Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

LSTM/Transformer/GAN等AI技术分别是指

Answer

LSTM(Long Short-Term Memory)是一种特殊的循环神经网络(RNN),能够处理长序列数据中的长期依赖关系。

Transformer 是一种完全基于自注意力机制(Self-Attention)来处理序列数据的模型,不依赖于循环神经网络(RNN)或卷积神经网络(CNN),比 RNN 更适合处理文本的长距离依赖性。

GAN(Generative Adversarial Network)即生成对抗网络,由生成器和判别器组成,通过两者的对抗训练来生成新的数据。

Content generated by AI large model, please carefully verify (powered by aily)

References

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
GAN生成对抗网络
GAN 生成对抗网络是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。它具有以下特点和应用: 特点: 能够生成视觉逼真度高的视频。 控制难度大、时序建模较弱。 与 VAE 变分自编码器、Transformer 自注意力机制等相比,GAN 生成视频速度快,但生成质量和分辨率较低,长度短,控制能力弱。 应用: 可以帮助神经网络用更少的数据进行学习,生成更多的合成图像。 有助于创建图像,还可以创建现实世界的软件模拟,如 Nvidia 大量采用这种技术来增强其现实模拟系统。 同时,当前端到端视频生成仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。针对这些问题,可使用渐进生成、增强时序一致性的模型等方法,以及上述的补帧算法、视频完善策略来在一定程度上缓解。
2024-12-18
GAN
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合了检索和生成的技术。 AI 大模型在生成文本时,其知识通常基于训练时使用的公开数据。若想构建能利用私有数据或实时数据进行推理的 AI 应用,就需要特定信息来增强模型知识,这便是 RAG。 RAG 的基本流程为:首先,针对用户输入(如问题或话题),从数据源(如网页、文档、数据库记录)中检索出相关文本片段,这些片段称为上下文。然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要)。最后,从大模型输出中提取或格式化所需信息返回给用户。 RAG 由检索器和生成器两部分组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。
2024-12-18
生成对抗网络 GAN
生成对抗网络(GAN)是一种在 AI 领域非常重要的模型。 GAN 是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。其中一个神经网络(生成器)负责创建图像,另一个神经网络(鉴别器)预测图像是真实的还是伪造的。随着时间的推移,鉴别器变得越来越擅长区分真伪,而生成器则越来越擅长创建逼真的图像。 GAN 在图像生成领域极为引人注目,例如您可能已经听说过的“DeepFake”便是基于这一技术。同时,GAN 也可用于生成视觉逼真度高的视频,但存在控制难度大、时序建模较弱的问题。此外,GAN 生成视频速度快,但生成质量和分辨率较低,长度短,控制能力弱。 GAN 诞生于 2014 年,是 Deep Learning 领域的重要里程碑,它可以帮助神经网络用更少的数据进行学习,生成更多的合成图像,然后用来识别和创建更好的神经网络。GAN 的创造者 Ian Goodfellow 是在蒙特利尔的一个酒吧里想出这个主意的,它由两个神经网络玩着猫捉老鼠的游戏,一个创造出看起来像真实图像的假图像,而另一个则决定它们是否是真的。GAN 不仅有助于创建图像,还可以创建现实世界的软件模拟,Nvidia 就大量采用这种技术来增强他的现实模拟系统。 相关的学习资源包括: 课程地址:https://www.cloudskillsboost.google/course_templates/541 视频学习:https://youtu.be/J0AuVBxzui0
2024-12-11
搜索DragGAN
DragGAN 于 2023 年 6 月 25 日开源。喜欢 AI 绘画的对它应该不陌生,期待它带来更大的惊艳。此外,相关论文中增加了微软研究院新发布的多模态 AI 助手;学习路径中增加了适合初学者的深度学习课程 fast.ai ;AI 名词增加到 80 多个,补充了很多技术名词。您可以通过以下链接获取更多详细信息:
2024-11-11
写一个有关International Organization for Standardization的英文介绍思维导图
