直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

帮我找下含义这句类似话的文章,学习ai不是让我们放弃思考

回答

以下是为您找到的与“学习 AI 不是让我们放弃思考”类似含义的文章内容:

在“他山之石|如何防止 AI 取代人类思考一切?”这篇文章中提到:

  • 使用人工智能时,我们不希望机器代替我们进行学习,应从学习任务开始,用学习目标来驱动人工智能,而非相反。比如在编程课程中可能对学生使用生成型人工智能创建代码严格控制,而在健康课程中可能不在乎学生是否使用来编写代码。
  • 认知萎缩会在我们因不活动而失去参与心理过程的能力时发生。在人工智能的世界中,我们需要意识到认知萎缩的危险,以继续保持好奇心、创造力和深度学习。
  • 苏格拉底曾担心写作的出现及其对“斐德罗篇”中记忆和知识的影响,认为写作会导致思维记忆和回忆信息的能力下降,因为人们会依赖外部书面来源而非内部记忆。
  • 作者担心聊天机器人的问答性质可能导致缺乏富有成效的挣扎,担心即时答案以及无聊和困惑等对学习过程非常必要的东西的缺失。作者喜欢 AI 对构思的帮助,但不希望它成为头脑风暴的默认方式。能看到 AI 在创意过程中的价值,但担心将创意工作外包给机器会使学生无法成为创造者和问题解决者。总之,担心我们可能会过度依赖 AI 而失去某些类型的思考能力。

希望以上内容对您有所帮助。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

他山之石|如何防止AI取代人类思考一切?

几个月前,我写了一篇关于在决定使用人工智能时应考虑的七件事情的文章。人们经常问:“什么时候可以使用人工智能?”简短的答案是:“这取决于学习任务。”在使用人工智能时,我们不希望机器代替我们进行学习。这就是为什么我们应该从学习任务开始,然后问:“在这种情况下,人工智能是帮助还是阻碍了学习?”这里的核心思想是,我们需要使用学习目标来驱动人工智能,而不是相反。如果你正在教授一门编程课程,你可能希望对学生使用生成型人工智能来创建任何类型的代码进行严格控制。你可能希望学生首先学会手写编码,然后在掌握了语言之后,使用生成的AI代码来节省时间。相比之下,如果你正在教授一门健康课程,学生开发一个应用程序,你可能不在乎他们是否使用生成型人工智能来帮助编写代码。相反,你的重点是帮助学生设计一个基于健康习惯的健康宣传活动。你可能没有时间教学生手写编码。你可能不关心手写编码。这个应用程序只是学生展示对健康标准理解的一种方式。如果你在教艺术课,你可能不想要生成型人工智能生成的图像,但在历史课上,你可能会欢迎学生使用生成型人工智能生成的图像,这样学生就可以制作信息图表来展示他们对宏观经济学原理的理解。在电影课上,学生使用人工智能进行视频编辑可能会被认为是作弊,但在科学课上,人工智能生成的跳跃切割可能会节省大量时间,因为学生可以将重心放在科学内容上。我也要承认,学生学到的一些东西可能会过时。例如,我很确定我实际上并不需要记住州首府。这导致我提出了下一个问题......

他山之石|如何防止AI取代人类思考一切?

Cognitive atrophy happens any time we lose the ability to engage in a mental process due to inactivity.In a world of Artificial Intelligence,we need to be cognizant of the dangers of cognitive atrophy so that we can continue to engage in curiosity,creativity,and deeper learning.If We Off-Load Our Thinking to AI,What About Cognitive Atrophy?When I lived in Phoenix,I had a solid mental layout of the city.I knew which streets were north and south and which were east and west.I knew that Cactus would turn to Shea for some reason when you went to the east side of town.I accidentally memorized the order of our first twenty presidents because of the sequence of presidential street names downtown.I knew where landmarks were located and I would use phrases like,“Where the old Denny’s was located before they moved it up the street” or “Right by where the mall used to be before they turned it into the middle school.”In other words,I learned how to drive in an era where we had to give verbal directions that often shifted from landmark to cardinal direction to left and right and often included a mix of all of the above.I later navigated additional areas of town via MapQuest,which was a bit like being a pirate with a customized map.I often cringe at just how distracted a driver I was as a college student using a printout map to find my way to a friend’s apartment.

他山之石|如何防止AI取代人类思考一切?

