直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI 算力 衡量

回答

AI 算力的衡量可以从以下几个方面考虑:

  1. 神经网络的参数(神经元的数量和连接)规模:人工神经网络与人脑的大小仍有数量级的差距,但在某些哺乳动物面前已具备一定竞争力。
  2. 单位计算的成本:我们每花一美元所能得到的计算能力一直在呈指数级增长,现在大规模基础模型所用到的计算量每 3.5 个月就会翻一番。
  3. 提升算力的方案:
    • 继续在硅基上发展,如 3D 堆叠形态等,但需要更好的散热。
    • 材料创新,如硅基掺杂、石墨烯片等。
    • 计算原理的创新,如量子计算,但目前距离商用还有不少理论和技术需要突破。
  4. 传输速度:高速网络会进一步进化,片间链接、片上内存等技术都会有明显进展。
  5. 能耗和散热问题:高温超导技术是解决能耗和散热问题的关键。

此外,对于基础模型的治理,有人认为衡量计算能力可以作为一种潜在工具。但也需要探讨其他更有效的治理方法。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

[title]机器之心的进化/理解AI驱动的软件2.0智能革命[heading1]06 AI进化的未来[heading2]6.3人工智能何时通用?通用人工智能(AGI)这是AI领域的终极目标,应该也是人类发明了机器计算之后的终极进化方向。回顾机器之心六十多年的进化,我们似乎找到了方法,就是模仿人类的大脑。Machine Learning要完成这块拼图,需要有数据、算力还有模型的改进。数据应该是拼图中最容易实现的。按秒来计算,ImageNet数据集的大小已经接近人从出生到大学毕业视觉信号的数据量;Google公司创建的新模型HN Detection,用来理解房屋和建筑物外墙上的街道号码的数据集大小,已经可以和人一生所获取的数据量所媲美。要像人类一样,使用更少的数据和更高的抽象来学习,才是神经网络的发展方向。算力可以分解为两个部分:神经网络的参数(神经元的数量和连接)规模以及单位计算的成本。下图可以看到,人工神经网络与人脑的大小仍有数量级的差距,但它们在某些哺乳动物面前,已经具备竞争力了。配图29:神经网络规模和动物与人类神经元规模的对比我们每花一美元所能得到的计算能力一直在呈指数级增长。现在大规模基础模型所用到的计算量每3.5个月就会翻一番。配图30:122 years of Moore’s Law:每一美元产生的算力有些人认为,由于物理学的限制,计算能力不能保持这种上升趋势。然而,过去的趋势并不支持这一理论。随着时间的推移,该领域的资金和资源也在增加,越来越多人才进入该领域,因为涌现的效应,会开发更好的软件(算法模型等)和硬件。而且,物理学的限制同样约束人脑的能力极限,所以AGI可以实现。

AGI 万字长文(下)| 2024,分叉与洪流

[title]AGI万字长文(下)| 2024,分叉与洪流[heading1]下篇:2024,分叉与洪流[heading2]<8>AI的需求:能源、算力、机器人算力:3D堆叠、石墨烯、量子计算、高温超导。算力对于AI的价值更加直接,NVIDIA的股价可能就是最直接的例子。算力的提升目前还在性能上(而不是硅片栅-漏极间隔的物理尺寸上)继续延续着摩尔定律;但量子隧穿效应-普朗克长度的理论限制是AGI也无法突破的,因此,一定要有除了工艺尺寸缩小的其他方案。我并不是专业人员,没法给出比较靠谱的判断,从分析上能看到的几条路可能会有继续在硅基上发展:3D堆叠形态等(需要更好散热)材料创新:硅基掺杂、石墨烯片等如果再跳脱一些到计算原理的层次,就是量子计算。量子计算目前距离商用可能比可控核聚变还更远,目前的应用方向主要还在量子加密传输上,在“计算”上需要突破的理论和技术都还有不少。除了计算速度之外,另一个阻碍算力进展的是传输速度:可以想见高速网络会进一步进化、片间链接、片上内存等技术都会有明显的进展。最后,是能耗和散热问题。这里的明珠是高温超导技术。去年已经有好几篇半造假的“高温超导突破”,今年加上了AI或许就会有真的突破。广义机器人。最后,如果AGI的目标不是仅仅停留在虚拟世界,而是直接作用于物理世界,那么广义机器人就是必经之路。前文提到到“具身智能”就是为了操控机器人的AI:AGI是大脑,他也会想要身体。

