模型,Blackwell 相比传统方法优势明显,AWS、GCP、Oracle、微软纷纷为 Blackwell 做好准备。Blackwell 惊人的推理能力是 Hopper 的 30 倍,有望成为未来生成式 AI 的核心引擎。 能耗是模型训练的关键问题,一台由 8 张 A100 GPU 组成的 DGX 服务器性能强劲但能耗惊人,运行一小时消耗约 6.5 度电,包括散热每小时约消耗 13 度电。若有 1000 台这样的服务器同时运行,每天电费达 20 万元。对于大多数 AI 创业公司,大规模购买和部署 GPU 充满风险和挑战,但云服务平台为 AI 公司提供了灵活选择。 英伟达发布统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽,使得万亿参数模型的实时推理速度比上一代产品提高 15 倍。目前,亚马逊、谷歌、微软已成为最新芯片超算的首批用户,亚马逊网络服务将建立一个拥有 20,000 GB200 芯片的服务器集群。
2024-12-14
算力怎么提高
提高算力的方法主要有以下几种: 1. 技术创新: 继续在硅基上发展,如采用 3D 堆叠形态,但需要解决更好的散热问题。 材料创新,包括硅基掺杂、石墨烯片等。 探索计算原理的创新,如量子计算,不过目前距离商用还有不少理论和技术需要突破。 2. 提升传输速度:高速网络会进一步进化,片间链接、片上内存等技术都会有明显的进展。 3. 解决能耗和散热问题:高温超导技术是这方面的关键。 4. 白嫖算力的思路: 利用 Groq 平台提供的个人免费 APIKEY 接口,不同模型有相应限制。以 llama370b 为例,每分钟 30 次 request,每分钟 6000 tokens,每天 14400 次。 将 API 调用接入各种平台提供方,无需购买和部署云服务器。 考虑通过代理的方式解决国内 IP 访问限制,如 Cloudflare 或 Deno Deploy 等。 5. 从模型变强的要素来看: 算力方面,根据预估,到 2027 年底很可能会再增加 2 个 OOM,甚至在微软和 OpenAI 的超算合作下,接近 3 个多 OOM 也是有可能的。 算法效率方面,通过对架构的优化,到 2027 年能提升 1 2 OOM。 额外的潜力方面,通过强化反馈学习 RLHF、思考链 CoT、工具和 Scaffolding 等方法微调来提升模型能力。
2024-11-06
有没有推荐的算力租赁平台?
以下是为您推荐的一些算力租赁平台: 揽睿:https://lanruiai.com/register?invitation_code=0659 。WaytoAGI 邀请码 0659 可以得到 10 小时的免费时长。 厚德云:https://portal.houdeyun.cn/register?from=Waytoagi 。厚德云是专业的 AI 算力云平台,隶属于又拍云旗下,又拍云拥有 15 年云服务经验。注册后送 50 元代金券。ComfyUI 悟空换脸特效使用流程: 百度:https://aistudio.baidu.com/community/app/106043?source=appCenter 。新注册 2 个小时,登记一下,明天给大家发放 50 小时。 丹摩:https://damodel.com/register?source=46EF69A0 。20 元券,https://doc.damodel.com/profile/best_practice/SD3+ComfyUI.html 青椒云:https://account.qingjiaocloud.com/signin?inviteCode=3OF611IT 阿里云 PAI Artlab:直达地址:https://x.sm.cn/5hd9PfM 。登录后右上角领取免费试用,领取 500 元算力、OSS 20G 存储。AI 创作你的奥运专属海报,参与 PK 赢取台式升降桌、Lamy 钢笔套盒、双肩包等大奖!活动地址:https://mp.weixin.qq.com/s/y3Sk5PtVT5g8yFTMJASdFw 晨羽智云:直达地址:chenyu.cn 。体验券 9.9 元 10 小时 4090 24G。券码:GSUD7I 。硬件和网络都是顶配,能胜任各种出图模型和模型训练。针对 ComfyUI 和 SDWebUI,做了针对性的适配和镜像预下载处理,用户启动速度非常快,体验较好。协助教学团队/创作者安装镜像,和优化镜像,全程贴身服务。
2024-11-04
和ai结合的去中心化算力项目或者公司或者产品有哪些?