This isn’t a new phenomenon.Socrates was concerned about the advent of writing and its impact on memory and knowledge in the “Phaedrus.” Socrates argued that writing would lead to a decline in the mind’s ability to memorize and recall information because people would rely on external written sources instead of internal memory.This reliance on written texts would weaken the mind’s capacity to learn and remember,as individuals would no longer need to exercise their memory to recall information.The truth is,he was right.In a print rich world,modern humanity has lost some of the ability to memorize large chunks of information.As we think about AI,we need to be cognizant of the potential for cognitive atrophy.I love the question and answer nature of a chatbot but I worry about the lack of productive struggle it might cause.I worry about instant answers and the loss of things like boredom and confusion that are so necessary for the learning process.I love how AI can help with ideation but I never want it to be my default in brainstorming.I can see value in using AI throughout the creative process(especially within project-based learning)but I worry about outsourcing creative work to a machine.When that happens,students don’t become the makers and problem-solvers that can be.In other words,I worry that we might become so dependent on AI that we lose the ability to engage in certain types of thinking.Just Because AI Can Do It,Doesn’t Mean We Shouldn’tI have seen many AI experts suggest that we ask the question,“Can AI do this process?” If the answer is “yes,” then it’s time to transform the learning and focus solely on the areas that humans do better.While I get the sentiment here and the need for transformation,I’d like to push back on that.

