Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek深度思考的机制和ChatGPT的深度思考有什么不一样

Answer

DeepSeek R1 与 ChatGPT 的深度思考机制存在以下不同:

  1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理模型。而 ChatGPT-4 采用预训练+监督微调(SFT)。
  2. 思考方式:在回答用户问题前,DeepSeek R1 会先进行“自问自答”式的推理思考,从用户初始问题出发,唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。而 ChatGPT 在此方面的表现有所不同。
  3. 应用场景:DeepSeek R1 适用于高难度数学和编程问题,但计算成本更高。日常查询中,ChatGPT 更快、更适合简单咨询。
  4. 优势特点:DeepSeek R1 更加透明,研究细节可复现,权重可下载。
Content generated by AI large model, please carefully verify (powered by aily)

References

非技术人 10 分钟读懂 Deepseek R1|天才模型养成与 AI 超越人类的破晓时刻

就我观察而言,大多数人讨论的DeepSeek,基本指的是它的深度思考版本——DeepSeek R1。DeepSeek R1不同于先前的普通模型(如ChatGPT-4、Claude 3.5 sonnet、豆包、通义等),它与OpenAI现在最先进的模型o1、o3一样,同属于一条技术路线:基于强化学习RL的推理(Reasoning)模型。其标志性表现就是,在回答用户问题前,R1会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种“自问自答”,并非简单的自言自语,而是AI在模拟人类的深度思考。从用户初始问题“先有鸡还是先有蛋”出发,AI唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。这种能力,并非凭空而来。如果把AI比作人类,那么DeepSeek R1的“聪明”,源于其背后独特的“教育方式”。——在许多其他的AI模型还在接受“填鸭式教育”时,DeepSeek R1已经率先进入了“自学成才”的新阶段。

宝玉 日报

AI识别问题,生成JSON:调用天气查询工具,参数=“上海”。程序调用天气API,获取数据后反馈给AI。AI组织语言输出:“今天上海天气晴转小雨,1度,出门带伞,多穿点衣服。”🔗[https://x.com/dotey/status/1888104084835647516](https://x.com/dotey/status/1888104084835647516)3⃣️🧠强化学习如何让大模型学会“思考”?🔍Andrej Karpathy深度解析ChatGPT和DeepSeek R1GPT-4o采用预训练+监督微调(SFT),适用于知识性问答。DeepSeek R1采用强化学习(RL),能自发进行复杂推理,自我回溯、多角度思考,解题过程更完整。📌DeepSeek R1的优势更加透明,研究细节可复现,权重可下载。适用于高难度数学和编程问题,但计算成本更高。日常查询:GPT-4o更快、更适合简单咨询。🔗[https://x.com/dotey/status/1888095733154201674](https://x.com/dotey/status/1888095733154201674)

XiaoHu.AI日报

