Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

对抗生成网络是什么

Answer

对抗生成网络(Generative Adversarial Network,GAN)是一种深度学习模型,由两个神经网络构成,分别是生成器和判别器。

生成器负责生成虚拟数据,判别器负责判断这些数据是真实数据还是虚拟数据。两个网络不断反复训练和竞争,从而不断提高生成器生成真实数据的能力,直到生成的数据与真实数据无法区分。

GAN 可以用于图像、声音、文本等各种类型的数据生成和合成,被广泛应用于计算机视觉、自然语言处理等领域。但它也存在一些问题,比如控制难度大、时序建模较弱。同时,与其他生成模型如 VAE(变分自编码器)、Transformer 自注意力机制相比,各有优缺点。VAE 可以根据条件输入控制生成过程,但生成质量较 GAN 略低;Transformer 自注意力机制对长视频建模更好,时序建模能力强,可实现细粒度语义控制,但计算量大。

在当前的 AI 视频生成中,GAN 生成视频速度快,但存在生成质量和分辨率较低、长度短、控制能力弱等缺点,仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI视频生成(上) | 技术发展概况和应用场景思考

代表产品:RunwayGAN生成对抗网络:是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。可以生成视觉逼真度高的视频,但控制难度大、时序建模较弱。VAE变分自编码器:它是一种可以学习数据分布的网络结构。就像把视频文件压缩成较小的文件再解压一样,它可以重建视频数据。VAE可以根据条件输入控制生成过程,但质量较GAN略低。GAN、VAE生成视频速度快,缺点是生成质量和分辨率较低,长度短,控制能力弱。Transformer自注意力机制:通过学习视频帧之间的关系,理解视频的长期时间变化和动作过程,这种方式对长视频建模更好,时序建模能力强,可实现细粒度语义控制,缺点是计算量大[heading2]1.4 AI视频生成当前面临的问题[content]当前仍面临生成时间长、视频质量不稳定,生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。解决方案有:使用渐进生成、增强时序一致性的模型等方法解决。上述的补帧算法、视频完善策略也可在一定程度上缓解问题。[heading2]二.应用场景思考

4. 图像生成

课程地址:https://www.cloudskillsboost.google/course_templates/541视频学习:https://youtu.be/J0AuVBxzui0这是Google的一个AI入门课程,介绍扩散模型,这是一类在图像生成领域最近显示出潜力的机器学习模型。扩散模型的灵感来源于物理学,特别是热力学。在过去的几年中,扩散模型在研究和工业中都变得很受欢迎。扩散模型是Google Cloud上许多最先进的图像生成模型和工具的基础。本课程将向你介绍扩散模型背后的理论,以及如何在Vertex AI上训练和部署它们。[heading2]视频字幕[content]大家好,我叫Kyle Steckler,我是Google Cloud高级解决方案实验室团队的一名机器学习工程师,在本次演讲中我们将深入介绍图像生成[heading1]扩散模型在图像生成领域的应用[content]图像生成已经存在很长时间了,它一直是一个极具吸引力的研究领域。尽管您可能已经听说过许多有趣的方法,这些方法已经被用于图像生成,但随着时间的推移,一些更有前途的方法逐渐脱颖而出。[heading2]变分自动编码器[content]例如,变分自动编码器(Variational Autoencoders,VAEs)将图像编码为压缩的形式,然后在学习数据本身的分布时解码回原始大小。[heading2]生成对抗模型(GAN)[content]生成对抗模型(Generative Adversarial Networks,GANs)也非常流行。这些模型极为引人注目,它们让两个神经网络相互对抗。一个神经网络(生成器)负责创建图像,另一个神经网络(鉴别器)预测图像是真实的还是伪造的。随着时间的推移,鉴别器变得越来越擅长区分真伪,而生成器则越来越擅长创建逼真的图像。您可能已经听说过“DeepFake”这个词,它便是基于这一技术。[heading2]自回归模型[content]最后是自回归模型。这些模型通过将图像视为一系列像素来生成图像。自回归模型的现代方法实际上从大型语言模型(如GPT)如何处理文本中汲取了很多灵感。