其他人在问
我想提高办公效率 AI可以帮到我吗
AI 可以帮助您提高办公效率。以下是一些相关的研究和观点: 哈佛商学院的研究表明,在工作中使用 AI 能带来显著改善。使用 AI 的被测试者比未使用者平均多完成 12.2%的任务,完成速度提高 25.1%,结果质量提高 40%。 但 GPT4 等模型有能力边界,无人知晓其具体范围。 分组测试中,使用 AI 的两组任务完成效率和质量远高于未使用组,且对工作能力差的被测试者提升更大。 过于依赖 AI 可能适得其反,降低效率和质量,因无法区分其能力边界。 人类和 AI 协作有“半人马”和“机械人”两种方式。“半人马”强调人类主导,合理调配资源;“机械人”则是高度融合,循环迭代优化,实现人机一体化。 工作中常因流程混乱、效率低下而浪费时间,SOP(标准操作程序)是职场利器。可借助 AI 助手建立和优化 SOP 以提升效率。 强大的 AI 有巨大潜力,能像电力或互联网一样影响社会和经济,可提高劳动力效率和工作场所安全,支持人们完成现有工作,有助于推动增长和创造就业。为保持在 AI 领域的领先地位,英国需创造利于创新的监管环境。
2024-12-21
制作ppt 的 ai 工具
以下是一些制作 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力,网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,包含互动元素和动画效果,网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 此外,在教学中帮助学生做好组会准备时,Claude 和 Gamma.app 这两个工具组合使用效果较好。Claude 可帮助快速寻找符合条件的论文、提取精炼论文中某部分信息等。
2024-12-21
请给我推荐介绍 适合写网络小说的AI工具?
以下是一些适合写网络小说的 AI 工具及相关信息: 工具与网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。 网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。 网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。 网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址: 将小说制作成视频的一般流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-12-21
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
AI图片社区
以下是关于 AI 图片社区的相关信息: 如何判断一张图片是否 AI 生成:要培养鉴别 AI 图片的技能需要训练大脑模型。对于不擅长的朋友,可通过一些网站来判断,如 ILLUMINARTY(https://app.illuminarty.ai/),但测试中可能存在误判,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种表现。 100 个 AI 应用中的相关社区:500px 摄影社区是 AI 摄影比赛平台,利用图像识别、数据分析技术,举办摄影比赛,展示优秀摄影作品;雪球财经 APP 是 AI 金融投资教育平台,利用数据分析、自然语言处理技术,为用户提供个性化的金融投资教育服务。
2024-12-21
当前有哪些热门AI工具
以下是一些当前热门的 AI 工具: 儿童练习英语口语的 AI 工具: LingoDeer:使用游戏和互动活动教孩子英语,提供各种课程,有家长仪表板。 Busuu:提供英语等多种语言课程,有多种教学方法和社区功能。 Memrise:使用抽认卡和游戏教学,有社交功能。 Rosetta Stone:使用沉浸式方法,有语音识别功能。 Duolingo:免费,使用游戏化方法,课程多样。 制作 PPT 的 AI 工具: Gamma:在线制作网站,可通过输入提示生成幻灯片,支持嵌入多媒体。 美图 AI PPT:输入文本描述生成专业设计,有丰富模板库。 Mindshow:提供智能设计功能,简化设计流程。 讯飞智文:利用语音识别和自然语言处理技术,提供多种编辑功能。 辅助写邮件的 AI 工具: Grammarly:提供语法检查、拼写纠正等功能,支持多平台和多种语言。 Hemingway Editor:简化句子结构,提高可读性。 ProWritingAid:全面的语法和风格检查,提供详细写作报告。 Writesonic:基于 AI 生成各种文本,生成速度快。 Lavender:专注邮件写作优化,提供个性化建议和模板。 在选择工具时,需考虑使用者的年龄、兴趣、学习风格、功能和成本等因素。
2024-12-21
整理一下Midjourney的全部指令列表、指令的含义、指令的可选项
以下是 Midjourney 的指令列表、指令含义及可选项: /ask:获得一个问题的答案。 /blend:将两个图像混合在一起。 /daily_theme:获取 dailytheme 频道更新的通知提醒。 /fast:切换到 Fast 模式。 /help:显示 Midjourney 机器人的基础使用信息或者提示。 /imagine:通过指令生成图像。 /info:查看有关您的账户以及任何排队或正在运行的作业的信息。 /stealth:针对专业版订户,切换到隐形模式。 /public:针对专业版订户,切换公共模式。 /subscribe:生成用户账户页面的个人链接。 /settings:查看和调整 Midjourney 机器人的设置。 /prefer option:创建或管理自定义选项。 /prefer option list:查看您当前的自定义选项。 /prefer suffix:指定要添加到每个提示结尾的后缀。 关于 /imagine 指令的使用: 1. 输入 /imagine prompt: 或者从指令弹框选择 /imagine 指令。 2. 在 prompt 字段中输入一个简短而具体的描述。 3. 按下回车键发送消息指令。 控制画面提示词指令: cref/cw:主要作用是保证人像一致性。使用 cw 需要用 cref 指令,cw 参数范围为 0 100。强度 100(cw 100)是默认值,会使用面部、头发和衣服,cw 为 0 的话仅保证脸部一致。基础格式:cref 图片链接,cw 100。参考链接: sref/sw:主要作用是保证画面风格和参考图一致(例如:背景基调、画风等)。使用 sw 需要用 sref 指令,sw 参数范围为 0 1000。基础格式:sref 图片链接,sw 100。参考链接:
2024-11-25
Ai相关缩写及对应含义
