Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Prompts提示词有哪些写作框架?

Answer

以下是一些常见的 Prompts 提示词写作框架:

  1. 情境(Situation) - 任务(Task) - 行动(Action) - 结果(Result):先描述所处的情境,明确要完成的任务,阐述采取的行动,最后说明期望得到的结果。
  2. 假设情景:鼓励探讨假设性场景,例如“假设全球变暖持续恶化,我们需要采取哪些措施应对?”
  3. 数据:鼓励使用统计数据或数据支持主张,比如“在关于电动汽车的文章中提供销售数据和环境影响数据。”
  4. 个性化:根据用户偏好或特点要求个性化,像“请根据用户对喜剧电影的喜好推荐几部好看的电影。”
  5. 语气:指定所需语气,如正式、随意、信息性、说服性,例如“请用正式语气编写一篇关于气候变化的文章。”
  6. 格式:定义格式或结构,如论文、要点、大纲、对话,比如“请为我提供一个关于健康饮食的要点清单。”
  7. 限制:指定约束条件,如字数或字符数限制,例如“请提供一个关于太阳能的 100 字简介。”
  8. 引用:要求包含引用或来源以支持信息,比如“请在关于全球变暖的文章中引用权威研究。”
  9. 语言:如果与提示不同,请指明回应的语言,例如“请用法语回答关于巴黎旅游景点的问题。”
  10. 反驳:要求解决潜在的反驳论点,比如“针对抵制疫苗接种的观点提出反驳。”
  11. 术语:指定要使用或避免的行业特定或技术术语,例如“请用通俗易懂的语言解释区块链技术。”

您可以根据具体需求选择适合的框架来编写提示词。如果您觉得这些框架过于复杂,还可以结合自己的生活或工作场景,想一个能帮助简单自动化的场景,比如自动给班级里的每个孩子起个昵称、自动排版微信群经常发的运营小文案、自动帮您安排周一到周日的减脂餐、帮您列一个清晰的学习计划等。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:Prompt 喂饭级系列教程 小白学习指南(二)

于是这个提示词解决了你自己,和任何收到你Prompt的人微调几个关键信息就能自动让GPT或者Kimi帮你阅读一篇论文而且生成不错的总结啦!如果你觉得这些例子对你来说还是过于复杂了,请你结合你自己的生活或者工作场景来想一个能帮你简单自动化的场景:自动给班级里的每个孩子起个昵称?自动排版你微信群经常发的一些运营小文案?自动帮你安排周一到周日的减脂餐?帮你列一个清晰的学习计划,day1-day7?帮你的下一次商务会议设计一个调研问卷?……第三步、选一个好上手的提示词框架来帮你开启你第一次有效的编写如果你这时候问什么是提示词框架,那说明你第一课没认真学,回去复习吧。对框架的理解和运用是非常重要的一部分,参考上图,来源:[prompt-engineering/prompt-patterns:Prompt编写模式:如何将思维框架赋予机器,以设计模式的形式来思考prompt(](https://github.com/prompt-engineering/prompt-patterns)[github.com](http://github.com)[)](https://github.com/prompt-engineering/prompt-patterns)提示词框架有很多,有的简单有的复杂,你可以选一个看起来不那么难的先入手,比如可以从非常基础的:情境(Situation):任务(Task):行动(Action):结果(Result):开始。如果你拿到我给你的这个由四个词语组成的提示词框架还是觉得无从下手,你可以试试这样:恭喜你,就在刚才你已经写出你的第一个提示词了,它是:

课件: Prompt(提示词)的道和术

拓展阅读:[1.2 Prompts(提示词)](https://waytoagi.feishu.cn/wiki/Q5mXww4rriujFFkFQOzc8uIsnah?table=tbldSgFt2xNUDNAz&view=vewo2g2ktO)|社区内prompt框架课程收录[按使用场景导览](https://waytoagi.feishu.cn/wiki/QpbdwR9WOix3x9kEBcIcHzaKn0b?table=tblJmjjUu2j9PPvC&view=vew2fUKa8m)|各个场景提示词收录这里边是一个一个的框架,你看这个框架得告诉什么?就是把脑海中的一个事情、一个方法论,它通过这四个角度来描述出来。其实各种框架都大同小异,就是:你要做什么事情?现在有什么背景?我有什么目标?我有什么任务?有什么数据?有什么输出?期望大概就这些东西,就大家换不同的词在弄而已。那这些框架有没有用的,它确实有用,它能帮助你很快地以某些角度给把你脑海中的那个东西给弄出来,所以它比你完全从0到1或者是空想是要快的,是要高效很多的。我去年用那个langGPT的框架,然后写了一整年的时间,就是大概就这么个意思,大家用不同的这个框架去写,你在用这些框架的时候可以换着不同的预设角度去描述同样一个物体。去年我用的langGPT的框架,就是写出发点是说我需模拟一个老师,他能以很好的、很善解人意的方式来讲任何一个概念,你输入任何学科的,它都能以很好的东西来输出。