以下是一些与 AI 结合的去中心化算力项目、公司或产品: 智谱·AI 开源模型列表中的 WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。它旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。代码链接: 智谱·AI 开源模型列表中的 WebGLM2B 智谱·AI 开源模型列表中的 MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。代码链接: 智谱·AI 开源模型列表中的 MathGLM500M,模型下载: 智谱·AI 开源模型列表中的 MathGLM100M,模型下载: 智谱·AI 开源模型列表中的 MathGLM10M,模型下载: 智谱·AI 开源模型列表中的 MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。模型下载: 智谱·AI 开源模型列表中的 MathGLM10B,模型下载: 智谱·AI 开源模型列表中的 MathGLMChatGLM6B,模型下载:
2024-10-14
AI 算力 衡量
AI 算力的衡量可以从以下几个方面考虑: 1. 神经网络的参数(神经元的数量和连接)规模:人工神经网络与人脑的大小仍有数量级的差距,但在某些哺乳动物面前已具备一定竞争力。 2. 单位计算的成本:我们每花一美元所能得到的计算能力一直在呈指数级增长,现在大规模基础模型所用到的计算量每 3.5 个月就会翻一番。 3. 提升算力的方案: 继续在硅基上发展,如 3D 堆叠形态等,但需要更好的散热。 材料创新,如硅基掺杂、石墨烯片等。 计算原理的创新,如量子计算,但目前距离商用还有不少理论和技术需要突破。 4. 传输速度:高速网络会进一步进化,片间链接、片上内存等技术都会有明显进展。 5. 能耗和散热问题:高温超导技术是解决能耗和散热问题的关键。 此外,对于基础模型的治理,有人认为衡量计算能力可以作为一种潜在工具。但也需要探讨其他更有效的治理方法。
2024-10-12
在哪里可以找到数据 算力 算法的资源
以下是一些可以找到数据、算力、算法资源的途径: 关于数据:数据集对人工智能学习算法发展至关重要,AI 伴随着神经网络的发展而出现,多层神经网络大规模数据分析技术中的数据集是重要资源。 关于算力:您可以通过以下链接了解算力的相关内容: 算力的字面意思就是计算能力,可以直接转化成 GPU 就是算力,电脑里的显卡就是 GPU,哪怕购买云服务,也是服务商买显卡“租”给您用。 关于算法:目前没有明确给出具体的算法资源获取途径,但您可以通过相关的学术网站、技术论坛等渠道进一步搜索。
2024-10-10
GPU如何选
以下是关于如何选择 GPU 的一些指导: 在腾讯云购买 GPU 的流程: 1. 在腾讯云首页的搜索框搜索“GPU”,在搜索结果中点击「立即选购」。 2. 选择有空余的机器,若账户没钱可能需要充钱,云平台有时会有免费活动。计费模式建议选择「按量计费」,地域尽量选择本地城市或较近城市,以减少访问延时。 3. 配置方面,如果使用时长不长或资金充裕,可选择顶配。要记住选择的 GPU 型号和系统镜像版本,后续安装驱动会用到。系统镜像选择 Windows 的,尽量选择 2016 版本以上。系统盘容量建议大于 50GB,最好 100GB 左右。 4. 设置好系统和镜像后,其他选项按默认即可,点击进入「设置网络和主机」。带宽计费模式选择「按流量计费」。 5. GPU 服务器的密码需自己设置并记住,访问时需要输入。其他信息选择默认,点击「确认配置信息」,勾选阅读协议,点击「开通」并确认即可完成购买。 选择 GPU 时的考虑因素: 1. 训练与推理:训练大型模型通常在机器集群上完成,最好每台服务器有多个 GPU、大量 VRAM 以及高带宽连接。许多模型在 NVIDIA H100 上最具成本效益,但较难获取且通常需要长期合作承诺。如今更多选择在 NVIDIA A100 上运行大多数模型训练,但对于大型集群仍需长期承诺。 2. 内存要求:大型 LLM 的参数数量多,需要分布到多个卡中。较小的模型如 Stable Diffusion 需要的 VRAM 较少,初创公司也会使用 A10、A40、A4000、A5000 和 A6000 甚至 RTX 卡。 算力相关: GPU 的强大决定了生图和训练的效率,越强大的算力在生图(推理)和训练上消耗的时间越短。显存在生图过程决定了直接推理的图片大小,在训练时受制于训练工具的要求,显存容量是门槛。选择算力时需要综合 GPU 性能和显存大小两个参考维度。由于需要使用 CUDA 加速,显卡大概率只能选择 NVIDIA 的。至于买哪个型号的显卡,取决于预算和对算力换算成时间的忍耐度。可参考相关性能测试报告:https://docs.google.com/spreadsheets/d/1Zlv4UFiciSgmJZncCujuXKHwc4BcxbjbSBg71SdeNk/editgid=0
2024-12-13