🔔Xiaohu.AI日报「1月30日」✨✨✨✨✨✨✨✨1⃣️💡ChatGPT悄悄更新了新功能新增“Use more intelligence”(使用更多智能)按钮,点击后变为“Think”可能类似DeepSeek,提供显式推理思考功能🔗[https://x.com/imxiaohu/status/1884963536708972933](https://x.com/imxiaohu/status/1884963536708972933)2⃣️🚨DeepSeek内部数据库泄露超百万条未加密日志泄露,包含用户聊天记录和API密钥该数据库无密码保护,任何人都能访问Wiz研究人员发现后通知DeepSeek,随后数据库被下线🔗[https://x.com/imxiaohu/status/1884959283957338504](https://x.com/imxiaohu/status/1884959283957338504)🔍Wiz团队确认:此次泄露由人为配置错误导致DeepSeek未正确设置访问权限,默认暴露端口无身份验证,任何人可访问数据库详细分析:🔗[https://www.xiaohu.ai/c/xiaohu-ai/deepseek-5988e1](https://www.xiaohu.ai/c/xiaohu-ai/deepseek-5988e1)3⃣️🦙扎克伯格公布Llama 4进展

Others are asking
为什么ai能够“思考”
AI 能够“思考”主要基于以下几个方面: 1. 以 AlphaGo 为例,它在对战围棋传奇李世石时展示了超越简单模式模仿、真正“思考”的能力。在预训练时,它不仅模仿人类专家决策,还会在作答前“停下来思考”,通过模拟多个未来可能的棋局,评估得分并选择最优应对方式。随着推理时间增加,表现逐步提升并超过人类。但将此概念移植到大规模语言模型(LLM)上存在构建价值函数的难点,如在评估文章初稿、制定旅行计划等较为开放领域的打分问题。 2. 人类的思维过程分为快速、直觉的“系统 1”和缓慢、深思熟虑的“系统 2”。研究人员认为,如果有足够大、接近人脑的人工神经网络,就可能实现人脑的“思考”工作。 3. 像 HiDeepSeek 这样的工具,旨在让 AI 像人类交流时那样展示思考过程,通过特别的规则要求 AI 在思考时自然地提出疑问、修正错误等,使 AI 的回答不再是冰冷的结论,而是可跟踪、可理解的思考过程。虽然这种“思维”是模拟的,但有助于更好地理解和使用 AI 。
2025-03-23
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
你如何评价manus和deepseek的事件性?从里程碑的角度来思考!
从里程碑的角度来看,DeepSeek 在处理这个事件时展现出了强大的语言生成和情境构建能力。它能够根据复杂且细致的需求,在思考 8 秒后生成一段富有历史感、情感深度和符合人物性格处境的独白。这段独白不仅考虑到了时间设定、文学修辞的运用,还兼顾了历史事实和人物的心理活动,展现出了较高的智能水平和创作能力。然而,对于 Manus 在这一事件中的作用或表现,由于提供的内容中未提及,无法进行评价。
2025-03-10
青年员工人工智能能力提升的路径与思考
青年员工提升人工智能能力的路径与思考如下: 学习路径:成为基于 Agent 的创造者 结合“一人公司”的愿景,未来的 AI 数字员工会以大语言模型为大脑,串联所有工具。 数字员工(agent)=学历(大模型)+察言观色(观察)+逻辑思维(推理)+执行(SOP)。 创造者的学习要用大模型和 Agent 模式把工具串起来,着重关注创造能落地 AI 的 agent 应用,大模型的开发研究和演进交给学术界和大厂。 Agent 工程(基础版): 梳理流程:梳理工作流程 SOP,并拆解成多个单一「任务」和多个「任务执行流程」。 「任务」工具化:自动化每一个「任务」,形成一系列小工具,让机器能完成每一个单一任务。 建立规划:串联工具,基于 agent 框架让 bot 来规划「任务执行流程」。 迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的 Agent。 数字员工“进化论”:在固化流程和让 AI 自主思考之间需在对 AI 能力基础上作出妥协和平衡。 趋势研究:AI 时代的个人成长路径 第 2 阶段:AI 素养培养与工具掌握 建立拥抱 AI 的心态后,提升 AI 素养,系统学习 AI 相关知识,包括机器学习、自然语言处理等基本概念,以及 AI 在各行业中的应用案例。 上手一些 AI 工具,如 ChatGPT、智能翻译工具、AI 绘图程序等,在日常工作中练习利用 AI 工具完成部分任务,如协助撰写文档、整理数据、生成简单代码等。 