Prompts(提示词)

|技巧|技巧说明|例子|父记录||-|-|-|-||假设情景|鼓励探讨假设性场景|假设全球变暖持续恶化,我们需要采取哪些措施应对?|||数据|鼓励使用统计数据或数据支持主张|在关于电动汽车的文章中提供销售数据和环境影响数据。|||个性化|根据用户偏好或特点要求个性化|请根据用户对喜剧电影的喜好推荐几部好看的电影。|||语气|指定所需语气(如正式、随意、信息性、说服性)|请用正式语气编写一篇关于气候变化的文章。|||格式|定义格式或结构(如论文、要点、大纲、对话)|请为我提供一个关于健康饮食的要点清单。|||限制|指定约束条件,如字数或字符数限制|请提供一个关于太阳能的100字简介。|||引用|要求包含引用或来源以支持信息|请在关于全球变暖的文章中引用权威研究。|||语言|如果与提示不同,请指明回应的语言|请用法语回答关于巴黎旅游景点的问题。|||反驳|要求解决潜在的反驳论点|针对抵制疫苗接种的观点提出反驳。|||术语|指定要使用或避免的行业特定或技术术语|请用通俗易懂的语言解释区块链技术。||

Others are asking
从图片生成 prompts
从图片生成 prompts 的方法如下: 可以参考以下生成的提示词示例: 远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1 远景,中心对称构图,俯视视角,摄影风格,云雾中的山谷,山峦在云雾中若隐若现,山谷中隐约可见的河流蜿蜒流淌,云雾的流动感和山的静态形成对比,现实主义风格特征,使用长焦镜头和景深控制技术ar 3:2v 6.1 远景,对角线构图,俯视视角,水墨画风格,云雾缭绕的山谷,山峦线条流畅,云雾以墨色深浅表现,山谷中的云雾仿佛在流动,给人以动态的视觉感受,中国山水画风格特征,使用毛笔和水墨渲染技术ar 2:3v 6.1 “Prompt”是指提供给 Midjourney Bot 解读来生成图像的短文本短语。一个基本的提示可以只是一个单词、短语或表情符号。更高级的 Prompts 可以包括一个或多个图片 URL、多个文本短语以及一个或多个参数。图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。参数需要放在提示语的末尾。 藏师傅教您用 AI 三步制作任意公司的周边图片: 获取 Logo 图片的描述。 根据 Logo 图片的描述和生成意图生成图片提示词。 将图片和提示词输入 Comfyui 工作生成。例如:将第一步生成的提示词填入{图像描述}位置,将您想生成的周边填入{周边描述}部分。给出类似“ The pair of images highlights a logo and its realworld use for a hitech farming equipment;this logo is applied as a black and white tattoo on lower back of an inmate ”的提示词示例。
2024-12-24
怎么学习好AI PROMPTS
以下是关于如何学习好 AI PROMPTS 的一些建议: 1. 针对不同任务进行环节拆分:例如在使用 AI 进行数据分析时,将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,以优化性能和便于发现修正问题。 2. 逐步深化和细化提问:对于复杂问题,先提出宽泛问题,再根据回答进一步细化或深化,逐步深入了解问题各方面。比如在处理知识产权侵权案件时,先问被告是否构成侵权,再根据回答进一步询问侵权类型和程度。 3. 提供参考和学习内容:包括高质量的操作指南、行业最佳实践、案例研究等,并编写详细流程和知识(knowhow),帮助 AI 理解任务和为人类用户提供指导。如在自动化文档处理中编写详细指南。 4. 利用专业领域术语引导:在 Prompt 中使用法律等专业术语引导 AI 回答方向,例如处理合同纠纷时提示从特定方面分析合同履行情况。 5. 优化和润色 Prompt: 明确具体描述,使用更具体、细节的词语和短语。 添加视觉参考,插入相关图片。 注意语气和情感,用合适形容词、语气词调整。 优化关键词组合,尝试不同搭配和语序。 增加约束条件,避免意外输出。 分步骤构建 Prompt,先生成基本结构再完善。 参考优秀案例,借鉴写作技巧和模式。 反复试验、迭代优化,根据输出效果反馈完善。 6. 方法论萃取:通过类似访谈的方式获取清晰明确的答案,然后设计 Prompt。例如,若想让 AI 像“樊登读书”或“得到”那样讲书,设计“书籍阅读助手”的 Prompt;若想让 AI 在选书和督促读书环节起作用,设计“催我读书”的 Prompt;若侧重知识内化,重点研究读书效率和信息转化问题。
2024-10-25
什么是promptscript?