【法律法规】《促进创新的人工智能监管方法》.pdf

to AI regulationMarch 2023CP 815A pro-innovation approachto AI regulationPresented to Parliamentby the Secretary of State for Science,Innovation and Technologyby Command of His MajestyMarch 2023CP 815© Crown copyright 2023This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated.To view this licence,visit nationalarchives.gov.uk/doc/open-government-licence/version/3.Where we have identified any third-party copyright information you will need to obtain permission from thecopyright holders concerned.This publication is available at www.gov.uk/official-documents.Any enquiries regarding this publication should be sent to us at:evidence@officeforai.gov.ukISBN 978-1-5286-4009-1E02886733 03/23Printed on paper containing 40% recycled fibre content minimumPrinted in the UK by HH Associates Ltd.on behalf of the Controller of His Majesty’s Stationery OfficeCORRECTION SLIPTitle:A pro-innovation approach to AI regulationSession:2022−23CP 815ISBN:978-1-5286-4009-1Correction:Text currently reads in Annex C:2.What other transparency measures would be appropriate,if any?L3.If you work for a business that develops,uses,or sells AI,how do you currently manage AI riskincluding through the wider supply chain?How could government support effective AI-related riskmanagement?Foundation models and the regulatory frameworkF1.What specific challenges will foundation models such as large language models(LLMs)or open-source models pose for regulators trying to determine legal responsibility for AI outcomes?F2.Do you agree that measuring compute provides a potential tool that could be considered as part ofthe governance of foundation models?F3.Are there other approaches to governing foundation models that would be more effective?AI sandboxes and testbedsS1.To what extent would the sandbox models described in section 3.3.4 support innovation?