以下是为你生成的英文思维导图: ``` International Organization for Standardization | + About ISO | + Founded: 1947 | + Headquarters: Geneva, Switzerland | + Membership: 165 countries | + Purpose: Develop and publish international standards | + Core Values | + Credibility | + Relevance | + Impartiality | + Effectiveness | + Standards Development | + Process: Consultative, Consensual, Transparent | + Types of Standards | + Technical | + Managerial | + Quality | + Environmental | + ISO Standards Examples | + ISO 9001 | + ISO 14001 | + ISO 45001 | + Benefits of ISO Standards | + Facilitate International Trade | + Ensure Quality and Safety | + Promote Best Practices | + Enhance Sustainability | + Stakeholders | + National Standards Bodies | + Industry Experts | + Consumers | + Governments | + ISO's Role in Society | + Economic Development | + Regulatory Compliance | + Consumer Protection | + Environmental Conservation | + ISO's Work Areas | + Agriculture | + Healthcare | + Manufacturing | + Technology | + Services | + Global Reach and Influence | + International Cooperation | + Harmonization of Standards | + Recognition of Standards | + Future Initiatives + Sustainable Development Goals + Digital Transformation + Innovation and Technology ```
2024-06-06
能用简单易懂的方法给我讲一下生成对抗网络GAN的原理和工作流程吗
好的,生成对抗网络(GAN)是一种深度学习模型,由两个神经网络构成:生成器和判别器。生成器的任务是创建新的、看起来像真实数据的样本,而判别器的任务是区分生成的样本和真实的数据样本。这两个网络相互对抗,生成器试图欺骗判别器,而判别器试图不被欺骗。这个过程导致生成器逐渐学会生成越来越逼真的样本。
2024-04-22
什么是transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”,来源于 2017 年 Google Brain 团队发布的同名论文。它主要用于处理序列数据,包括热门的 NLP 任务。与传统模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。 Transformer 采用完全并行的计算方式,借助 GPU 加速训练速度,并引入自注意力机制,能够直接对输入序列中的每个位置进行编码和解码,从而更好地捕捉序列中的长程依赖关系。 最流行的基于 Transformer 的模型之一是 BERT,它是“来自 Transformer 的双向编码器表示”(“Bidirectional Encoder Representations from Transformers”)的缩写。BERT 已进入几乎所有的 NLP 项目,包括谷歌搜索。它可以扩展来解决一系列不同的任务,如文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户的查询等。 此外,Transformer 不仅在自然语言处理领域发挥重要作用,如谷歌搜索去年推出的基于 Transformer 的聊天机器人 Meena,还在自然语言处理之外掀起了浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。
2025-01-16
transformer详解
Transformer 是一种基于注意力机制的编码器解码器模型,其工作流程如下: 1. 输入嵌入:将每个单词映射为一个向量,即单词嵌入。例如,“I”映射为一个 512 维的向量。 2. 位置编码:由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器:输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制:捕捉单词间的依赖关系。 前馈神经网络:对 attention 的结果进行进一步编码。 4. 解码器:编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入:解码器最后一层的输出被映射为输出单词概率分布。 6. 生成:基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 最流行的基于 Transformer 的模型之一 BERT,是“来自 Transformer 的双向编码器表示”的缩写。它被谷歌的研究人员引入,很快就进入了几乎所有的 NLP 项目,包括谷歌搜索。BERT 不仅指模型体系结构,还指经过训练的模型本身,您可以在。谷歌的研究人员在一个庞大的文本语料库上对它进行了训练,它已经成为一种用于自然语言处理的通用模型,可以扩展来解决一系列不同的任务,比如: 文本摘要 问答 分类 命名实体识别 文本相似度 攻击性信息/脏话检测 理解用户的查询 Transformer 基于 2017 年发表的一篇名为《Attention Is All You Need》的论文。尽管 Transformers 之前的所有模型都能够将单词表示为向量,但这些向量并不包含上下文。单词的用法会根据上下文而变化。Transformer 模型由编码器和解码器组成。编码器对输入序列进行编码并将其传递给解码器,解码器解码相关任务的表示。编码组件是一堆相同数量的编码器。介绍 Transformers 的研究论文将六个编码器堆叠在一起。六不是一个神奇的数字,它只是一个超参数。编码器在结构上都是相同的,但具有不同的权重。 Transformer 不仅在自然语言处理领域表现出色,如 BERT、GPT3、Meena 等模型,还在自然语言处理之外掀起了一股浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。