Promptscript 在 AI 视频生成中,是直接描述或引导视频生成的文本或指令。它类似于给 AI 的提示,包含主体、运动、风格等信息,用户借此控制和指导生成内容。其作用十分重要,是表达需求的方式,会影响视频的内容和质量。如果上述解释过于抽象,您可以理解为:将您输入的文字变成对应的画面和运动形式。在即梦 Dreamina 这款具备强大视频生成功能的工具中,要想获得最佳的视频质量,需要写好 prompt。图片生视频和文本生视频都有相应的 prompt 输入位置。在自然语言处理领域中,Prompt 是一段文本或语句,用于指导机器学习模型生成特定类型、主题或格式的输出,例如“给我写一篇有关人工智能的文章”“翻译这个英文句子到法语”等。在图像识别领域中,Prompt 可以是一个图片描述、标签或分类信息。
2024-10-15
prompts是什么
Prompts 是在不同的 AI 应用场景中的一种指令或语言模板。 在 Midjourney Bot 中,它用于启动新任务或创建一组图像,可以是简单的单词或短语,也可以是更详细的指令和参数,Midjourney Bot 会根据提供的 Prompt 生成图像网格,用户可选择并进行修改和操作。您可以通过进一步了解。 从原理层面看,简单来说,它是一套与大模型交互的语言模板。通过这个模板,可以输出对大模型响应的指令,明确大模型应该做什么、完成什么任务、如何处理具体任务,并最终获得期望的结果。虽然大模型能理解大部分输入的话,但为了获得更好的回答效果,需要使用 Prompt 来提升模型返回的准确性。可以认为在大模型时代,人机交互的主要方式是 Prompt,而非过去通过代码。 在 AI 视频生成中,prompt 是直接描述或引导视频生成的文本或指令,类似给 AI 的提示,包含主体、运动、风格等信息,用户借此控制和指导生成内容。它在 AI 视频生成中作用十分重要,是表达需求的方式,影响视频内容和质量。如果上述解释过于抽象,您可以理解 Prompt 为:将您输入的文字变成对应的画面和运动形式。
2024-09-10
prompts提示词培训
以下是为您提供的 prompts 提示词培训相关内容: 《Prompt 的专场教程 基础篇》:介绍了什么是 prompt(提示词)以及为何被称为咒语,使用 AI 的人为何被称为魔法师。阅读此教程可迅速入门 prompt 的使用,达到一般公司设计岗所需的 AI 绘图水准。阅读时长约 30 分钟,建议打开任意一款 SD 产品分屏对照使用。若有不清晰之处,可在评论区发言或添加微信 designurlife1st 直接沟通(备注来意:ai 绘图交流)。 《蓝衣剑客:提示词培训课》:此培训课程免费向大家开放,并会不定期更新。 《1.Intro to prompting 提示简介》:Claude 经过训练成为一个乐于助人、诚实可靠、无害的助手,习惯于进行对话,可用常规自然语言请求指示它,给出的指示质量会对其输出质量产生很大影响,特别是对于复杂任务。
2024-08-07
有什么会议纪要的 prompts
以下是一些会议纪要的 prompts: Kimi 的 15 款官方提示词: 【📋会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼。 【📈 PPT 精炼】整理各种课程 PPT,输出结构明晰、易于理解内容文档。 【🔥爆款文案】生成高质量的爆款网络文案。 【🎥影剧推荐】根据喜好推荐影视,提供保姆级资源渠道。 【📝影评达人】专业生成引人入胜、富有创意的电影评论。 【🚀职业导航】私人职业路径规划顾问,综合考虑个人特质、就业市场和发展前景。 【📅营销策划】为你的产品或服务提供定制化营销活动策划。 【🎤面试模拟】你的私人面试 mock 伙伴,根据简历信息和求职岗位进行模拟面试。 【📢宣传 slogan】快速生成抓人眼球的专业宣传口号。 【✍️期刊审稿】提前预知审稿人对文章的吐槽。 【📖诗意创作】现代诗、五言/七言诗词信手拈来的诗歌创作助手。 【📰推闻快写】专业微信公众号新闻小编,兼顾视觉排版和内容质量,生成吸睛内容。 【📚要点凝练】长文本总结助手,能够总结用户给出的文本、生成摘要和大纲。 【🎬短剧脚本】创作定制化短视频脚本,包含拍摄要求和分镜细节。 Claude 官方提示词: 【会议记录员】将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 这些 prompts 可以帮助你生成高质量的会议纪要,你可以根据自己的需求选择合适的提示词。
2024-07-07
openai 发布的sora最新模型中,生成视频的提示词与一般问答提示词有什么区别或者注意事项?
