Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

GAN

Answer

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了检索和生成的技术。

AI 大模型在生成文本时,其知识通常基于训练时使用的公开数据。若想构建能利用私有数据或实时数据进行推理的 AI 应用,就需要特定信息来增强模型知识,这便是 RAG。

RAG 的基本流程为:首先,针对用户输入(如问题或话题),从数据源(如网页、文档、数据库记录)中检索出相关文本片段,这些片段称为上下文。然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要)。最后,从大模型输出中提取或格式化所需信息返回给用户。

RAG 由检索器和生成器两部分组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。

Content generated by AI large model, please carefully verify (powered by aily)

References

开发:LangChain应用开发指南-大模型的知识外挂RAG

原创AI小智AI小智2023-12-11 08:10发表于湖北AI大模型能够处理广泛主题的文本生成,但模型知识只能基于它们训练时使用的公开数据。如果你想构建能够利用私有数据或实时数据进行推理的AI应用,你需要用特定的信息来增强模型的知识。将相关信息检索并插入到模型的输入中,即检索增强生成(Retrieval Augmented Generation,RAG)。在本文中,我们将介绍如何使用LangChain开发一个简单的RAG问答应用。我们将依次介绍典型的问答架构,讨论相关的LangChain组件,并展示如何跟踪和理解我们的应用。[heading3]RAG的基本概念[content]RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。

开发:LangChain应用开发指南-大模型的知识外挂RAG

原创AI小智AI小智2023-12-11 08:10发表于湖北AI大模型能够处理广泛主题的文本生成,但模型知识只能基于它们训练时使用的公开数据。如果你想构建能够利用私有数据或实时数据进行推理的AI应用,你需要用特定的信息来增强模型的知识。将相关信息检索并插入到模型的输入中,即检索增强生成(Retrieval Augmented Generation,RAG)。在本文中,我们将介绍如何使用LangChain开发一个简单的RAG问答应用。我们将依次介绍典型的问答架构,讨论相关的LangChain组件,并展示如何跟踪和理解我们的应用。[heading2]RAG的基本概念[content]RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。

Others are asking
GAN生成对抗网络
GAN 生成对抗网络是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。它具有以下特点和应用: 特点: 能够生成视觉逼真度高的视频。 控制难度大、时序建模较弱。 与 VAE 变分自编码器、Transformer 自注意力机制等相比,GAN 生成视频速度快,但生成质量和分辨率较低,长度短,控制能力弱。 应用: 可以帮助神经网络用更少的数据进行学习,生成更多的合成图像。 有助于创建图像,还可以创建现实世界的软件模拟,如 Nvidia 大量采用这种技术来增强其现实模拟系统。 同时,当前端到端视频生成仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。针对这些问题,可使用渐进生成、增强时序一致性的模型等方法,以及上述的补帧算法、视频完善策略来在一定程度上缓解。
2024-12-18
生成对抗网络 GAN
生成对抗网络(GAN)是一种在 AI 领域非常重要的模型。 GAN 是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。其中一个神经网络(生成器)负责创建图像,另一个神经网络(鉴别器)预测图像是真实的还是伪造的。随着时间的推移,鉴别器变得越来越擅长区分真伪,而生成器则越来越擅长创建逼真的图像。 GAN 在图像生成领域极为引人注目,例如您可能已经听说过的“DeepFake”便是基于这一技术。同时,GAN 也可用于生成视觉逼真度高的视频,但存在控制难度大、时序建模较弱的问题。此外,GAN 生成视频速度快,但生成质量和分辨率较低,长度短,控制能力弱。 GAN 诞生于 2014 年,是 Deep Learning 领域的重要里程碑,它可以帮助神经网络用更少的数据进行学习,生成更多的合成图像,然后用来识别和创建更好的神经网络。GAN 的创造者 Ian Goodfellow 是在蒙特利尔的一个酒吧里想出这个主意的,它由两个神经网络玩着猫捉老鼠的游戏,一个创造出看起来像真实图像的假图像,而另一个则决定它们是否是真的。GAN 不仅有助于创建图像,还可以创建现实世界的软件模拟,Nvidia 就大量采用这种技术来增强他的现实模拟系统。 相关的学习资源包括: 课程地址:https://www.cloudskillsboost.google/course_templates/541 视频学习:https://youtu.be/J0AuVBxzui0
2024-12-11
搜索DragGAN
DragGAN 于 2023 年 6 月 25 日开源。喜欢 AI 绘画的对它应该不陌生,期待它带来更大的惊艳。此外,相关论文中增加了微软研究院新发布的多模态 AI 助手;学习路径中增加了适合初学者的深度学习课程 fast.ai ;AI 名词增加到 80 多个,补充了很多技术名词。您可以通过以下链接获取更多详细信息:
2024-11-11
写一个有关International Organization for Standardization的英文介绍思维导图
以下是为你生成的英文思维导图: ``` International Organization for Standardization | + About ISO | + Founded: 1947 | + Headquarters: Geneva, Switzerland | + Membership: 165 countries | + Purpose: Develop and publish international standards | + Core Values | + Credibility | + Relevance | + Impartiality | + Effectiveness | + Standards Development | + Process: Consultative, Consensual, Transparent | + Types of Standards | + Technical | + Managerial | + Quality | + Environmental | + ISO Standards Examples | + ISO 9001 | + ISO 14001 | + ISO 45001 | + Benefits of ISO Standards | + Facilitate International Trade | + Ensure Quality and Safety | + Promote Best Practices | + Enhance Sustainability | + Stakeholders | + National Standards Bodies | + Industry Experts | + Consumers | + Governments | + ISO's Role in Society | + Economic Development | + Regulatory Compliance | + Consumer Protection | + Environmental Conservation | + ISO's Work Areas | + Agriculture | + Healthcare | + Manufacturing | + Technology | + Services | + Global Reach and Influence | + International Cooperation | + Harmonization of Standards | + Recognition of Standards | + Future Initiatives + Sustainable Development Goals + Digital Transformation + Innovation and Technology ```
2024-06-06
能用简单易懂的方法给我讲一下生成对抗网络GAN的原理和工作流程吗
好的,生成对抗网络(GAN)是一种深度学习模型,由两个神经网络构成:生成器和判别器。生成器的任务是创建新的、看起来像真实数据的样本,而判别器的任务是区分生成的样本和真实的数据样本。这两个网络相互对抗,生成器试图欺骗判别器,而判别器试图不被欺骗。这个过程导致生成器逐渐学会生成越来越逼真的样本。
2024-04-22