直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI 算力 衡量

回答

AI 算力的衡量可以从以下几个方面考虑:

  1. 神经网络的参数(神经元的数量和连接)规模:人工神经网络与人脑的大小仍有数量级的差距,但在某些哺乳动物面前已具备一定竞争力。
  2. 单位计算的成本:我们每花一美元所能得到的计算能力一直在呈指数级增长,现在大规模基础模型所用到的计算量每 3.5 个月就会翻一番。
  3. 提升算力的方案:
    • 继续在硅基上发展,如 3D 堆叠形态等,但需要更好的散热。
    • 材料创新,如硅基掺杂、石墨烯片等。
    • 计算原理的创新,如量子计算,但目前距离商用还有不少理论和技术需要突破。
  4. 传输速度:高速网络会进一步进化,片间链接、片上内存等技术都会有明显进展。
  5. 能耗和散热问题:高温超导技术是解决能耗和散热问题的关键。

此外,对于基础模型的治理,有人认为衡量计算能力可以作为一种潜在工具。但也需要探讨其他更有效的治理方法。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

[title]机器之心的进化/理解AI驱动的软件2.0智能革命[heading1]06 AI进化的未来[heading2]6.3人工智能何时通用?通用人工智能(AGI)这是AI领域的终极目标,应该也是人类发明了机器计算之后的终极进化方向。回顾机器之心六十多年的进化,我们似乎找到了方法,就是模仿人类的大脑。Machine Learning要完成这块拼图,需要有数据、算力还有模型的改进。数据应该是拼图中最容易实现的。按秒来计算,ImageNet数据集的大小已经接近人从出生到大学毕业视觉信号的数据量;Google公司创建的新模型HN Detection,用来理解房屋和建筑物外墙上的街道号码的数据集大小,已经可以和人一生所获取的数据量所媲美。要像人类一样,使用更少的数据和更高的抽象来学习,才是神经网络的发展方向。算力可以分解为两个部分:神经网络的参数(神经元的数量和连接)规模以及单位计算的成本。下图可以看到,人工神经网络与人脑的大小仍有数量级的差距,但它们在某些哺乳动物面前,已经具备竞争力了。配图29:神经网络规模和动物与人类神经元规模的对比我们每花一美元所能得到的计算能力一直在呈指数级增长。现在大规模基础模型所用到的计算量每3.5个月就会翻一番。配图30:122 years of Moore’s Law:每一美元产生的算力有些人认为,由于物理学的限制,计算能力不能保持这种上升趋势。然而,过去的趋势并不支持这一理论。随着时间的推移,该领域的资金和资源也在增加,越来越多人才进入该领域,因为涌现的效应,会开发更好的软件(算法模型等)和硬件。而且,物理学的限制同样约束人脑的能力极限,所以AGI可以实现。

AGI 万字长文(下)| 2024,分叉与洪流

[title]AGI万字长文(下)| 2024,分叉与洪流[heading1]下篇:2024,分叉与洪流[heading2]<8>AI的需求:能源、算力、机器人算力:3D堆叠、石墨烯、量子计算、高温超导。算力对于AI的价值更加直接,NVIDIA的股价可能就是最直接的例子。算力的提升目前还在性能上(而不是硅片栅-漏极间隔的物理尺寸上)继续延续着摩尔定律;但量子隧穿效应-普朗克长度的理论限制是AGI也无法突破的,因此,一定要有除了工艺尺寸缩小的其他方案。我并不是专业人员,没法给出比较靠谱的判断,从分析上能看到的几条路可能会有继续在硅基上发展:3D堆叠形态等(需要更好散热)材料创新:硅基掺杂、石墨烯片等如果再跳脱一些到计算原理的层次,就是量子计算。量子计算目前距离商用可能比可控核聚变还更远,目前的应用方向主要还在量子加密传输上,在“计算”上需要突破的理论和技术都还有不少。除了计算速度之外,另一个阻碍算力进展的是传输速度:可以想见高速网络会进一步进化、片间链接、片上内存等技术都会有明显的进展。最后,是能耗和散热问题。这里的明珠是高温超导技术。去年已经有好几篇半造假的“高温超导突破”,今年加上了AI或许就会有真的突破。广义机器人。最后,如果AGI的目标不是仅仅停留在虚拟世界,而是直接作用于物理世界,那么广义机器人就是必经之路。前文提到到“具身智能”就是为了操控机器人的AI:AGI是大脑,他也会想要身体。