Sora 是 OpenAI 于 2024 年 2 月发布的文本到视频的生成式 AI 模型。 生成视频的提示词与一般问答提示词的区别和注意事项如下: 1. 对于视频生成,神经网络是单射函数,拟合的是文本到视频的映射。由于视频的动态性高,值域大,因此需要丰富且复杂的提示词来扩大定义域,以学好这个函数。 2. 详细的文本提示能迫使神经网络学习文本到视频内容的映射,加强对提示词的理解和服从。 3. 和 DALL·E 3 一样,OpenAI 用内部工具(很可能基于 GPT4v)给视频详尽的描述,提升了模型服从提示词的能力以及视频的质量(包括视频中正确显示文本的能力)。但这会导致在使用时的偏差,即用户的描述相对较短。OpenAI 用 GPT 来扩充用户的描述以改善这个问题,并提高使用体验和视频生成的多样性。 4. 除了文本,Sora 也支持图像或者视频作为提示词,支持 SDEdit,并且可以向前或者向后生成视频,因此可以进行多样的视频编辑和继续创作,比如生成首尾相连重复循环的视频,甚至连接两个截然不同的视频。 以下是一些 Sora 的案例提示词,如:“小土豆国王戴着雄伟的王冠,坐在王座上,监督着他们广阔的土豆王国,里面充满了土豆臣民和土豆城堡。”“咖啡馆的小地图立体模型,装饰着室内植物。木梁在上方纵横交错,冷萃咖啡站里摆满了小瓶子和玻璃杯。”“一张写有‘SORA’的写实云朵图像。”“一群萨摩耶小狗学习成为厨师的电影预告片‘cinematic trailer for a group of samoyed puppies learning to become chefs’”
2024-12-27
写施工方案的提示词有没有
以下是一些常见的提示词技巧,可用于写施工方案: 类比:要求 AI 用类比或示例阐明概念,例如“请用一个类比解释施工中的关键技术”。 引述:要求包含专家的相关引言或陈述,比如“在施工方案中引用著名建筑专家的观点来支持关键施工步骤”。 幽默:表明是否应融入幽默,例如“在施工方案的安全注意事项部分加入一些幽默元素,以增强记忆”。 轶事:要求包含相关轶事,比如“在关于大型建筑施工的方案中,分享一则有趣的施工过程中的轶事”。 隐喻:鼓励使用隐喻使复杂观点更具亲和力,例如“在描述施工流程的复杂性时,用‘施工像搭积木一样需要有序进行’这样的隐喻”。 趣闻:鼓励包含有趣或令人惊讶的事实,比如“在谈论新型建筑材料时,分享一些有趣的材料特性的事实”。 关键词:列出需要包含的重要关键词或短语,例如“请在施工方案中包含‘施工进度’‘质量控制’和‘安全保障’”。 小贴士:鼓励 AI 分享与主题相关的小窍门和技巧,比如“分享几个关于提高施工效率的小贴士”。 保密性:说明保密要求或限制,比如“在施工方案涉及商业机密的部分,不要泄露相关信息”。 格式化:指定所需的格式元素(如标题、副标题、列表),例如“在写施工方案时,使用列表来呈现施工步骤”。 概括:要求对较长内容进行简要概括,比如“请为这个复杂的施工方案提供一个简短的概要”。 讲故事:要求使用讲故事或叙事技巧,例如“请用一个成功的施工案例故事来展示优秀的施工管理”。 优缺点:要求 AI 评估主题的优缺点,比如“分析这种新型施工方法的优缺点”。 利弊分析:要求对主题的利弊进行分析,例如“分析使用预制构件施工的利与弊”。 问题解决:要求针对特定问题提供解决方案或建议,比如“请提供几个有效的解决施工中遇到的技术难题的方法”。 最佳实践:要求 AI 提供关于某主题的最佳实践或指南,比如“请提供一份关于如何确保施工质量的最佳实践指南”。 时间线:要求 AI 提供事件或发展的时间线,比如“请为这个建筑项目的施工进程提供一个简要的时间线”。 行动呼吁:要求明确的行动呼吁或后续步骤,比如“在施工方案结尾提出具体的施工推进行动建议”。 分步指南:要求提供过程的分步指南或说明,比如“提供一个关于如何进行基础施工的分步指南”。 历史背景:要求考虑历史背景或背景,比如“在写关于高层建筑施工的方案时,谈论高层建筑施工的历史发展”。 对比:要求 AI 比较和对照不同的观点或概念,比如“请比较传统施工方法和现代施工方法的优缺点”。 敏感性:提及需要谨慎处理或避免的敏感主题或问题,比如“请谨慎讨论施工中的环保敏感问题”。 伦理考虑:提及要遵循的道德准则,比如“在施工方案中探讨施工过程中的伦理和道德问题”。 修订要求:提及修订或编辑指南,比如“请根据行业标准对施工方案进行编辑和修订”。 未来影响:鼓励讨论潜在的未来影响或趋势,比如“在谈论建筑施工技术的发展时,探讨其未来在城市建设中的应用前景”。 视觉元素:询问是否包括图表、图形或图像,比如“请在施工方案中包含相关的施工图纸和进度图表”。 截止日期:提及时间敏感回应的截止日期或时间范围,比如“请在一周内给我一份完整的施工方案”。 文化参考:鼓励包含相关的文化参考,比如“在关于古建筑修复的施工方案中谈论当地的建筑文化特色”。
2024-12-22
sd的提示词有哪些语法