学习笔记:AI for everyone吴恩达

非监督学习:非监督学习最著名的就是聚类。非监督学习并不需要准确告诉AI系统需要输出什么。只是需要给出大量数据,然后让AI从中找出有趣的信息。迁移学习:任务A中学习的内容,可以用于帮助完成任务B。许多计算机视觉实际是使用了迁移学习。强化学习:当输出好时强化。输出差时惩罚。使用“奖励信号”来告诉AI什么时候做的好或差,AI会自动学习最大化奖励。做得好时,给一个正数权重,做得差时,给一个负数权重。缺点是需要大量的数据。生成对抗网络:生成对抗网络是一种深度学习模型,由两个神经网络构成:生成器和判别器。生成器负责生成虚拟数据,判别器则负责判断这些数据是真实数据还是虚拟数据。两个网络不断反复训练和竞争,从而不断提高生成器生成真实数据的能力,直到生成的数据与真实数据无法区分。GAN可以用于图像、声音、文本等各种类型的数据生成和合成,被广泛应用于计算机视觉、自然语言处理等领域。知识图谱:在搜索时,展示知识图谱。这些信息是从知识图谱中产生的,意味着列出这些人和与其相关的关键信息,如生日,年纪等。酒店知识图谱可能包含大量信息,让人们在查地图时,可以快速找到准确信息。

Others are asking
如何学习对抗神经网络
以下是关于学习对抗神经网络的相关内容: 图像生成方面:Google 有一个 AI 入门课程,介绍扩散模型,课程地址为 https://www.cloudskillsboost.google/course_templates/541,相关视频学习可参考 https://youtu.be/J0AuVBxzui0 。扩散模型是 Google Cloud 上许多先进图像生成模型和工具的基础,课程会介绍其背后理论及在 Vertex AI 上的训练和部署。图像生成领域有多种方法,如变分自动编码器将图像编码为压缩形式再解码回原始大小;生成对抗模型(GAN)让两个神经网络相互对抗,一个生成图像,一个鉴别真伪;自回归模型将图像视为一系列像素来生成。 主要人工智能技术概览:生成对抗网络是一种深度学习模型,由生成器和判别器构成。生成器生成虚拟数据,判别器判断数据真假,二者不断训练竞争以提高生成器生成真实数据的能力,广泛应用于图像、声音、文本等领域。 进化史:生成对抗网络(GAN)是深度学习领域的重要里程碑,诞生于 2014 年,可帮助神经网络用更少数据学习,生成更多合成图像,用于识别和创建更好的神经网络。GAN 由两个神经网络玩猫捉老鼠的游戏,一个创造假图像,一个判断真假。它有助于创建图像和现实世界的软件模拟。
2025-01-26
GAN生成对抗网络
GAN 生成对抗网络是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。它具有以下特点和应用: 特点: 能够生成视觉逼真度高的视频。 控制难度大、时序建模较弱。 与 VAE 变分自编码器、Transformer 自注意力机制等相比,GAN 生成视频速度快,但生成质量和分辨率较低,长度短,控制能力弱。 应用: 可以帮助神经网络用更少的数据进行学习,生成更多的合成图像。 有助于创建图像,还可以创建现实世界的软件模拟,如 Nvidia 大量采用这种技术来增强其现实模拟系统。 同时,当前端到端视频生成仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。针对这些问题,可使用渐进生成、增强时序一致性的模型等方法,以及上述的补帧算法、视频完善策略来在一定程度上缓解。
2024-12-18
生成对抗网络 GAN