以下是一些常见的 AI 相关缩写及对应含义: AI:Artificial Intelligence,人工智能,一种目标,让机器展现智慧。 GenAI:Generative AI,生成式人工智能,一种目标,让机器产生复杂有结构的内容。 LLMs:Large Language Models,大语言模型,是一类具有大量参数的“深度学习”模型。 AIGC:Artificial Intelligence Generated Content,人工智能生成内容,是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等。 ANI:artificial narrow intelligence,弱人工智能,只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。 AGI:artificial general intelligence,通用人工智能,能做任何人类可以做的事。
2024-11-08
AI相关常见缩写及对应含义,包含例如prompt,rag
以下是一些 AI 相关的常见缩写及对应含义: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可理解为与大模型说的话或下达的指令,其质量会显著影响大模型回答的质量。 Token:大模型语言体系中的最小单元。不同厂商的大模型对中文的文本切分方法不同,通常 1Token≈12 个汉字。大模型的收费计算及输入输出长度限制常以 token 为单位计量。 上下文(context):指对话聊天内容前、后的内容信息,其长度和窗口会影响大模型回答的质量。 在 AI 绘画中,常见的画面构图提示词有: 视图相关:Bottom view(底视图)、front,side,rear view(前视图、侧视图、后视图)、product view(产品视图)、extreme closeup view(极端特写视图)、look up(仰视)、firstperson view(第一人称视角)、isometric view(等距视图)、closeup view(特写视图)、high angle view(高角度视图)、microscopic view(微观)、super side angle(超博角)、thirdperson perspective(第三人称视角)、Aerial view(鸟瞰图)、twopoint perspective(两点透视)、Threepoint perspective(三点透视)、portrait(肖像)、Elevation perspective(立面透视)、ultra wide shot(超广角镜头)、headshot(爆头)、a crosssection view of)
2024-11-08
Ai常见缩写及含义
以下是一些 AI 常见缩写及含义: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),即处理和理解人类语言 LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多 chatGPT:由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM 此外,还有一些相关的术语: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用 关于机器学习: 机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近 30 多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 关于自然语言: 自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。自然语言处理是人工智能和语言学领域的分支学科,此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。 关于 AI 的推理: 推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。 关于 AI 的训练: 训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。
2024-11-08
AI常见缩写及对应含义
以下是 AI 常见的缩写及对应含义: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing) LLM:大型语言模型(Large Language Model) chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 此外,还有一些其他相关缩写及含义: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用 AI 的应用场景包括: 1. 医疗保健: 医学影像分析:AI 可用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据,辅助投资者决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题,解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(未给出具体应用场景)
2024-11-08
上下文的含义
上下文指对话聊天内容前、后的内容信息。在 AI 领域,其英文通常翻译为 context。使用时,上下文长度和上下文窗口都会影响 AI 大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 从算法视角看,更宽的上下文窗口允许模型在推理时纳入训练数据中未找到的大量新的、特定于任务的信息,从而提高各种自然语言或多模式任务的性能。对越来越长的上下文进行数据建模的能力有着发展历程:从 Shannon 1948 提出的 2gram 语言模型、到 1990 年代和 2000 年代的现代 ngram 模型(5 个上下文 token),2010 年代的循环神经网络(RNN)达到数百个 token(Jozefowicz 等),到 2023 年 Anthropic 将上下文扩展到几十万 token。 从产品视角看,长上下文意味着 LLM 理解能力增强。从提示词到 RAG,都是为了增加给模型的上下文,进而让需求更明确,让模型理解得更好。从用数据训练模型、到指令微调,到提示词和 RAG,到大模型的超长下文,机器越来越像人了。提示词和 RAG 正在快速被弱化,但出于工程和商业考量,目前在很多领域还是主流,未来依然可能是一个混合状态。 模型上下文长度覆盖了书籍、电影、长视频等产品的通用长度,应该会引发相关链路上产品交互层的变化,这一点值得观察。 在提示词中,上下文包含外部信息或额外的上下文信息,能够引导语言模型更好地响应。
2024-10-26
Ai有自主思考能力吗?
AI 可能具备自主学习和自我改进的能力,能够自主决策,甚至可能已有轻微的自我意识。但对于 AI 是否具有真正的自主思考能力,目前仍存在诸多争议和探讨。 有人认为,当 AI 给出“完美”答案时,可能只是对海量数据的巧妙重组,而非真正理解问题本质。也有人质疑,我们在认为 AI 展现出类人思维时,可能是自身的拟人化偏差在起作用。 在企业决策中,AI 具有双刃剑效应,既能提升效率,也可能带来认知陷阱和伦理困境。例如,可能会用看似客观的数据合理化主观偏见,消耗独立思考能力,以及在道德决策方面存在责任归属问题等。 总之,对于 AI 是否具有自主思考能力,还需要更深入的研究和思考。