以下是关于 SD 提示词的语法: 1. 多个提示词之间使用英文半角符号“,”分隔,例如:masterpiece,best quality,ultradetailed,illustration,closeup,straight on,face focus,1girl,white hair,golden eyes,long hair,halo,angel wings,serene expression,looking at viewer。 2. 一般而言,概念性、大范围、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。大致顺序为:。 3. 每个词语本身自带的权重可能不同,模型训练集中较多出现的关键词,输入一个词就能极大影响画面;较少出现的关键词,输入多个相关词汇对画面影响效果可能有限。提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,措辞越具体越好,避免抽象和有解释空间的措辞。 4. 可以使用括号人工修改提示词的权重,例如: 将权重减少为原先的 25%。 5. 可以通过 Prompt Editing 使得 AI 在不同的步数生成不一样的内容,语法为:例如:a,100 步采样,一开始。提示词为:fantasy landscape with a mountain and an oak in foreground shoddy 在第 25 步后,提示词为:fantasy landscape with a lake and an oak in foreground in background shoddy 在第 50 步后,提示词为:fantasy landscape with a lake and an oak in foreground in background masterful 在第 60 步后,提示词为:fantasy landscape with a lake and an oak in background masterful 在第 75 步后,提示词为:fantasy landscape with a lake and a christmas tree in background masterful。 6. 提示词还可以轮转,比如:在第一步时,提示词为“cow in a field”;在第二步时,提示词为"horse in a field.";在第三步时,提示词为"cow in a field",以此类推。 7. 交替词:in a field 可以支持多个词交替。 8. 可组合扩散(AND 语法):a cat AND a dog 比如想画一个猫和狗的混合物种,每一个要混合的东西支持加权重,比如 a cat:1.2 AND dog AND a benguin:2.2。通过继续向总数添加更多提示,这可以方便地生成微调的递归变化,比如 log AND frog:0.13 AND yellow eyes:0.08 。 请注意,权重值最好不要超过 1.5。
2024-12-19
AI提示词有什么免费的学习课程
以下是一些关于 AI 提示词的免费学习课程: 1. 吴恩达和 OpenAI 合作推出的 Prompt Engineering(提示工程师)课程: 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本:【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 、https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本 2. 小七姐的 Prompt 喂饭级系列教程小白学习指南(五): 如果学习提示词有具体小目标,如 AI 写作优化、职场提升效率等,需求不高,可不买贵的课程,考虑相关 AI 课,提示词作为工具掌握。 若为变现,先思考能力和资源优势,有清晰方案可深度学习,还能结识同行。 自学能力强,可不付费,多交流;自学能力不足且有清晰目的,建议选择靠谱课程系统化学习。 3. 藏经阁的个人专栏:
2024-12-05
提示词有没有规律可循
提示词是有规律可循的。 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中一个相对较新的概念,它涉及设计和优化输入提示以引导 AI 模型生成特定类型的输出或执行特定的任务。提示工程的关键点包括精确性、创造性、迭代和上下文理解。提示词通常指直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。 在 Stable Diffusion 中,Embedding 相当于提示词打包的功能,能把很多提示词汇总到一个文件里,负向提示词在某些情况下会有大量且固定不变的文本量,此时可使用打包好的负向提示词 Embedding,达到一词顶一百词的效果。 从应用者角度看,提示词应客观对待,它可能只是一个中间阶段。对于企业,追求稳定性和确定性,提示词可能并非可靠工具。提示词技巧具有阶段性和时效性,普通人不必花费过多时间,因为其变化很快。对于大部分人,追求所谓技巧可能意义不大。是否使用提示词框架,应视具体情况而定。