生成对抗网络(GAN)是一种在 AI 领域非常重要的模型。 GAN 是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。其中一个神经网络(生成器)负责创建图像,另一个神经网络(鉴别器)预测图像是真实的还是伪造的。随着时间的推移,鉴别器变得越来越擅长区分真伪,而生成器则越来越擅长创建逼真的图像。 GAN 在图像生成领域极为引人注目,例如您可能已经听说过的“DeepFake”便是基于这一技术。同时,GAN 也可用于生成视觉逼真度高的视频,但存在控制难度大、时序建模较弱的问题。此外,GAN 生成视频速度快,但生成质量和分辨率较低,长度短,控制能力弱。 GAN 诞生于 2014 年,是 Deep Learning 领域的重要里程碑,它可以帮助神经网络用更少的数据进行学习,生成更多的合成图像,然后用来识别和创建更好的神经网络。GAN 的创造者 Ian Goodfellow 是在蒙特利尔的一个酒吧里想出这个主意的,它由两个神经网络玩着猫捉老鼠的游戏,一个创造出看起来像真实图像的假图像,而另一个则决定它们是否是真的。GAN 不仅有助于创建图像,还可以创建现实世界的软件模拟,Nvidia 就大量采用这种技术来增强他的现实模拟系统。 相关的学习资源包括: 课程地址:https://www.cloudskillsboost.google/course_templates/541 视频学习:https://youtu.be/J0AuVBxzui0
2024-12-11
能用简单易懂的方法给我讲一下生成对抗网络GAN的原理和工作流程吗
好的,生成对抗网络(GAN)是一种深度学习模型,由两个神经网络构成:生成器和判别器。生成器的任务是创建新的、看起来像真实数据的样本,而判别器的任务是区分生成的样本和真实的数据样本。这两个网络相互对抗,生成器试图欺骗判别器,而判别器试图不被欺骗。这个过程导致生成器逐渐学会生成越来越逼真的样本。
2024-04-22
推荐可以生成3D模型的ai软件
以下是一些可以生成 3D 模型的 AI 软件: 1. CADtools 12:这是 Adobe Illustrator 的插件,为其添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:Autodesk 开发的云端 3D CAD/CAM 软件,集成了 AI 功能,能创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 主流 CAD 软件中的生成设计工具:如 Autodesk 系列、SolidWorks 等,提供基于 AI 的生成设计工具,可根据输入的设计目标和约束条件自动产生多种设计方案。 对于图片生成 3D 建模的工具: 1. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。 2. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,适用于游戏领域的模型生成。 4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域。 5. VoxCraft:免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供多种功能。 此外,还有一些从文本生成 3D 的工具: 1. CSM_ai:能将文本、图像或草图转换为 3D 素材,可直接应用于游戏中,无需后期处理。体验地址:https://cube.csm.ai 2. Move AI 推出的 Move API:从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据。网址:https://move.ai/api 3. ComfyUI 3D Pack:快速将图片转换为 3D 模型,支持多角度查看,使用 3D 高斯扩散技术提升模型质量,支持多种格式导出,集成先进 3D 处理算法。网址:https://github.com/MrForExample/ComfyUI3DPack/tree/main 4. Medivis 的 SurgicalAR 手术应用:将 2D 医疗图像转化为 3D 互动视觉,提高手术精度,支持 3D 模型的放大、缩小、旋转,精确手术计划。网址:https://t.co/3tUvxB0L4I
2025-02-06
哪些工具可以生成UI设计图