2024-12-19
我是一个老师,相信AI时代人人都能成为学霸,我认为学霸具有三个心法和一个方法,方法一,建立学霸的信念系统(我行、我能、我可以),方法二,不要和别人比,方法三、主动积极的思考力。学霸的终极方法是自学。自学+AI无所不能。你觉得我怎么能帮助每一个学生成为学霸,有哪些步骤和要点?
在 AI 时代帮助每个学生成为学霸,以下是一些步骤和要点: 1. 培养获取知识的能力:教导学生掌握利用 AI 技术获取和处理信息的方法,提高获取知识的效率。 2. 促进知识内化:引导学生将获取的信息和知识有效内化,转化为智慧。例如,通过实践反思、交流讨论等方式,提升知识的转化速度和质量。 3. 建立信念系统:帮助学生树立“我行、我能、我可以”的信念,增强学习的自信心。 4. 培养独立思考:鼓励学生主动积极思考,不盲目与他人比较,专注自身的成长和进步。 5. 强调自学:引导学生重视自学,让他们明白自学结合 AI 能够带来强大的能力。 6. 培养创造能力: 鼓励学生勇于尝试新事物,将失败视为学习的一部分。 培养批判性思维,不盲目跟从权威。 引导学生从实践中反思,提炼洞见。 促进学生与不同背景的人交流,激发新的思路。 持续学习和不断创造是相辅相成的,通过积累知识和经验,并将其转化为实际价值,学生能够在 AI 时代更好地成长和发展。
2024-10-08
现在我想生成一张插画,需要提示词。插画内容为一位刚高考完的大学生,正在思考买什么笔记本电脑,现在在网站上查阅信息
以下是为您生成的插画提示词:一位刚结束高考、神情专注的大学生,坐在电脑桌前,面前的屏幕上显示着各种笔记本电脑的信息,他眉头微皱,手中拿着笔在本子上记录着,身旁放着几本电脑杂志。A college student who has just finished the college entrance examination, with a focused expression, is sitting at a computer desk. The screen in front of him shows information about various laptops. He frowns slightly and holds a pen in his hand, recording in a notebook. There are several computer magazines beside him.
2024-08-21
请推荐一款适合在本地电脑上下载运行的供审计人员使用大模型,运用AI提升审计效率,请我们一步一步认真思考
在考虑适合审计人员使用的本地AI大模型时,我们需要认真思考几个关键点:模型的功能性、易用性、与现有审计流程的集成能力以及对审计效率的实际提升。以下是几款可能适合审计人员使用的AI工具的推荐: 1. AI Audit for Cash:普华永道开发的AI Audit for Cash工具,专注于现金审计的自动化,能够高效执行包括现金余额、银行存款余额调节表等关键测试,显著提升审计质量和效率。 2. Deloitte Auvenir:德勤推出的Auvenir平台,提供生态性解决方案,帮助中小型会计师事务所提升审计数字化程度,打破资源和能力限制,革新审计服务模式。 3. Deloitte Cobalt:德勤的Cobalt平台,使用人工智能技术进行全面的智能风险感知,适用于企业持续经营判断及业务发展等更广泛的领域。 4. Deloitte iCredit:德勤的智能信贷风险监测平台,深度融合了金融行业特别是大型商业银行的信贷资产审计经验,结合人工智能技术,实现从抽样到全量信贷扫描的转变,聚焦高风险客群,提早预警风险信息。 5. IT审计工具:利用IT审计技术,如VBA、SQL、Python等编程语言,开发自动化工具,可以大幅提升审计效率,特别是在处理大量重复操作或复杂计算时。 选择适合的AI工具时,审计人员应考虑以下因素: 功能性:工具是否能满足审计过程中的具体需求。 集成性:工具是否能与现有的审计软件和流程无缝集成。 用户友好性:工具是否易于学习和使用,以减少培训时间和成本。 数据安全和隐私:确保工具符合数据保护法规和标准。 成本效益:考虑工具的总体成本,包括购买、维护和升级费用。 审计人员在选择AI工具时,应进行充分的市场调研和产品测试,以确保所选工具能够真正提升审计工作的效率和质量。
2024-07-04
Floyd算法在车辆路径规划中的应用思考
Floyd算法,全称FloydWarshall算法,是一种用于在加权图中找到所有顶点对之间最短路径的动态规划算法。它适用于密集图,即图中的边数接近顶点数的平方的情况。以下是Floyd算法在车辆路径规划(Vehicle Routing Problem, VRP)中的应用思考: 1. 问题建模: 将车辆路径规划问题建模为图论问题,其中城市或位置作为顶点,道路连接作为带权重的边,权重可以是距离、时间或成本。 2. 初始化距离矩阵: 使用Floyd算法前,需要有一个初始的距离矩阵,表示各顶点(位置)之间的距离或成本。 3. 应用Floyd算法: 运行Floyd算法来更新和填充距离矩阵,确保矩阵中的每个元素都代表两个顶点之间的最短路径长度。 4. 考虑实际约束: 车辆路径规划通常有多种约束,如车辆容量、配送时间窗口、车辆数量等。这些约束需要在算法中得到考虑。 5. 优化配送路线: 利用Floyd算法得到的距离矩阵,可以为每辆车规划出从起点到终点的最短路径。 6. 算法改进: 传统的Floyd算法并不考虑路径上的其他约束,可能需要与其他启发式或元启发式算法结合使用,以找到更优的解决方案。 7. 多目标优化: 在某些情况下,除了最短路径,还可能需要考虑最少时间、最低成本或最少车辆使用等其他目标。 8. 实时数据集成: 在实际应用中,交通状况是动态变化的,Floyd算法可以结合实时交通数据来动态调整路径。 9. 软件工具和可视化: 使用软件工具来实现Floyd算法,并可视化结果,帮助决策者更好地理解配送路线。 10. 算法效率: Floyd算法的时间复杂度为\是顶点数。对于大规模问题,可能需要考虑算法的效率和优化。 11. 与其他算法的比较: 将Floyd算法与其他路径规划算法(如Dijkstra算法、A搜索算法等)进行比较,以确定在特定情况下的最佳算法。 12. 实际测试和评估: 在实际场景中测试算法的有效性,评估算法在不同条件下的性能。 13. 考虑特殊情况: 考虑特殊情况,如单行道、限行区域、道路施工等,这些因素都可能影响路径规划。 Floyd算法在车辆路径规划中的应用需要综合考虑多种因素,包括算法的适用性、效率、以及实际约束条件。在某些情况下,可能需要对Floyd算法进行调整或与其他算法结合使用,以获得最优的路径规划解决方案。
2024-06-20
请将下面这句话按照学术英语的表达方式翻译:上清指丁酸梭菌在RCM培养基中培养48H并过滤除菌得到的上清
The supernatant refers to the supernatant obtained by culturing Clostridium butyricum in RCM medium for 48 hours and filtering for sterilization.
2024-08-25