熟练驾驭 AI 工具,成为使用者而非旁观者,使用时保持理性,认识到当前 AI 的局限,学会验证输出结果,不盲从。 戴尔因 AI 上演“大逃杀”的启示 对于处于中间位置的执行层,形势紧迫,面临人工智能取代工作职能和向上攀升的机会,需迅速掌握并运用人工智能技术。 为在变革中生存和发展,需关注两方面: 有效应用人工智能技术:迅速掌握生成式人工智能基本概念和潜在影响,重点理解其对工作方式和行业格局的革新;深入了解市场上现有的人工智能产品和工具,并积极应用到实际工作中。 保持持续学习和关注的态度。
2025-03-06
我作为一个主播,有什么软件可以接受到我语音后,它思考给我一个反馈建议,比如话题延伸,增加交谈幽默感等
目前市面上可能没有专门针对您这种需求的单一软件。但是,一些语音识别和智能助手类的应用可能会对您有所帮助。例如,百度的语音识别服务结合一些智能分析工具,可能能够在一定程度上对您的语音进行分析并提供初步的反馈。另外,像一些直播辅助工具,虽然可能不能完全满足您的所有需求,但也可能提供一些相关的提示和建议。不过,这些工具可能需要您根据自己的具体需求进行筛选和试用,以找到最适合您的那一款。
2025-03-04
我想我的ai深度思考,他现在给我都太浅显,输出字符也有限制,给我推荐一个解决办法
以下是一些可能有助于解决您的 AI 深度思考和输出字符限制问题的办法: 1. 对于输出字符限制,如果使用的是 GPT3.5 等模型,可以将汉字数大致换算成 token 数,比如简单算法是一个 token 大概是 0.5 个汉字,或者每个汉字耗费 2 2.5 个 token。例如 1000 字大约是 2000 2500 个 token 左右。 2. 可以使用 OpenAI 的 Tokenizer 工具来计算 token 数,以便更准确地控制输出长度。 3. 在编写用户提示词时,注重写法。例如最简单的方法是模仿特定风格输出标题内容,要用特殊字符区分相关内容,包含示例、凝视者等内容,输出包含标题和正文。还可以用少量样本提示(两个样本),并试运行看结果。 4. 对于提高 AI 深度思考能力,可以参考一些相关的最佳实践资料,深入了解模型处理文本的原理和机制,例如 GPT 系列模型通过使用 tokens 来处理文本,模型能理解这些 tokens 之间的统计关系。
2025-02-25
基于深度学习的商代食器分类研究 明确详细的研究意义
基于深度学习的商代食器分类研究具有多方面的重要意义。首先,它有助于深入了解商代的饮食文化和社会生活。通过对食器的准确分类,可以揭示当时人们的饮食习惯、烹饪方式以及社交礼仪等方面的信息。 其次,为考古学研究提供新的方法和视角。利用深度学习技术能够更高效、更准确地处理和分析大量的商代食器数据,突破传统研究方法的局限。 再者,有助于文物保护和管理。精确的分类有助于制定更有针对性的保护策略,确保这些珍贵的文化遗产得到妥善保存。 最后,促进跨学科研究的发展。将深度学习与考古学相结合,能够吸引更多不同领域的学者参与,推动相关研究的创新和进步。
2025-03-27
深度学习模型架构有哪些
深度学习模型架构主要包括以下几种: 1. Transformer 模型: 由编码器(Encoder)和解码器(Decoder)两大部分组成。 每个部分由多个相同的层堆叠而成,每层包含多头注意力机制(Multihead Attention)和位置全连接前馈网络。 编码器将自然语言转换成向量文本,解码器基于编码器的输出和之前生成的输出逐步生成目标序列。 2. DiT 架构:结合扩散模型和 Transformer 的架构,用于高质量图像生成。 3. 存算一体架构: 是未来 AI 硬件的发展趋势。 运行几百亿个参数的大模型时具有优势,可避免数据搬运。 此外,在端到端算法的时代,有观点认为不应继续使用冯诺依曼架构,且在存算一体的芯片之上,有望诞生全新的算法。在将大模型与私域知识结合方面,有重新训练、微调、RAG、关键词工程、加长 Context 等方法,其中长 Context 和 RAG 被认为较有希望。
2025-03-22
懂编程但是不了解大模型的工程师如何系统的学习深度学习?