【法律法规】《促进创新的人工智能监管方法》.pdf

to AI regulationMarch 2023CP 815A pro-innovation approachto AI regulationPresented to Parliamentby the Secretary of State for Science,Innovation and Technologyby Command of His MajestyMarch 2023CP 815© Crown copyright 2023This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated.To view this licence,visit nationalarchives.gov.uk/doc/open-government-licence/version/3.Where we have identified any third-party copyright information you will need to obtain permission from thecopyright holders concerned.This publication is available at www.gov.uk/official-documents.Any enquiries regarding this publication should be sent to us at:evidence@officeforai.gov.ukISBN 978-1-5286-4009-1E02886733 03/23Printed on paper containing 40% recycled fibre content minimumPrinted in the UK by HH Associates Ltd.on behalf of the Controller of His Majesty’s Stationery OfficeCORRECTION SLIPTitle:A pro-innovation approach to AI regulationSession:2022−23CP 815ISBN:978-1-5286-4009-1Correction:Text currently reads in Annex C:2.What other transparency measures would be appropriate,if any?L3.If you work for a business that develops,uses,or sells AI,how do you currently manage AI riskincluding through the wider supply chain?How could government support effective AI-related riskmanagement?Foundation models and the regulatory frameworkF1.What specific challenges will foundation models such as large language models(LLMs)or open-source models pose for regulators trying to determine legal responsibility for AI outcomes?F2.Do you agree that measuring compute provides a potential tool that could be considered as part ofthe governance of foundation models?F3.Are there other approaches to governing foundation models that would be more effective?AI sandboxes and testbedsS1.To what extent would the sandbox models described in section 3.3.4 support innovation?