其他人在问
怎么系统学习ai
以下是系统学习 AI 的方法: 1. 编程语言基础:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 工具和平台体验:使用 ChatGPT、Midjourney 等 AI 生成工具,体验其应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 阅读入门文章,熟悉 AI 的术语和基础概念,了解其历史、当前应用和未来发展趋势。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养思考和判断能力。 6. 课程学习: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 7. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。 8. 实践和尝试:理论学习后,通过实践巩固知识,尝试使用各种产品创作作品,并在知识库分享实践成果。 9. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用的第一手体验。
2024-11-15
ai能够回复多少内容和它的上下文限制有关吗
AI 能够回复的内容与其上下文限制有关。 首先,上下文在英文中通常翻译为“context”,指的是对话聊天内容前、后的信息。使用时,上下文长度和上下文窗口都会影响 AI 大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 不同的 AI 平台有不同的限制方式。例如,Claude 基于 token 限制上下文,简单理解就是每次和 AI 对话,所有内容字数加起来不能太多,如果超过了,它就会忘记一些内容,甚至直接提示要另起一个对话。ChatGPT 则限制会话轮数,比如在一天之中,和它会话的次数有限制,可能 4 个小时只能说 50 句话。 应对这些限制的策略包括将复杂任务分解为小模块、定期总结关键信息以及在新会话中重新引入重要上下文。
2024-11-15
AI在会计岗位落地的场景
AI 在会计岗位落地的场景包括以下方面: 1. 预测:生成式 AI 能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,还能发现模式,从更广泛、更复杂的数据集中为预测建议输入,并提供适应模型的建议,为公司决策提供依据。 2. 报告:生成式 AI 可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 3. 会计和税务:会计和税务团队在咨询规则和应用方面,生成式 AI 可以帮助综合、总结,并就税法和潜在扣除项提出可能的答案。 4. 采购和应付账款:生成式 AI 能够帮助自动生成和调整合同、采购订单和发票以及提醒。 5. RPA 方面:RPA 是流程自动化机器人,可替代电脑办公中的重复有逻辑工作,为企业降本增效。在财务领域,可用于开票、网银流水下载等。 6. 税务工作:在金税四期背景下,利用引刀 AP 创建网页实现智能解答税务问题,结合飞书避免信息泄露和实现自动回复等。
2024-11-15
如何用ai开发一个教学软件
以下是关于如何用 AI 开发一个教学软件的一些信息和建议: 拜登签署的 AI 行政命令中提到,要通过创建资源来塑造 AI 在教育方面的潜力,以支持教育工作者部署启用 AI 的教育工具,例如在学校提供个性化辅导。 一些 AI 产品案例也能提供参考,比如: 学习:用 AI 做播客笔记 教学:帮助学生做好组会准备 医疗:蛋白质结构预测和蛋白质合成 做调研:我用这条 prompt,2 小时帮同学干完了 3 篇调研报告 做调研:用 ChatGPT 做调研 此外,还可以参考相关指南,如使用人工智能来帮助教育,包括自学学习。可以要求人工智能解释概念,但要注意因为其可能产生幻觉,对于关键数据要根据其他来源仔细检查。
2024-11-15
有没有可以免费设计包装的AI
以下是一些可以免费设计包装的 AI 工具: 1. Canva(可画):https://www.canva.cn/ ,是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户通过简单拖放操作创建海报,其 AI 功能可帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ ,稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ ,简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ ,通过简单拖放界面,用户可快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能。 此外,以下是一些生成 Logo 的 AI 产品,也可能对包装设计有一定帮助: 1. Looka:是一个在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个 Logo 设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,提供 Logo 设计服务,通过回答系列问题生成 Logo 选项。 3. Designhill:Logo 制作器使用 AI 技术创建个性化 Logo 设计,用户选择元素和风格,AI 生成设计方案。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,利用 AI 辅助设计建议创建品牌标识。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成 Logo 设计方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术创建个性化 Logo。 您可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:
2024-11-15
AI 在教育行业的落地场景有哪些
AI 在教育行业的落地场景主要包括以下几个方面: 1. 个性化学习:通过集成算法和大数据分析,如 Knewton 平台,实时跟踪学生学习进度,诊断学习难点,提供定制化的学习建议和资源。 2. 自动评估:利用自然语言处理技术(NLP),如 Pearson 的 Intelligent Essay Assessor,自动批改学生的作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:例如 Google 的 AI 教育工具 AutoML,创建定制的学习内容,引导学生通过对话学习,提供即时反馈,提高学习动机和知识掌握程度。 4. 虚拟现实(VR)和增强现实(AR):如 Labster 的虚拟实验室平台,提供虚拟实验场景,让学生安全进行实验操作并获得 AI 系统反馈。 5. 协助评估学生学习情况,为职业规划提供建议。 6. 针对学生情况和兴趣定制学习内容。 7. 论文相关:包括论文初稿搭建及论文审核。 8. 帮助低收入国家/家庭获得平等的教育资源。
2024-11-15
算力怎么提高