对于懂编程但不了解大模型的工程师,系统学习深度学习可以参考以下路径: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程推荐吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 参考相关资源,如 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 运用相关开源工具,如 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为了更好地理解相关技术原理和建立框架,还可以了解以下内容: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。
2025-03-13
帮我完成基于深度学习的草莓目标识别的毕设
很抱歉,目前没有关于基于深度学习的草莓目标识别毕设的具体内容。但我可以为您提供一个大致的指导框架: 首先,您需要收集大量包含草莓的图像数据,并对这些数据进行标注,例如标记出草莓的位置和类别。 然后,选择适合的深度学习模型,如卷积神经网络(CNN),可以考虑使用经典的模型架构如 VGG、ResNet 等,或者根据您的需求进行适当的修改和优化。 在训练模型时,要注意设置合适的超参数,如学习率、迭代次数等,并使用合适的优化算法,如随机梯度下降(SGD)、Adagrad 等。 在模型训练完成后,进行评估和验证,可以使用准确率、召回率、F1 值等指标来衡量模型的性能。 最后,对模型进行优化和改进,以提高识别效果。 希望以上框架对您有所帮助,祝您顺利完成毕业设计!
2025-03-09
我现在需要做我的毕业设计名为“基于深度学习的草莓目标识别系统”,你能告诉我如何制作以及用到这里的哪些ai工具、
对于您的“基于深度学习的草莓目标识别系统”毕业设计,以下是一些制作的步骤和可能用到的 AI 工具: 制作步骤: 1. 数据收集:收集大量包含草莓的图像数据,并对其进行标注,例如标记出草莓的位置和类别。 2. 数据预处理:对收集到的数据进行清洗、增强、裁剪等操作,以提高数据质量和模型的泛化能力。 3. 选择模型架构:可以考虑使用常见的深度学习目标检测模型,如 Faster RCNN、YOLO 等。 4. 训练模型:使用预处理后的数据对选择的模型进行训练。 5. 模型评估:使用测试集对训练好的模型进行评估,如准确率、召回率等指标。 6. 模型优化:根据评估结果对模型进行调整和优化,例如调整超参数、增加数据量、使用更复杂的模型等。 可能用到的 AI 工具: 1. TensorFlow:一个广泛使用的深度学习框架,提供了丰富的模型构建和训练工具。 2. PyTorch:另一个流行的深度学习框架,具有灵活的编程接口和强大的计算能力。 3. OpenCV:用于图像处理和数据预处理。 4. LabelImg:用于图像数据的标注。 希望以上内容对您有所帮助,祝您毕业设计顺利!
2025-03-09
【深度拆解】ChatGPT-4o背后的技术革新:从语言模型到多模态跨越
ChatGPT4o 背后的技术革新具有重要意义。人类的感知多样,仅靠语言描述世界远远不够,多模态理解非常有用,能更全面学习世界、理解人类需求等。2023 年 9 月 GPT4v 发布,将大语言模型竞赛带入多模态模型时代,如 ChatGPT 能看图说话、画图,Google 的 Gemini 支持多种模态,但 OpenAI 常抢先发布。今年 5 月 OpenAI 发布 GPT4o,向智能体方向迈进,其是之前技术的集大成者,通过端到端神经网络混合训练视觉、语音和文本数据,平均音频输入反应时间为 300 毫秒,能感悟人类表达的情绪等。OpenAI 未公开 GPT4o 技术细节,唯一线索来自内部炼丹师的博客 AudioLM。此外,GPT4 是 OpenAI 的多模态工具,在编程任务中表现出色,ChatGPT 是用户友好界面,可与高级语言模型交互。2024 年 5 月 14 日 OpenAI 发布 GPT4o,效率高、价格降低、延迟缩短。9 月 16 日 OpenAI 推出 o1 系列模型,在复杂任务中表现优异,o1mini 适合编码任务,两个模型已在 ChatGPT 中提供,有免费或收费版本。
2025-03-09
chatgpt4.5的使用方法