其他人在问
制作ppt 的 ai 工具
以下是一些制作 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力,网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,包含互动元素和动画效果,网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 此外,在教学中帮助学生做好组会准备时,Claude 和 Gamma.app 这两个工具组合使用效果较好。Claude 可帮助快速寻找符合条件的论文、提取精炼论文中某部分信息等。
2024-12-21
请给我推荐介绍 适合写网络小说的AI工具?
以下是一些适合写网络小说的 AI 工具及相关信息: 工具与网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。 网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。 网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。 网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址: 将小说制作成视频的一般流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-12-21
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
AI图片社区
以下是关于 AI 图片社区的相关信息: 如何判断一张图片是否 AI 生成:要培养鉴别 AI 图片的技能需要训练大脑模型。对于不擅长的朋友,可通过一些网站来判断,如 ILLUMINARTY(https://app.illuminarty.ai/),但测试中可能存在误判,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种表现。 100 个 AI 应用中的相关社区:500px 摄影社区是 AI 摄影比赛平台,利用图像识别、数据分析技术,举办摄影比赛,展示优秀摄影作品;雪球财经 APP 是 AI 金融投资教育平台,利用数据分析、自然语言处理技术,为用户提供个性化的金融投资教育服务。
2024-12-21
当前有哪些热门AI工具
以下是一些当前热门的 AI 工具: 儿童练习英语口语的 AI 工具: LingoDeer:使用游戏和互动活动教孩子英语,提供各种课程,有家长仪表板。 Busuu:提供英语等多种语言课程,有多种教学方法和社区功能。 Memrise:使用抽认卡和游戏教学,有社交功能。 Rosetta Stone:使用沉浸式方法,有语音识别功能。 Duolingo:免费,使用游戏化方法,课程多样。 制作 PPT 的 AI 工具: Gamma:在线制作网站,可通过输入提示生成幻灯片,支持嵌入多媒体。 美图 AI PPT:输入文本描述生成专业设计,有丰富模板库。 Mindshow:提供智能设计功能,简化设计流程。 讯飞智文:利用语音识别和自然语言处理技术,提供多种编辑功能。 辅助写邮件的 AI 工具: Grammarly:提供语法检查、拼写纠正等功能,支持多平台和多种语言。 Hemingway Editor:简化句子结构,提高可读性。 ProWritingAid:全面的语法和风格检查,提供详细写作报告。 Writesonic:基于 AI 生成各种文本,生成速度快。 Lavender:专注邮件写作优化,提供个性化建议和模板。 在选择工具时,需考虑使用者的年龄、兴趣、学习风格、功能和成本等因素。
2024-12-21
如何将AI应用于学术研究
将 AI 应用于学术研究可以参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取收集资料中的关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的课题大纲。 5. 撰写文献综述:借助 AI 工具撰写文献综述部分,保证内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:借助 AI 审阅工具检查课题的逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。 AI 的技术历史和发展方向以及目前最前沿的技术点: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:如监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:涵盖语言模型、文本分类、机器翻译等。 计算机视觉:包含图像分类、目标检测、语义分割等。 前沿领域:有大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:像监督学习、无监督学习等。 深度学习框架:例如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涉及数据采集、清洗、特征工程等。 模型部署:包含模型优化、模型服务等。 行业实践:有项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-12-21
国内有哪些gpu算力平台,支持快速搭建AI大模型预训练环境 和 微调环境
国内的 GPU 算力平台中,支持快速搭建 AI 大模型预训练环境和微调环境的有: 1. 阿里云:提供云计算资源,用户可根据需求租用算力服务。 2. 腾讯云:具备相应的算力支持,为用户提供灵活的选择。 3. 亚马逊 AWS:基础设施提供商建立的“算力集市”,可满足用户的算力需求。 在搭建环境时,通常需要考虑以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,例如可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,英伟达还发布了统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽。但模型训练能耗也是一个关键问题,例如由 8 张 A100 GPU 组成的 DGX 服务器,最大功率达到 6.5 千瓦,运行一小时就会消耗 6.5 度电,若有 1000 台这样的服务器同时运行,每天的电费将达到惊人的 20 万元。
2024-12-14
gpu算力平台