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
必须知道的最常用的名词解释比如GPU、AGI等等、列举出来按照重点排序
以下是按照重点排序的一些常用名词解释: 1. 算力:字面意思是计算能力,可简单理解为 GPU,即电脑里的显卡,购买云服务时,服务商也是购买显卡“租”给用户使用。一张显卡除了 GPU 外,显存也是重要参数。 2. GPU:图形处理器,又称显示核心、视觉处理器、显示芯片,是在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器。 3. CPU:中央处理器,作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。 4. 显存:也被叫做帧缓存,作用是存储显卡芯片处理过或者即将提取的渲染数据,如同计算机的内存,是用来存储要处理图形信息的部件。
2024-09-13
租赁gpu平台
以下是关于租赁 GPU 平台的相关信息: 部署流程: 1. 选择有空余的机器并购买。若账户没钱需充值,云平台有时会有免费活动,可碰运气薅羊毛。 2. 计费模式建议选择“按量计费”,地域尽量选择本地城市或较近城市,以减少网络远程连接的延时。 3. 配置方面,若使用时长不长或资金充裕,可选择顶配,越高配置训图炼丹越“爽”。同时需记住选择的 GPU 型号,后续安装驱动会用到。 4. 系统镜像选择 Windows 的,尽量选择 2016 版本以上,并记住镜像版本,后续安装驱动要用。 5. 系统盘容量建议大于 50GB,最好 100GB 左右,因算上操作系统、SD 包和几个大模型,50GB 可能会满。 6. 系统和镜像设置好后,其他选项按默认即可,点击进入“设置网络和主机”。 7. 带宽计费模式选择“按流量计费”更省钱,其他信息按默认配置即可。 算力相关知识: 算力的字面意思是计算能力,可直接转化为 GPU 理解,电脑里的显卡就是 GPU。一张显卡除了 GPU 外,显存也是重要参数。GPU 是一种专门在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器。CPU 是计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。显存用于存储显卡芯片处理过或即将提取的渲染数据,如同计算机的内存,是存储要处理图形信息的部件。 购买服务器推荐: 因为个人机器可能带不动大模型,可选择 Autodl 这个算力服务商。访问地址:,自行注册或登陆。
2024-08-15
autodl如何解决时常出现的,实例GPU被占用导致需要更改实例时,数据的转移复制问题,怎样提高效率
很抱歉,目前知识库中没有关于 autodl 在实例 GPU 被占用导致需要更改实例时数据转移复制问题及提高效率的相关内容。但一般来说,您可以考虑以下几种可能的解决方法: 1. 提前规划和备份:在可能出现 GPU 占用需要更改实例的情况前,提前对重要数据进行备份,以便在需要时快速恢复。 2. 优化数据存储结构:采用更高效的数据存储方式,减少数据转移复制的时间和工作量。 3. 利用数据同步工具:寻找适合的专业数据同步工具,提高数据转移的效率和准确性。 4. 监控和预警:建立有效的监控机制,及时发现 GPU 占用情况,并提前做好数据转移的准备工作。 以上建议仅供参考,您可以根据实际情况进行尝试和调整。
2024-08-15
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-21
小白如何学习ai
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了什么是 AI 大模型及原理。 生成式 AI 生成的内容叫 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习是基于有标签的训练数据学习输入和输出之间的映射关系,包括分类和回归;无监督学习是基于无标签数据自主发现规律,经典任务如聚类;强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法,神经网络可用于多种学习方式。 生成式 AI 可生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不是大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-12-21
有没有带有文件夹功能的ai