以下工具可以生成 UI 设计图: 1. Midjourney: 直播礼物风格图标:关键词为喂图+(Gift icon),cartoon style,solid color background luminous effect,3d–iw 1–v 5–q 2,卡通风格,纯色背景发光效果,3d。可在素材网站上找喜欢的 icons 风格喂图给机器人,并加上关键词,如(beer icon)啤酒图标、(Headphone icon)耳机图标等。 主题应用 icons:关键词为 icon design,light texture,glow,Dribbble,3D,frostedglass effect,3d,ui,ux,–upbeta–q 2–v 4。 B 端图标:关键词为喂图+A data icon,blue gradient frosted glass,frostedglass building,white transparent technology sensewhite city building scene,data line link,chip,OCrenderer,big data,industrial machinery,high detailight gray background with simple linear details,studio lighting,3d,c4d,pure white background,8k。 音乐软件 UI 设计:关键词为 music app ui design,ux design,white,light,bright,data,modern,smooth,behance,dribbble,–upbeta–q 2–v 4。 生成 UI 界面的指令:如果没想好输入哪些指令,可以先用指令模板「ui design forapplication,mobile app,iPhone,iOS,Apple Design Award,screenshot,single screen,high resolution,dribbble」,把里面的「类型」替换成想设计产品的关键词描述(英文),就能生成想要的 UI 设计图。例如出行类关键词为「距离、车费、费用结算、优惠金额、地图」等;餐饮类关键词为「介绍咖啡的特色、口味、咖啡豆产地、价格」等;运动类关键词为「卡路里、步数、距离、某种运动」等描述。 需要注意的是,Midjourney 在 UI 设计方面可能存在不规范和文字混乱的情况,只能作为风格参考。目前网上已有很多 AI 生成的 UI 设计软件开始内测。
2025-02-06
作为一名中学教师,怎么通过Ai工具将教材内容生成教案和ppt
以下是为您提供的通过 AI 工具将教材内容生成教案和 PPT 的方法: 1. 使用 COZE 应用 访问地址:https://www.coze.cn/s/iDsBwYLF/ 首页说明:启动页面有相关介绍。 生成教案:进入设计教案页面,等待执行完成后即可获得教案,教案是其他功能的基础。 趣味课堂:根据课文内容设计课堂问答卡和教学活动,采用寓教于乐的方式激发孩子学习兴趣。 课后作业:基于教学大纲和课本重点内容设计题目,包括生字词运用、阅读理解、写作等。 教案 PPT:PPT 内容基于生成的教学大纲,可能需要手动进行少许内容修正。若对大纲内容不满意,可重新生成大纲和 PPT。首先复制大纲内容,打开 kimi,选择 PPT;然后复制教案,在对话框粘贴,KIMI 会优化大纲,点击进去后选择喜欢的模版生成。但需注意,PPT 预览与下载可能需要充值。 2. 参考教师使用 AI 小技巧 减轻排版工作的压力。 生成打底的内容,减轻人写内容的工作。 文章生成 PPT 时,让 AI 帮忙摘要内容,生成大纲列表;主题生成 PPT 时,让 AI 根据主题扩充成大纲列表乃至具体内容。 在特定场景下可直接使用,如学生快速为小组展示配 PPT。 一些 PPT 生成工具(网站): https://wenku.baidu.com :百度文库,付费,质量好。 https://zhiwen.xfyun.cn/ :讯飞智文,免费,引导好。 http://Chatppt.com :付费,自动化程度高。 http://Mindshow.fun :支持 Markdown 导入。 http://Gamma.app :支持 Markdown 导入。 http://Tome.app :AI 配图效果好。 剪映:图文成片,只需提供文案,自动配图配音。
2025-02-06
试过了些代码,还是缺失一些生成图像的工具。