以下是关于 ChatGPT 4.5 的使用方法: 1. 目前 ChatGPT 官网有 GPT3.5、GPT4 和 ChatGPT 4.5 三个版本。ChatGPT 4.5 发布后引起关注,其可以免费体验,但免费体验次数有限。 2. GPT3.5 为免费版本,拥有账号即可使用,但智能程度不如 ChatGPT 4.5,且无法使用 DALL.E3 等功能和插件。 3. ChatGPT 4.5 的知识更新到 2023 年 10 月,而 ChatGPT 4 更新到 2023 年 12 月。 4. 若想使用更多功能更智能的 ChatGPT 4.5,需要升级到 PLUS 套餐,收费标准为 20 美金一个月。GPT4 还有团队版企业版,但费用更贵,一般推荐使用 PLUS 套餐。 5. 关于注册、安装和订阅的详细步骤,您可以参考相关文章,如作者为 JessieZTalk 的亲测文章(原文链接:https://mp.weixin.qq.com/s/tzCVGrwgeG6Bss83Xmep0g )。
2025-03-28
deepseek与chatgpt的区别
DeepSeek 与 ChatGPT 存在以下区别: 1. 在 App Store 排名方面,DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与技术实力方面,DeepSeek 没有市场部,也没有做任何市场投放,完全依靠技术实力和口碑赢得用户认可。 3. 技术特点上,DeepSeek R1 效果比肩顶尖闭源模型 o1,但价格仅为 o1 的 27 分之一,且开源让行业认知整体拉齐,得到全世界尊重和喜爱。 4. 创新模型 R1 Zero 方面,跳过了监督微调进行训练,且发现模型的思考能力可以自我涌现,具有革命性。 5. 影响方面,DeepSeek R1 的发布引发美国科技界恐慌,Meta 内部对其出色表现感到震惊,其低成本和高性能使得英伟达市场地位受到挑战,导致股价下跌、市值蒸发。 6. 对于未来展望,开源模型的进步将超越闭源模型,顶级模型推理价格急速下降,技术更加普惠平权,AI 编程效率提升、门槛降低,创作能力不断提升,催生更多可消费内容形式。 此外,ChatGPT 采用人们熟悉的聊天框,形成单线程任务,而 flowith 跳出单一聊天框,用画布和节点构建多线程思维流,更适用于深度内容生成,其由资料库、创作画布、内容编辑三部分组成,优势在于可自由调用不同 AI 模型处理不同任务,涵盖文字和图片生成,任务能有机组合形成同频任务流。
2025-03-27
deepseek与chatgpt之间的差别
DeepSeek 与 ChatGPT 存在以下差别: 1. App Store 排名:DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与推广:DeepSeek 没有市场部和市场投放,依靠技术实力和口碑获得认可;而 ChatGPT 可能有不同的推广策略。 3. 性能与成本:DeepSeek R1 效果比肩顶尖闭源模型 o1,价格仅为 o1 的 27 分之一。 4. 开源与创新:DeepSeek R1 开源让行业认知拉齐,得到尊重和喜爱;ChatGPT 可能在开源方面有所不同。 5. 创新模型:DeepSeek R1 的创新模型 R1 Zero 跳过监督微调(SFT)阶段,直接采用强化学习(RL)训练,且发现模型思考能力可自我涌现。 6. 影响:DeepSeek R1 的发布引发美国科技界恐慌,挑战英伟达市场地位;ChatGPT 也有其自身的影响。 此外,游戏科学创始人冯骥称 DeepSeek 具备强大、便宜、开源、免费、联网和本土等六大优势,全面超过现有 AI 大模型。相关报道还指出 DeepSeek R1 在美国 App Store 夺冠,成为开源 AI 领域的领军者。
2025-03-27
chatgpt是什么
ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。它是一种自然语言处理(NLP)工具,能够理解和生成接近人类水平的文本。 目前 ChatGPT 官网有两个版本,分别是 GPT3.5 和 GPT4。GPT3.5 是免费版本,拥有 GPT 账号即可使用,但其智能程度不如 GPT4,且无法使用 DALL.E3(AI 画图功能)、GPTs 商店和高级数据分析等插件。若想使用更多功能更智能的 GPT4,需升级到 PLUS 套餐,收费标准为 20 美金一个月。此外,GPT4 还有团队版和企业版,功能更多,限制更少,但费用也更贵,一般推荐使用 PLUS 套餐。 在注册 ChatGPT 账号之前,建议先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录,可省去很多日后的注册流程。 ChatGPT 的基本概念是从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本,特别是能够从“提示”开始,继续生成“类似于训练内容”的文本。 从 OpenAI 的官网可知,2022 年宣发时称 ChatGPT 是一种模型,而在官网的帮助页面中称其是一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。