2025-01-10
transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”。以下为您详细介绍其工作流程: 假设我们有一个英文句子“I am a student”需要翻译成中文。 1. 输入嵌入(Input Embeddings):首先,将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制(MultiHead Attention):捕捉单词间的依赖关系。 前馈神经网络(FeedForward NN):对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 主要用于处理序列数据,包括现在最火的 NLP 任务。与之前的模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。它可以用来翻译文本、写诗、写文章,甚至生成计算机代码。像 GPT3、BERT、T5 等功能强大的自然语言处理(NLP)模型都是基于 Transformer 模型。如果您想在机器学习,特别是自然语言处理方面与时俱进,至少要对 Transformer 有一定的了解。
2025-01-10
如何深入浅出的讲解Transformer
Transformer 的工作流程可以通过一个简单的例子来解释,比如将英文句子“I am a student”翻译成中文: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,如将“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,让模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(MultiHead Attention)用于捕捉单词间的依赖关系,二是前馈神经网络(FeedForward NN)对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成单词“我”“是”等的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 此外,aaronxic 从自己实际入坑的经验出发,总结梳理了新手友好的 transformer 入坑指南,计划从以下五个方面进行介绍: 1. 算法 1:NLP 中的 transformer 网络结构。 2. 算法 2:CV 中的 transformer 网络结构。 3. 算法 3:多模态下的 transformer 网络结构。 4. 训练:transformer 的分布式训练。 5. 部署:transformer 的 tvm 量化与推理。 同时,aaronxic 还针对 perplexity 指标进行了介绍,会先从大家熟悉的 entropy 指标开始,逐步介绍针对自然语言的改进版 Ngram Entropy 指标,最后介绍基于此改进的 perplexity 指标。
2024-12-27
2. Transformer
Transformer 是自然语言处理领域中的一种重要模型架构。以下是一些与 Transformer 相关的内容: 在“皇子:LLM 经典论文速读版,看完感觉自己通透了”中,Transformer 是众多被讨论的模型之一,与 GPT1、BERT 等一同被提及。 在“Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】”中,从核心本质上看,Sora 是一个具有灵活采样维度的扩散变压器。 在“机器之心的进化/理解 AI 驱动的软件 2.0 智能革命”中,有众多与 Transformer 相关的参考资料,如“Attention Is All You Need”论文等。
2024-12-27
transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”。以下为您详细介绍其工作流程: 假设我们有一个英文句子“I am a student”需要翻译成中文。 1. 输入嵌入(Input Embeddings):首先,将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制(MultiHead Attention):捕捉单词间的依赖关系。 前馈神经网络(FeedForward NN):对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 主要用于处理序列数据,包括现在最火的 NLP 任务。与之前的模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。它可以用来翻译文本、写诗、写文章,甚至生成计算机代码。像 GPT3、BERT、T5 等功能强大的自然语言处理(NLP)模型都是基于 Transformer 模型构建的。如果您想在机器学习,特别是自然语言处理方面与时俱进,对 Transformer 有一定的了解是很有必要的。
2024-12-27
大学生怎样用AI帮助自己学习?