如果您在生成图像方面缺少工具,以下为您提供一些相关信息: 对于风格调音器:生成一个代码后,您可以使用 Parameter 添加到提示中。了解有关参数的更多信息可参考:https://docs.midjourney.com/parameterlist 。复制您的提示和参数,在页面底部找到您的自定义代码,单击 Copy 按钮复制原始提示和新生成的 style<code>参数。您可以与朋友分享您的 Style Tuner 页面并生成新代码,而无需使用任何额外的 GPU 分钟。返回不和谐,使用该 /imagine 命令并将复制的提示和 style<code>参数粘贴到 prompt 字段中,即可生成您的图像。您还可以使用其他 Midjourney 工具(例如 Upscale、Pan、ZoomOut、Remix 或 VaryRegion)进一步增强图像。 对于 Wojak memecoze 复刻版本:先写一个阴阳怪气的 prompt,原作里面就是把用户输入的职业、人物或者概念去尽量解构,用讽刺风趣的 meme 来解读。生成图片时没有用图像流里面的工具,而是用工作流,调用插件来实现。例如用 ByteArtist 插件里面的 ImageToolPro 工具,将 model_type 选 2,就可以根据用户图片风格进行生成。输入一个参考丑图,比如从 glif 官网别人的作品里面选一个 10241024 的老大爷,将其 url 输入给 image_url。 对于 ComfyUI BrushNet:通俗易懂地说,这个过程有点像小时候玩的连点成图游戏。掩码就像是一张有洞的纸覆盖在图片上,电脑程序通过这些洞了解哪些部分需要修复。编码器是电脑的大脑,它把需要修复的图片转换成电脑能理解和处理的信息。噪声潜在空间为了让修复的部分不那么单调,程序会加入一些随机性,这样修复出来的图片看起来更自然。BrushNet 和冻结的 UNet(Frozen UNet,值预训练好的固定不变的)是处理图片的工具,就像画家的画笔和调色板,帮助电脑细致地完成修复工作。程序会尝试去除不需要的噪声,并最终创建出看起来很真实的图片部分。最后,程序会用一种特殊的技巧,将新生成的图片和原始图片融合在一起。
2025-02-06
请给我生成一份ai学习方案
以下是一份基于李宏毅教授的《生成式 AI 导论 2024》的 AI 学习方案: 一、课程介绍 这是台湾大学李宏毅教授的生成式 AI 课程,主要涵盖生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。 二、学习目标 通过学习本课程,您将掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,并了解生成式 AI 的发展现状和未来趋势。 三、学习内容 1. 什么是生成式 AI 生成式 AI 的定义和分类 生成式 AI 与判别式 AI 的区别 生成式 AI 的应用领域 2. 生成式模型 生成式模型的基本结构和训练方法 生成式模型的评估指标 常见的生成式模型及其优缺点 3. 生成式对话 生成式对话的基本概念和应用场景 生成式对话系统的架构和关键技术 基于生成式模型的对话生成方法 4. 预训练语言模型 预训练语言模型的发展历程和关键技术 预训练语言模型的优缺点 预训练语言模型在生成式 AI 中的应用 5. 生成式 AI 的挑战与展望 生成式 AI 面临的挑战和解决方法 生成式 AI 的未来发展趋势和研究方向 四、学习资源 1. 教材:《生成式 AI 导论 2024》,李宏毅 2. 参考书籍:《深度学习》,伊恩·古德费洛等 3. 在线课程:李宏毅的生成式 AI 课程 4. 开源项目:OpenAI GPT3、字节跳动的云雀等 五、学习方法 1. 认真学习教材和参考书籍,理解基本概念和原理。 2. 观看在线课程,跟随李宏毅教授的讲解深入学习。 3. 参与开源项目,实践所学知识,提高实际操作能力。 4. 结合课程中的案例和实践项目,加深对知识的理解和应用。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8 课程目录: 1. 第 0 講:課程說明(2024 年 2 月 24 日) 2. 第 1 講:生成式 AI 是什麼?(2024 年 2 月 24 日) 3. 第 2 講:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」(2024 年 3 月 3 日) 4. 第 3 講:訓練不了人工智慧?你可以訓練你自己—神奇咒語與提供更多資訊(2024 年 3 月 3 日) 5. 第 4 講:訓練不了人工智慧?你可以訓練你自己—拆解問題與使用工具(2024 年 3 月 10 日) 6. 待更新…… 第 0 讲:课程说明 1. 知道: 有能力自己开发 何时需要自己开发 何时可以用现成的人工智能 2. 目标: 了解生成式 AI 背后的原理和更多可能性,作为您成为魔术师的开始 体验用生成式 AI 打造应用 体验训练自己的生成式 AI 模型 负面体验 花时间:大模型是以周为单位来训练 结果不可以控制:养花养小动物 3. 影响模型能力的指标很多,但是常规会看参数的量级来评估,量级指数级增长,FOMO,这就是的立场来源 2019 年 GPT2.0 15b 参数 2024 年 GPT3.5 70b 参数