2025-03-27
chatgpt
ChatGPT 是一种基于 GPT 架构的人工智能模型,由 OpenAI 开发。 它的工作原理是:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。具体来说,它能够从“提示”开始,继续生成“类似于训练内容”的文本。其神经网络由大量简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(无循环等)。 ChatGPT 在生成文本方面表现出色,结果通常接近人类所产生的。但它也有一些限制,例如在训练(学习)时,其使用的策略可能与大脑不同且效率较低,内部没有“循环”或“重新计算数据”,这限制了其计算能力。 目前 ChatGPT 官网有两个版本,GPT3.5 是免费版,拥有账号即可使用,但智能程度不如 GPT4,且无法使用 DALL.E3 等插件。GPT4 的 PLUS 套餐收费标准为 20 美金一个月,还有团队版和企业版,功能更多、限制更少,但费用更贵,一般推荐使用 PLUS 套餐。 在注册 ChatGPT 账号前,建议先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录,注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。
2025-03-25
什么是ChatGPT
ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。 它是一种自然语言处理(NLP)工具,能够理解和生成接近人类水平的文本。目前 ChatGPT 官网有两个版本,分别是 GPT3.5 和 GPT4。GPT3.5 是免费版本,拥有 GPT 账号即可使用,但智能程度不如 GPT4 高,且无法使用 DALL.E3(AI 画图功能)和 GPTs 商店、高级数据分析等插件。若想使用更多功能更智能的 GPT4,需升级到 PLUS 套餐,收费标准为 20 美金一个月,此外还有团队版和企业版,功能更多、限制更少,但费用更贵,一般推荐使用 PLUS 套餐。 ChatGPT 的基本概念是从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本,特别是能够从“提示”开始,继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由简单元素组成,尽管数量庞大。其基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。但这个过程能产生成功地“类似于”网络、书籍等内容的文本,不仅是连贯的人类语言,而且“说的话”遵循其提示,利用其“读到”的内容。 ChatGPT 实质功能是“单字接龙”,长文由单字接龙的回归所生成。GPT 作为大脑,也就是模型需要通过材料学习不断训练,训练方式不是记忆而是学习“提问和回答的通用规律”,学习后的模型可以实现举一反三。但它不是搜索引擎的升级版,可能会出现“幻觉”,混淆记忆,无法直接查看和更新所学,且高度依赖学习材料,存在缺乏及时性和准确性的缺点。
2025-03-21
DEEPseek 教程
以下是为您整理的关于 DeepSeek 的教程相关信息: 有众多关于 DeepSeek 的学习资料,如《DeepSeek R1本地部署完全手册》.pdf、00 Deepseek 官方提示词.txt、普通人学 AI 指南.pdf、清华大学:DeepSeek 从入门到精通【高清版】.pdf 等。 火山方舟 DeepSeek 申请免费额度及 API 使用方法:包含飞书多维表格调用、Coze 智能体调用、浏览器插件调用等方式。可以使用邀请码 D3H5G9QA,邀请链接为 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA,邀请可拿 3000 万 tokens。 第三期「AI 实训营」手把手学 AI 中,有关于阿里云上 DeepSeek 玩法的教学,课程于 2025.02.25/26 日每晚 20:00 进行,讲师为许键,包括用 DeepSeek 搭建智能体、全网最简单的 DeepSeek 的部署和蒸馏手把手教程等内容,飞书会议链接为 https://vc.feishu.cn/j/254331715 ,共学文档链接为 。
2025-03-30
deepseek