以下是大学生利用 AI 帮助自己学习的一些方法: 1. 要求 AI 解释概念:可以向 AI 提问,让其解释各种学习中的概念,以获得良好的结果。例如,可参考。但要注意,因为 AI 可能会产生幻觉,所以对于关键数据要根据其他来源仔细检查。 2. 制作提问类的 GPT 辅助学习:如 CFU 大师(Check for Understanding),基于布鲁姆对理解这一认知维度的拆分理论,设计层层递进的引导问题检验学习者的理解程度。例如,其关于被动语态的提问非常精妙,能帮助学生理解应用而非刷题背诵知识点。 3. 利用个性化学习计划:AI 可以大规模部署个性化的学习计划,为每个用户提供一个“口袋里的老师”,理解其独特需求,并回答问题或测试技能。例如像等已经在做这样的事情。 4. 学习特定科目:有一些应用可以指导学生解决数学问题,如。 5. 提升写作水平:借助像 Grammarly、这样的工具克服写作难题。 6. 处理其他形式内容:使用协助创建演示文稿等。 更多关于 AI 时代学习的未来,可了解。
2025-02-06
多模态是什么?如何使用多模态模型构建 AI 智能体
多模态是指对同一概念的多维度理解,例如人类可以边看、边交谈,还能同时听着背景音乐和察觉危险,而仅靠语言来描述和理解世界是远远不够的。拥有多模态能力的模型可以更全面地学习世界,理解人类的行为和需求,提高任务解决能力,并克服单一模态的局限性,是让 AI 能在现实世界中运行极为重要的一环。 2023 年 9 月 GPT4v 的发布把大语言模型的竞赛带入了多模态模型(LMM Large Multimodal Models)的时代,如 ChatGPT 可以看图说话,还能通过内置的 DallE 3 直接画图;几个月后 Google 的 Gemini 正式推出,直接支持了文本、视频和声音多种模态。今年 5 月,OpenAI 完成了 GPT4 的实时听说和视频模态输入,发布了 GPT4o,向智能体方向迈进了一大步。 多模态大模型由解码器、backbone、Generator 等部件组成,左侧多模态理解,右侧生成输出。其架构基于大圆模型,能识别页面组件结构和位置绝对值信息,并与组件、文本映射。 在应用方面,多模态模型有着广泛的用途。例如 Stable Diffusion 模型可用于带货商品图生成、模特服装展示、海报生成、装修设计等。吉梦 AI 提供 AI 视频生成等能力,吐司是类似的在线生成平台,具备多种 AI 能力。 关于模型训练,需要大量图像数据和标签化处理。AI 视频生成原理主要基于特定架构,如基于 Sara 的整体架构,采用 diffusion Transformer 架构,以扩散模型通过随机造点、加噪和去噪得到连续图像帧,输入视频可看成若干帧图片,经处理后生成视频。Meta 的视频生成模型能生成视频和声音,可替换视频中的物体和人脸,其把 diffusion 架构换成纯 transformer 架构,基于 LLAMA3 训练,与 diffusion 在 CLIP 等方面有区别。 要使用多模态模型构建 AI 智能体,需要考虑实时性,保持模型能力不变的情况下缩小参数规模,升级架构来提升性能,最好让终端也参与进来分担一部分模型的计算量。同时,让科技变简单,设计出从未有过的硬件产品或重新设计现有的产品,以适应这种毫无机械感、完全类人化的交互方式。
2025-02-06
批改作文时使用什么ai
在批改作文时,可以利用以下 AI 技术和方案: 1. 抓取错词错句: 依赖模型深厚的语言处理能力和对长文本的细致分析能力,精确定位每一个错误,并在理解上下文的基础上提出修改建议。 具备深层次语义理解,能在复杂语境中辨识不恰当词汇和错误句子构造。 基于大规模数据识别,辨别出罕见的词汇或句子搭配。 能够基于上下文相关性评估,有效识别语法正确但语境不适宜的用词。 吸收众多语法规则知识,检测句子是否遵守语法标准。 2. 好词好句识别评测: 模型能模拟一定水平的文学素养,辨别出具有表现力、形象生动或富含智慧的词汇和句子。 有能力辨识不同的写作风格和修辞技巧,挑选出提升文章感染力的佳词妙句。 能够对句子的情感倾向和语气进行解析,识别出有效表达作者意图和情感的优质语句。 3. 作文综合评价评分: 可以综合考虑文章的内容、结构、语言等多个维度,给出全面细致的评价。 按照预定的评分标准,如内容完整性、逻辑性、语言准确性等,进行客观评分。 能够根据学生的写作特点和水平提供个性化的评价和建议。 保证评价标准的一致性,减少主观差异带来的评分不公。