目前,带有文件夹功能的 AI 仅在 Cursor Chat 中受支持。您还可以将 Cursor 中的整个文件夹作为上下文引用,@Folders 对于希望为 AI 提供大量上下文的长上下文聊天特别有用,相关链接为:https://docs.cursor.com/chat/overviewlongcontextchat 。 此外,能联网检索的 AI 也是存在的。例如,ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网;Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型;Bing Copilot 作为 AI 助手,旨在简化在线查询和浏览活动;还有如 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 在 Excel 方面,有以下几种增强数据处理和分析能力的 AI 工具和插件: 1. Excel Labs:是 Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求,Copilot 自动完成任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 以上内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生学习 AI 的建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-21
AI应用解决方案
以下是为您提供的 AI 应用解决方案: AI 应用主要涉及以下几个方面: 1. 辅助创作与学习: AI 智能写作助手,如 Grammarly、秘塔写作猫,利用自然语言处理技术辅助用户进行高质量写作,可检查语法、拼写错误并提供改进建议,进行智能润色和内容创作辅助。 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划: AI 图像识别商品推荐,如淘宝拍照搜商品,通过图像识别和机器学习为用户推荐相似商品。 美食推荐平台,如大众点评智能推荐,基于用户口味偏好推荐美食。 旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理: 办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,利用数据分析和机器学习提高工作效率和管理水平。 5. 销售与交易: AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 此外,还有以下具体的 AI 应用: 1 20 中的部分应用: 小爱同学、Siri 等 AI 语音助手定制开发,通过语音识别和自然语言理解技术,为不同需求定制专属语音助手,可控制智能家居、回答问题等。 Keep 智能训练计划,利用数据分析和机器学习技术,根据用户数据制定个性化健身方案。 81 100 中的部分应用: AI 菜谱口味调整工具,如下厨房口味调整功能,通过自然语言处理和数据分析,根据用户反馈调整菜谱口味。 AI 语言学习纠错平台,如英语流利说纠错功能,利用自然语言处理和机器学习技术,帮助语言学习者纠正错误。 总之,这些 AI 应用为创业者提供了丰富的选择和广阔的发展前景,创业者可以根据自己的兴趣、技能和市场需求,选择适合自己的项目进行创业。
2024-12-21
那如果想通过AI赚钱,有什么建议
以下是通过 AI 赚钱的一些建议: 1. 学习 AI 技术,从事相关高薪工作,如成为数据科学家、机器学习工程师等,在金融、医疗、制造业等行业应用 AI 技能,增加就业机会和职业发展可能性。 2. 利用 AI 工具进行创作,例如使用以下工具: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow、Midjourney 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 设计:Canva、Clipdrop、Designify、Microsoft Designer 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。 3. 进行 Agent 应用开发,熟悉业务,结合 AI 能力打磨产品,形成自己的护城河。 4. 通过 Key 商、写书、卖课、接项目、做镜像站等方式赚钱。 需要注意的是,是否能通过 AI 赚钱取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。
2024-12-21
有做企业工作助手智能体的解决方案吗?结合企业内部数据+外部市场环境,做企业工作助手和客服助手
以下是关于企业工作助手智能体的一些解决方案: 职业规划导师(校招版): 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来职业趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化职业建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 智能客服助手搭建思路: 利用企业已有的知识积累,结合大模型的能力,为用户提供准确简洁的答案。 创建企业私有知识库,收录企业过去的问答记录和资料。 利用大模型处理用户咨询问题,确保回答的准确性和一致性,必要时提供原回答的完整版。 对接人工客服,在智能助手无法解决问题时,用户可快速转接,确保问题及时解决,提升整体服务质量和客户满意度。 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 用 Coze 在微信里搭建机器人并挖掘销售线索: 目的:训练公司自有数据,让机器人提供客服功能;将机器人与企业微信绑定提供客服功能;进阶版可根据客户咨询信息收集用户联系方式形成销售线索。 使用工具:字节旗下的 Coze AI 智能机器人工具,需要有微信公众号订阅号或服务号的管理权。 功能体验:扣子画小二智能小助手:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cjksvpbk000a ;B站公开视频