2025-02-06
短视频生成
以下是关于短视频生成的相关信息: 使用video参数创建短视频: 适用范围:仅适用于图像网格,不适用于图像放大。 可搭配的模型版本:版本为 1、2、3、test 和 testp。 示例:Vibrant California Poppies、Botanical Sketch of Fanciful Ferns。 获取视频链接的方法: 1. 添加video 到提示词结尾。 2. 等任务结束后点击表情符号。 3. 选择✉️emoji。 4. 会在私信中收到视频链接。 5. 单击链接在浏览器中查看视频,右键单击或长按下载视频。需注意视频处理时间和存储空间。 使用方法:添加video 到提示词结尾。 腾讯运营利用 ChatGPT 生成短视频:通过 ChatGPT 生成文案,将文案复制到支持 AI 文字转视频的工具内,如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类工具让视频制作更轻松上手。 根据视频脚本生成短视频的工具: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架。 2. PixVerse AI:在线 AI 视频生成工具,支持多模态输入转化为视频。 3. Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 4. VEED.IO:提供 AI 图像和脚本生成器,帮助从图像制作视频并规划内容。 5. Runway:将文本转化为风格化视频内容,适用于多种场景。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 这些工具各有特点,适用于不同场景和需求,能帮助不同人群快速生成吸引人的视频内容。但内容由 AI 大模型生成,请仔细甄别。
2025-02-06
什么是深度神经网络
深度神经网络是机器学习文献中的一类模型,受到生物神经网络的启发。一般来说,深度神经网络可分为以下几类: 1. 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 2. 循环网络:在其连接图中有定向循环,可能具有复杂动态,训练较难,但更具生物真实性。 深度神经网络具有以下特点和应用: 1. 可以计算一系列改变样本相似性的变换,几乎能应用于任何从输入到输出空间复杂映射的机器学习问题。 2. 能够用于模拟大脑工作方式、了解并行计算风格以及解决实际问题。 在其发展过程中,如感知机的出现推动了机器学习的问世,展示了其对简单形状分类的学习能力。神经网络本质上是多层感知机,早期只有输出层,而典型应用如分辨手写数字。 同时,在深度神经网络的研究中,还涉及到如深度玻尔兹曼机、受限玻尔兹曼机、深度信念网络等相关内容。但使用反向传播等方法存在需要有标签的训练数据、学习时间不理想、可能陷入局部最小等问题。
2025-02-03
网络上有关于AI知识的授课,请问标价一般在多少范围内合适
网络上关于 AI 知识的授课,比如“野菩萨”的课程,其内容丰富多样,包括: 预习周课程:涵盖 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:包含 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 该课程标价情况如下: 冠军奖励:4980 课程一份。 亚军奖励:3980 课程一份。 季军奖励:1980 课程一份。 入围奖励:598 野神殿门票一张。 同时,如果想要免费获得这门课程,可以参与 video battle,每期的评委野菩萨老师都非常严格,需要寓意深度审美并存。您可以扫码添加菩萨老师助理,了解更多课程信息。
2025-01-31
有用来做网络游戏研发和运营的全套AI工具吗?