2025-02-06
作文批改ai
以下是关于作文批改 AI 的相关内容: 在评价作文时,需要考虑多个因素,包括错别字、词、标点识别,好词好句识别、内容评价、逻辑结构评价、语言表达评价、段落评价等。我们可以利用大模型高效、准确、丰富知识的优秀特点,对学生作文进行综合打分。 场景一:抓取错词错句 在作文批改过程中,识别错词错句及优化病句的建议,依赖于模型深厚的语言处理能力和对长文本的细致分析能力。该模型能够精确地定位每一个错误,并在理解上下文的基础上,提出符合学生年级和作文主题的修改建议。其具备以下能力: 1. 深层次语义理解:大型语言模型具备深入理解句子内涵的能力,即便处于复杂语境,也能有效辨识出不恰当的词汇和错误的句子构造。 2. 大规模数据识别:这些模型在训练过程中接触了巨量的文本资源,这让它们能够辨别出哪些词汇或句子搭配在正式书面语中较为罕见,进而准确标出错词错句。 3. 上下文相关性评估:模型有能力基于上下文来判定词语和句子的恰当性,即便是语法正确但语境不适宜的用词也能被有效识别。 4. 语法规则习得:在训练过程中,模型吸收了众多的语法规则知识,这使其能够检测句子是否遵守了语法标准。 场景二:好词好句识别评测 在运用修辞技巧方面,学生作文中的隐喻、双关等深层次含义,对解读能力提出了更为严峻的挑战。GLM4Plus 模型具备洞悉这些弦外之音的能力,能够挖掘作文背后的深层思想。具体表现为: 1. 文学素养模拟:经过训练,大型模型能够模仿一定水平的文学品质,辨别出那些具有表现力、形象生动或富含智慧的词汇和句子。 2. 风格与修辞的辨识:该模型有能力辨别不同的写作风格和修辞技巧,进而挑选出那些能够提升文章感染力的佳词妙句。 3. 情感与语气的解析:模型能够对句子的情感倾向和语气进行解析,识别出那些能有效表达作者意图和情感的优质语句。 场景三:作文综合评价评分 作文的内容往往涉及特定的文化背景和历史知识,这对于评价者来说是一个挑战。GLM4Plus 模型凭借其丰富的知识库,能够精准把握这些文化细节,确保评价的准确性。逻辑结构和论证分析是评价作文不可或缺的部分。具体特点如下: 1. 综合评价能力:大型模型可以综合考虑文章的内容、结构、语言等多个维度,给出全面而细致的评价。 2. 标准化的评分系统:模型可以根据预定的评分标准,如内容完整性、逻辑性、语言准确性等,对作文进行客观评分。 3. 个性化反馈:模型能够根据学生的写作特点和水平提供个性化的评价和建议,帮助学生有针对性地提高。 4. 一致性保证:与人工评分相比,模型评分可以保证评价标准的一致性,减少主观差异带来的评分不公。 此外,如果担心 AI 削弱孩子思考力,正确的用法能助力拓展思维边界。比如将任务改成让孩子提交一份他和 AI 共同完成作文的聊天记录,作文需要由 AI 来写,孩子要对 AI 的作文进行点评批改、让 AI 迭代出更好地文章。对话记录里孩子能否说清楚 AI 写的作文哪里好哪里不好、要怎么改(孩子可能还得给 AI 做示范),才是评价的关注点。
2025-02-06
作文批改ai
以下是关于作文批改 AI 的相关内容: 在评价作文时,需要考虑多个因素,包括错别字、词、标点识别,好词好句识别、内容评价、逻辑结构评价、语言表达评价、段落评价等。我们可以利用大模型高效、准确、丰富知识的优秀特点,对学生作文进行综合打分。 场景一:抓取错词错句 在作文批改过程中,识别错词错句及优化病句的建议,依赖于模型深厚的语言处理能力和对长文本的细致分析能力。该模型能够精确地定位每一个错误,并在理解上下文的基础上,提出符合学生年级和作文主题的修改建议。其具备以下能力: 1. 深层次语义理解:大型语言模型具备深入理解句子内涵的能力,即便处于复杂语境,也能有效辨识出不恰当的词汇和错误的句子构造。 2. 大规模数据识别:这些模型在训练过程中接触了巨量的文本资源,这让它们能够辨别出哪些词汇或句子搭配在正式书面语中较为罕见,进而准确标出错词错句。 