2024-12-21
如何用让大模型收到用户的信息后,根据用户信息创建虚拟环境,在环境中创设agent,让用户与agent在环境中进行交互
我总结了以下几个步骤,让大模型根据用户信息创建虚拟环境,并在其中设置 agent 与用户进行交互: 1. 获取用户输入信息 大模型首先需要收到用户提供的相关信息,如场景描述、人物设定、对话需求等。这些信息将作为创建虚拟环境和 agent 的基础。 2. 构建虚拟环境 基于用户提供的信息,大模型可以利用自然语言处理和知识图谱等技术,构建出一个符合用户需求的虚拟环境。这个环境可以包含场景布置、道具设置等细节。 3. 生成交互 agent 在虚拟环境中,大模型可以根据用户的人物设定,生成相应的 agent 角色。这些 agent 可以具有一定的智能行为和对话能力,能够与用户进行自然交流。 4. 实现用户agent 交互 最后,大模型可以让用户与环境中的 agent 进行互动,比如通过对话、操作等方式。agent 可以根据用户的输入做出合理的反应和响应,让整个交互过程更加自然生动。 总的来说,这个过程需要大模型具备丰富的知识积累和强大的生成能力,才能够根据用户需求,构建出逼真的虚拟环境和智能交互 agent。这种方式可以让用户获得身临其境的沉浸式体验。
2024-05-05
有没有类似游戏情境创设的闯关游戏,人物与虚拟角色在文生视频搭建的环境中进行智能对话的案例
《Im Here2》就是一个利用文生视频搭建游戏环境,通过人物与虚拟角色进行智能对话来解谜的游戏案例。
2024-05-05
如何搭建RAG环境
RAG,即RetrievalAugmented Generation,是一种结合了检索(Retrieval)和生成(Generation)的深度学习模型,用于处理需要大量信息检索和文本生成的任务,如开放域问答和文本摘要。搭建RAG环境通常涉及以下步骤: 1. 环境设置: 安装Python和pip,这是运行RAG模型的基本要求。 2. 安装依赖库: 使用pip安装所需的Python库,如PyTorch、Transformers、NumPy等。 3. 获取RAG模型代码: 可以从GitHub上的开源项目获取RAG模型的代码,例如`facebookresearch/rag`。 4. 安装RAG模型: 根据项目提供的指南安装RAG模型。这可能涉及克隆代码库并安装必要的依赖项。 5. 配置数据库: RAG模型通常需要一个检索数据库,如Elasticsearch或Faiss,来存储和检索相关信息。 6. 准备数据集: 根据你的任务准备数据集,并进行必要的预处理,如分词、编码等。 7. 模型训练: 使用准备好的数据集对RAG模型进行训练。这可能需要一定的计算资源,如GPU。 8. 模型评估: 在验证集上评估模型的性能,确保模型达到预期的准确度。 9. 模型部署: 将训练好的模型部署到服务器或云平台上,以便可以用于实际的文本生成任务。 10. 接口开发: 开发API接口,使得用户可以通过网络请求使用RAG模型。 以下是更具体的步骤: ```bash 克隆RAG模型的GitHub仓库 git clone https://github.com/facebookresearch/rag.git 进入项目目录 cd rag 创建Python虚拟环境(可选) python3 m venv ragenv 激活虚拟环境 source ragenv/bin/activate 在Windows上使用 ragenv\Scripts\activate 安装依赖库 pip install r requirements.txt 你可能需要安装PyTorch和Transformers库 pip install torch transformers 配置数据库,例如Elasticsearch 准备并预处理数据集 下载预训练的模型和词汇表(如果需要) 训练模型(需要GPU) 评估模型性能 部署模型以供使用 ``` 请注意,上述步骤是一个大致的指南,具体步骤可能会根据RAG模型的具体实现和你的应用场景有所不同。建议查看你所使用的RAG模型的官方文档或GitHub仓库中的README文件,以获取详细的安装和配置指南。此外,由于深度学习模型通常需要大量的计算资源,如果你没有足够的硬件资源,可能需要使用云服务提供商的GPU计算服务。
2024-04-19