目前游戏领域还没有涵盖整个制作过程(包括代码、资产生成、纹理、音频等)的全套生成式人工智能工具,也没有能与流行的游戏引擎(如虚幻和 Unity)紧密结合使用、专为适应典型的游戏生产流程而设计的一体化平台。但有一些相关的工具和平台在不同方面发挥作用,例如: 生成可以互动的角色方面:有很多初创公司在研究,如 Charisma.ai、Convai.com、Inworld.ai 等平台,它们可以为具有情感和自主权的完全渲染的 3D 角色提供动力,并提供工具让创作者给角色设定目标。 语音生成方面:Coqui Studio(https://coqui.ai)、Bark(https://github.com/sunoai/bark)、Replica Studios(https://replicastudios.com)等。 语音识别方面:OpenAI Whisper(https://huggingface.co/openai/whisperbase)、Facebook Wav2Vec2(https://huggingface.co/facebook/wav2vec2largexlsr53)。 对话模型方面:ChatGPT(https://chat.openai.com)、HuggingChat(https://huggingface.co/chat)。 故事讲述模型方面:MPT7BStoryWriter65k+(https://huggingface.co/mosaicml/mpt7bstorywriter)、Claude 100k(https://www.anthropic.com/index/100kcontextwindows)、GTP4 32k(https://platform.openai.com/docs/models/overview)。 游戏设计方面:Ludo.ai(https://ludo.ai)。 搜索引擎方面:Haddock(https://www.haddock.ai)。 AI NPC 方面:Inworld(https://inworld.ai)。
2025-01-23
想写网络小说如何找到合适的AI工具
如果您想写网络小说并找到合适的 AI 工具,以下是一些建议和相关信息: 将小说制作成视频的流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 相关工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。 网址:https://github.com/StabilityAI 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。 网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。 网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址:https://www.aihub.cn/tools/video/gushiai/ 关于用 AI 写出更好文字的方法: 1. 通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本,从而得到想要的相似样本。直接点出这种东西常常出现在什么地方,是什么。比如,要写的小说可能是“充满张力的女性复仇文,可能会出现在晋江文学城或者起点中文网的古代言情分类中”。 2. 对于短剧剧本创作这类困难任务,可以让模型写一种特殊格式的网络小说,剩下的尽量显式地描述想要的东西的特征。 3. 往 prompt 里面塞例子,这是一个暴力但是管用且流行的办法。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-22
神经网络相关书籍推荐
以下是为您推荐的神经网络相关书籍: 1. 《这就是 ChatGPT》:作者被称为“在世的最聪明的人”,研究神经网络几十年,创作了 Mathematica、Wolfram 等备受推崇的软件。该书的导读序是美团技术学院院长刘江老师回顾了整个 AI 技术发展的历史,对于了解 AI、大语言模型计算路线的发展,起到提纲挈领的作用。 2. 关于神经网络信念网络方面的研究文献: Gail A.Carpenter and Stephen Grossberg.1988.The ART of Adaptive Pattern Recognition by a SelfOrganizing Neural Network.Computer 21,3,7788. H.Bourlard and Y.Kamp.1988.Autoassociation by multilayer perceptrons and singular value decomposition.Biol.Cybern.59,45,291294. P.Baldi and K.Hornik.1989.Neural networks and principal component analysis:learning from examples without local minima.Neural Netw.2,1,5358. Hinton,G.E.&Zemel,R.S.,Autoencoders,Minimum Description Length and Helmholtz Free Energy.,in Jack D.Cowan;Gerald Tesauro&Joshua Alspector,ed.,‘NIPS’,Morgan Kaufmann,,pp.310. Ackley,D.H.,Hinton,G.E.,&Sejnowski,T.J.,147169. LeCun,Y.,Chopra,S.,Hadsell,R.,Ranzato,M.,&Huang,F..A tutorial on energybased learning.Predicting structured data,1,0. Neal,R.M.,71113. Hinton,G.E.,Dayan,P.,Frey,B.J.,&Neal,R.M.,11581161. 此外,您还可以参考“三本神经科学书籍”,原文地址:https://web.okjike.com/originalPost/64f2b8ff0c915376a20c5d61 作者:
2025-01-14