提高算力的方法主要有以下几种: 1. 技术创新: 继续在硅基上发展,如采用 3D 堆叠形态,但需要解决更好的散热问题。 材料创新,包括硅基掺杂、石墨烯片等。 探索计算原理的创新,如量子计算,不过目前距离商用还有不少理论和技术需要突破。 2. 提升传输速度:高速网络会进一步进化,片间链接、片上内存等技术都会有明显的进展。 3. 解决能耗和散热问题:高温超导技术是这方面的关键。 4. 白嫖算力的思路: 利用 Groq 平台提供的个人免费 APIKEY 接口,不同模型有相应限制。以 llama370b 为例,每分钟 30 次 request,每分钟 6000 tokens,每天 14400 次。 将 API 调用接入各种平台提供方,无需购买和部署云服务器。 考虑通过代理的方式解决国内 IP 访问限制,如 Cloudflare 或 Deno Deploy 等。 5. 从模型变强的要素来看: 算力方面,根据预估,到 2027 年底很可能会再增加 2 个 OOM,甚至在微软和 OpenAI 的超算合作下,接近 3 个多 OOM 也是有可能的。 算法效率方面,通过对架构的优化,到 2027 年能提升 1 2 OOM。 额外的潜力方面,通过强化反馈学习 RLHF、思考链 CoT、工具和 Scaffolding 等方法微调来提升模型能力。
2024-11-06
有没有推荐的算力租赁平台?
以下是为您推荐的一些算力租赁平台: 揽睿:https://lanruiai.com/register?invitation_code=0659 。WaytoAGI 邀请码 0659 可以得到 10 小时的免费时长。 厚德云:https://portal.houdeyun.cn/register?from=Waytoagi 。厚德云是专业的 AI 算力云平台,隶属于又拍云旗下,又拍云拥有 15 年云服务经验。注册后送 50 元代金券。ComfyUI 悟空换脸特效使用流程: 百度:https://aistudio.baidu.com/community/app/106043?source=appCenter 。新注册 2 个小时,登记一下,明天给大家发放 50 小时。 丹摩:https://damodel.com/register?source=46EF69A0 。20 元券,https://doc.damodel.com/profile/best_practice/SD3+ComfyUI.html 青椒云:https://account.qingjiaocloud.com/signin?inviteCode=3OF611IT 阿里云 PAI Artlab:直达地址:https://x.sm.cn/5hd9PfM 。登录后右上角领取免费试用,领取 500 元算力、OSS 20G 存储。AI 创作你的奥运专属海报,参与 PK 赢取台式升降桌、Lamy 钢笔套盒、双肩包等大奖!活动地址:https://mp.weixin.qq.com/s/y3Sk5PtVT5g8yFTMJASdFw 晨羽智云:直达地址:chenyu.cn 。体验券 9.9 元 10 小时 4090 24G。券码:GSUD7I 。硬件和网络都是顶配,能胜任各种出图模型和模型训练。针对 ComfyUI 和 SDWebUI,做了针对性的适配和镜像预下载处理,用户启动速度非常快,体验较好。协助教学团队/创作者安装镜像,和优化镜像,全程贴身服务。
2024-11-04
和ai结合的去中心化算力项目或者公司或者产品有哪些?
以下是一些与 AI 结合的去中心化算力项目、公司或产品: 智谱·AI 开源模型列表中的 WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。它旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。代码链接: 智谱·AI 开源模型列表中的 WebGLM2B 智谱·AI 开源模型列表中的 MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。代码链接: 智谱·AI 开源模型列表中的 MathGLM500M,模型下载: 智谱·AI 开源模型列表中的 MathGLM100M,模型下载: 智谱·AI 开源模型列表中的 MathGLM10M,模型下载: 智谱·AI 开源模型列表中的 MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。模型下载: 智谱·AI 开源模型列表中的 MathGLM10B,模型下载: 智谱·AI 开源模型列表中的 MathGLMChatGLM6B,模型下载:
2024-10-14
在哪里可以找到数据 算力 算法的资源
以下是一些可以找到数据、算力、算法资源的途径: 关于数据:数据集对人工智能学习算法发展至关重要,AI 伴随着神经网络的发展而出现,多层神经网络大规模数据分析技术中的数据集是重要资源。 关于算力:您可以通过以下链接了解算力的相关内容: 算力的字面意思就是计算能力,可以直接转化成 GPU 就是算力,电脑里的显卡就是 GPU,哪怕购买云服务,也是服务商买显卡“租”给您用。 关于算法:目前没有明确给出具体的算法资源获取途径,但您可以通过相关的学术网站、技术论坛等渠道进一步搜索。
2024-10-10
算力调度
在多智能体(MultiAgent)系统中,常见的调度模式主要有以下几种: 1. 集中式调度:有一个中央控制器负责收集所有智能体的信息,并做出整体最优的决策和资源分配。常见于需要全局协调的场景,如机器人协作、交通管制等。 2. 分布式调度:每个智能体根据本地信息和与其他智能体的交互来做出决策,无需中央控制器。常用于大规模、动态、开放的系统,如传感器网络、P2P 网络等。 3. 市场驱动调度:智能体通过竞价机制获取资源和任务分配。类似于现实市场的供需规律,常用于电力负载调度、计算资源分配等领域。 4. 约束优化调度:将多智能体协作问题建模为分布式约束优化问题,通过启发式或完全算法求解近似最优解。适用于任务分配、资源规划等约束严格的场景。 5. 组织结构调度:根据特定的组织拓扑结构(层级、同辈、联盟等)对智能体角色和协作模式进行规范,实现有序调度。常见于多机器人协作、组织自动化系统中。 6. 基于规范协议的调度。 在惊人算力成本背后,对于 AI 混战下基础设施的选择,需要注意以下方面:AI 任务的调度可能造成巨大的性能瓶颈或改进。以一种最小化权重交换的方式将模型分配给 GPU,如果有多个 GPU 可用,选择最适合任务的 GPU,以及通过提前批量处理工作负载来最小化停机时间,都是常用的技术。总之,模型优化仍然有点像黑魔法,大多数创业公司都与第三方合作来处理一些软件方面的问题。通常,这些不是传统的 MLops 供应商,而是专门针对特定生成模型进行优化的公司(例如 OctoML 或 SegMind)。
2024-09-26
在waytoagi买的算力包从哪里查看和使用?
在 waytoagi 购买的算力包可以通过以下方式查看和使用: 测试平台:Tensor.Art 网址:https://tensor.art/ 专属邀请码:waytoagi 。登录并使用专属邀请码注册,普通用户每天免费有 100 个算力,使用邀请码的用户可以获得 200 算力。 Tensor.Art 使用指南: TensorArt 教学视频内容及其对应链接:
2024-09-07