3. 上下文相关性评估:模型有能力基于上下文来判定词语和句子的恰当性,即便是语法正确但语境不适宜的用词也能被有效识别。 4. 语法规则习得:在训练过程中,模型吸收了众多的语法规则知识,这使其能够检测句子是否遵守了语法标准。 场景二:好词好句识别评测 在运用修辞技巧方面,学生作文中的隐喻、双关等深层次含义,对解读能力提出了更为严峻的挑战。GLM4Plus 模型具备洞悉这些弦外之音的能力,能够挖掘作文背后的深层思想。具体表现为: 1. 文学素养模拟:经过训练,大型模型能够模仿一定水平的文学品质,辨别出那些具有表现力、形象生动或富含智慧的词汇和句子。 2. 风格与修辞的辨识:该模型有能力辨别不同的写作风格和修辞技巧,进而挑选出那些能够提升文章感染力的佳词妙句。 3. 情感与语气的解析:模型能够对句子的情感倾向和语气进行解析,识别出那些能有效表达作者意图和情感的优质语句。 场景三:作文综合评价评分 作文的内容往往涉及特定的文化背景和历史知识,这对于评价者来说是一个挑战。GLM4Plus 模型凭借其丰富的知识库,能够精准把握这些文化细节,确保评价的准确性。逻辑结构和论证分析是评价作文不可或缺的部分。GLM4Plus 模型能够识别并评估论点的合理性,确保作文的逻辑性和论证的有效性得到恰当的评价。具有以下特点: 1. 综合评价能力:大型模型可以综合考虑文章的内容、结构、语言等多个维度,给出全面而细致的评价。 2. 标准化的评分系统:模型可以根据预定的评分标准,如内容完整性、逻辑性、语言准确性等,对作文进行客观评分。 3. 个性化反馈:模型能够根据学生的写作特点和水平提供个性化的评价和建议,帮助学生有针对性地提高。 4. 一致性保证:与人工评分相比,模型评分可以保证评价标准的一致性,减少主观差异带来的评分不公。 此外,如果担心 AI 削弱孩子思考力,正确的用法能助力拓展思维边界。比如将任务改成让孩子提交一份他和 AI 共同完成作文的聊天记录,作文需要由 AI 来写,孩子要对 AI 的作文进行点评批改、让 AI 迭代出更好地文章。对话记录里孩子能否说清楚 AI 写的作文哪里好哪里不好、要怎么改(孩子可能还得给 AI 做示范),才是评价的关注点。
2025-02-06
怎么开始学习AI使用课程?
以下是关于如何开始学习 AI 使用课程的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 微软相关课程: 如需了解云计算中的人工智能主题,可以考虑参加《》课程。 人工智能的商业应用案例方面,可以学习《》(和欧洲工商管理学院 INSEAD 共同开发)。 经典机器学习可参考《》。 使用 Azure 认知服务(Azure Cognitive Services)来创建实用的人工智能应用,可从《》等微软课程开始学习。
2025-02-06
LSTM是什么?
长短期记忆(LSTM)是一种用于解决递归神经网络中梯度消失问题的方法,于 1997 年被提出。 LSTM 单元使用具有自连接的线性单元,其恒定权重为 1.0。这使得流入该自循环单元的值(前向传递)或梯度(后向传递)可以无限期地保留,以便在最需要的时间可以准确地检索该值或梯度。这种自我循环单元,即存储单元,提供了一种可以存储过去数十个时间步长的信息的存储器。这对于许多任务来说非常强大,例如对于文本数据,LSTM 单元可以存储前一段中包含的信息并将该信息应用于当前段落中的句子。 此外,深度网络中的一个常见问题是“梯度消失”问题,即梯度逐层变得越来越小,直至太小而无法影响最深层。借助 LSTM 中的存储单元,我们拥有连续的梯度流(误差保持其值),从而消除了梯度消失问题,并能够从数百个时间步长的序列中进行学习。 另一个门通过将存储单元的输出乘以 0(无输出)和 1(保留输出)之间的数字来操纵存储单元的输出。如果多个记忆相互竞争,这个门可能会很有用。 LSTM 单元的连接乍一看可能有点复杂,您需要一些时间来理解它。然而,如果将所有部分隔离开来,会发现该结构本质上与普通循环神经网络相同,其中输入和循环权重流向所有门,而这些门又反过来连接到自循环存储单元。 为了更深入地研究 LSTM 并理解整个架构,建议阅读。
2024-08-19