DeepSeek 具有以下特点: 1. 其秘方被认为是硅谷味儿的。将其比喻成“AI 界的拼多多”是偏颇的,早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动,而当时在国内舆论场被描摹成“大模型价格战的发起者”。 2. 如果 V3 是 DeepSeek 的 GPT3 时刻,接下来的发展未知,但它已成为中国最全球化的 AI 公司之一,赢得尊重的秘方也是硅谷味儿的。 3. 华尔街分析师对 DeepSeek 有不同反应,如 Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑,高盛预测其可能改变竞争格局等。 4. 在实际使用体验方面,文字能力在中文场景中表现突出,符合日常写作习惯,但在专业论文总结方面稍弱;数学能力经过优化表现不错,编程能力略逊于 GPT。GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。
2025-03-30
怎么下载deepseek
以下是关于 DeepSeek 的相关信息及下载方式: 论文下载: 下载方式:pc 端鼠标移到文章上面,会有下载链接,手机端类似。 模型下载地址:https://github.com/deepseekai/Janus 活动信息: DeepSeek+阿里云实训营全新升级上线,不用下载,教您稳定调用、开发满血版 DeepSeek 智能体,更多隐藏玩法等您解锁。2 月 20 日周四下午 2 点开始在线直播,可通过参与。 金融行业·大模型挑战赛|用大模型理解金融市场,初赛阶段(2024/12/3 2025/2/10),详情: 。 全新 AI 整活第六期|DeepSeek 小说家,投稿内容:使用 DeepSeek 写一篇以“反转”为主题的 1000 字内短篇小说。投稿地址:通往 AGI 之路 腾讯频道 【deepseek 专区】点击投稿,2 月 16 日晚 8 点截止并现场直播评选。活动详情: 。
2025-03-30
deepseek
DeepSeek 的秘方具有硅谷特色: 早在 2024 年 5 月 DeepSeekV2 发布时,其以多头潜在注意力机制(MLA)架构的创新在硅谷引发小范围轰动,V2 的论文在 AI 研究界被广泛分享和讨论。 当时在国内舆论场,DeepSeek 被描摹成“大模型价格战的发起者”,形成平行时空的感觉。 如果 V3 是 DeepSeek 的 GPT3 时刻,接下来的发展充满未知,但 DeepSeek 已成为中国最全球化的 AI 公司之一,其赢得尊重的秘方也是硅谷味儿的。 华尔街分析师对 DeepSeek 的反应: DeepSeek 展示出媲美领先 AI 产品性能的模型,成本低,在全球主要市场的 App Store 登顶。 Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑,高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 DeepSeek 的实际使用体验: 文字能力在中文场景中突出,符合日常和写作习惯,但在专业论文总结方面稍弱。 数学能力经过优化表现不错,编程能力略逊于 GPT。 GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。 此外,复旦大学 OpenMOSS 发布实时语音交互模型。
2025-03-30
deepseek写论文
以下是关于使用 DeepSeek 写论文的相关信息: 有人使用 DeepSeek 写论文,如 Yvonne。 DeepSeek 在写文方面全面领先,但长文可能会太发散,文风用力过猛,可能导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成。 控制创作字数方面,可用 O1 模型对 AI 创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。
2025-03-30
deepseek
DeepSeek 具有以下特点: 1. 其秘方被认为是硅谷味儿的。将其比喻成“AI 界的拼多多”是偏颇的,早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动,而在国内舆论场被描摹成“大模型价格战的发起者”。 2. 如果 V3 是 DeepSeek 的 GPT3 时刻,接下来的发展充满未知,但它已成为中国最全球化的 AI 公司之一,赢得尊重的秘方也是硅谷味儿的。 3. 华尔街分析师对 DeepSeek 有不同反应,其展示出媲美领先 AI 产品性能的模型,成本低,在全球主要市场的 App Store 登顶,但也有不同观点。 4. 在实际使用体验方面,文字能力在中文场景中表现突出,数学能力经过优化不错,编程能力略逊于 GPT。GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。 5. 复旦大学 OpenMOSS 发布实时语音交互模型。
2025-03-30