以下是关于 GPU 算力平台的相关信息: NVIDIA 推出全新 GPU 平台 Blackwell,涵盖与 Hopper 兼容的普通系统和与 Grace CPU 连接的专用系统,提供前所未有的算力,有望突破物理极限,为互联网产业注入新动力。配备第五代 NV Link 的全新 Transformer 引擎速度惊人,新型超算的高速运转离不开早期问题检测和替换机制,数据加密也至关重要。全新的 FP8 格式大幅提升计算速度,NVLink 交换芯片实现所有 GPU 同时全速通信,直接驱动铜技术的突破让系统更加经济实惠。训练一个 1.8 万亿参数的 GPT 模型,Blackwell 相比传统方法优势明显,AWS、GCP、Oracle、微软纷纷为 Blackwell 做好准备。Blackwell 惊人的推理能力是 Hopper 的 30 倍,有望成为未来生成式 AI 的核心引擎。 能耗是模型训练的关键问题,一台由 8 张 A100 GPU 组成的 DGX 服务器性能强劲但能耗惊人,运行一小时消耗约 6.5 度电,包括散热每小时约消耗 13 度电。若有 1000 台这样的服务器同时运行,每天电费达 20 万元。对于大多数 AI 创业公司,大规模购买和部署 GPU 充满风险和挑战,但云服务平台为 AI 公司提供了灵活选择。 英伟达发布统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽,使得万亿参数模型的实时推理速度比上一代产品提高 15 倍。目前,亚马逊、谷歌、微软已成为最新芯片超算的首批用户,亚马逊网络服务将建立一个拥有 20,000 GB200 芯片的服务器集群。
2024-12-14
算力怎么提高
提高算力的方法主要有以下几种: 1. 技术创新: 继续在硅基上发展,如采用 3D 堆叠形态,但需要解决更好的散热问题。 材料创新,包括硅基掺杂、石墨烯片等。 探索计算原理的创新,如量子计算,不过目前距离商用还有不少理论和技术需要突破。 2. 提升传输速度:高速网络会进一步进化,片间链接、片上内存等技术都会有明显的进展。 3. 解决能耗和散热问题:高温超导技术是这方面的关键。 4. 白嫖算力的思路: 利用 Groq 平台提供的个人免费 APIKEY 接口,不同模型有相应限制。以 llama370b 为例,每分钟 30 次 request,每分钟 6000 tokens,每天 14400 次。 将 API 调用接入各种平台提供方,无需购买和部署云服务器。 考虑通过代理的方式解决国内 IP 访问限制,如 Cloudflare 或 Deno Deploy 等。 5. 从模型变强的要素来看: 算力方面,根据预估,到 2027 年底很可能会再增加 2 个 OOM,甚至在微软和 OpenAI 的超算合作下,接近 3 个多 OOM 也是有可能的。 算法效率方面,通过对架构的优化,到 2027 年能提升 1 2 OOM。 额外的潜力方面,通过强化反馈学习 RLHF、思考链 CoT、工具和 Scaffolding 等方法微调来提升模型能力。
2024-11-06
有没有推荐的算力租赁平台?
以下是为您推荐的一些算力租赁平台: 揽睿:https://lanruiai.com/register?invitation_code=0659 。WaytoAGI 邀请码 0659 可以得到 10 小时的免费时长。 厚德云:https://portal.houdeyun.cn/register?from=Waytoagi 。厚德云是专业的 AI 算力云平台,隶属于又拍云旗下,又拍云拥有 15 年云服务经验。注册后送 50 元代金券。ComfyUI 悟空换脸特效使用流程: 百度:https://aistudio.baidu.com/community/app/106043?source=appCenter 。新注册 2 个小时,登记一下,明天给大家发放 50 小时。 丹摩:https://damodel.com/register?source=46EF69A0 。20 元券,https://doc.damodel.com/profile/best_practice/SD3+ComfyUI.html 青椒云:https://account.qingjiaocloud.com/signin?inviteCode=3OF611IT 阿里云 PAI Artlab:直达地址:https://x.sm.cn/5hd9PfM 。登录后右上角领取免费试用,领取 500 元算力、OSS 20G 存储。AI 创作你的奥运专属海报,参与 PK 赢取台式升降桌、Lamy 钢笔套盒、双肩包等大奖!活动地址:https://mp.weixin.qq.com/s/y3Sk5PtVT5g8yFTMJASdFw 晨羽智云:直达地址:chenyu.cn 。体验券 9.9 元 10 小时 4090 24G。券码:GSUD7I 。硬件和网络都是顶配,能胜任各种出图模型和模型训练。针对 ComfyUI 和 SDWebUI,做了针对性的适配和镜像预下载处理,用户启动速度非常快,体验较好。协助教学团队/创作者安装镜像,和优化镜像,全程贴身服务。
2024-11-04
和ai结合的去中心化算力项目或者公司或者产品有哪些?
以下是一些与 AI 结合的去中心化算力项目、公司或产品: 智谱·AI 开源模型列表中的 WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。它旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。代码链接: 智谱·AI 开源模型列表中的 WebGLM2B 智谱·AI 开源模型列表中的 MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。代码链接: 智谱·AI 开源模型列表中的 MathGLM500M,模型下载: 智谱·AI 开源模型列表中的 MathGLM100M,模型下载: 智谱·AI 开源模型列表中的 MathGLM10M,模型下载: 智谱·AI 开源模型列表中的 MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。模型下载: 智谱·AI 开源模型列表中的 MathGLM10B,模型下载: 智谱·AI 开源模型列表中的 MathGLMChatGLM6B,模型下载:
2024-10-14
在哪里可以找到数据 算力 算法的资源
以下是一些可以找到数据、算力、算法资源的途径: 关于数据:数据集对人工智能学习算法发展至关重要,AI 伴随着神经网络的发展而出现,多层神经网络大规模数据分析技术中的数据集是重要资源。 关于算力:您可以通过以下链接了解算力的相关内容: 算力的字面意思就是计算能力,可以直接转化成 GPU 就是算力,电脑里的显卡就是 GPU,哪怕购买云服务,也是服务商买显卡“租”给您用。 关于算法:目前没有明确给出具体的算法资源获取途径,但您可以通过相关的学术网站、技术论坛等渠道进一步搜索。
2024-10-10