2024-10-01
知识相关的提示词有哪些?
以下是一些与知识相关的提示词示例: 知识图谱自动生成:能够帮助使用者快速提升认知并帮助建立知识图谱,用户提供问题或指定领域,引导并带领用户进行深度分析。 知识探索专家(李继刚):专门用于提问并解答有关特定知识点的 AI 角色,提出并尝试解答有关用户指定知识点的三个关键问题:其来源、其本质、其发展。
2024-09-22
文本写作工具推荐
以下是为您推荐的文本写作工具: 论文写作: 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 邮件写作: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言。网站:https://www.grammarly.com/ Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句。界面简洁,重点突出。网站:http://www.hemingwayapp.com/ ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议。功能强大,支持多种平台和集成。网站:https://prowritingaid.com/ Writesonic:基于 AI 生成各种类型文本,包括电子邮件、博客文章、广告文案等。生成速度快。网站:https://writesonic.com/ Lavender:专注邮件写作优化,提供个性化建议和模板,提高邮件打开率和回复率。 内容仿写: 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ 是得力的智能写作助手,支持多种文体写作,一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ 是由腾讯 AI Lab 开发的创作助手,提升写作效率和创作体验。 更多 AI 写作类工具可以查看这里:https://www.waytoagi.com/sites/category/2 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
写作的ai工具
以下是一些常见的写作相关的 AI 工具: 论文写作: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 邮件写作: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多平台和多种语言。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁。 ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多平台和集成。 Writesonic:基于 AI 生成各种类型文本,包括电子邮件,生成速度快。 Lavender:专注邮件写作优化,提供个性化建议和模板,提高邮件打开率和回复率。 简历写作: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,保持语调一致。 Rezi:使用先进的 AI 技术自动化创建可雇佣简历的各方面。 Huntr 的 AI 简历构建器:提供免费模板,以及 AI 生成的总结/技能/成就生成器和工作匹配。 更多 AI 简历产品,还可以查看:https://www.waytoagi.com/category/79 。使用这些工具时,应结合自身写作风格和需求选择最合适的辅助工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-21
集文档管理、AI写作、资料搜索的AI大模型推荐
以下为您推荐一些集文档管理、AI 写作、资料搜索功能于一体的 AI 大模型: 1. RAG: 工作原理:就像超级智能的图书馆员,包括检索(从庞大知识库中找相关信息)、增强(筛选优化信息)、生成(整合信息给出连贯回答)。 优点:成本效益高、灵活性强、可扩展性好。 缺点:回答准确性相对不够。 相关网站:Metaso.cn(学术、研究)、So.360.com(生活、便捷)、Devv.ai(程序员、开发者)、Perplexity(付费、高质量)、Bing.com(通用)、Google.com(全球、精准)。 内幕:平均调用 9 次大语言模型,网络爬虫预先建立数据库,用便宜但推理弱的模型(免费版)。 2. 对于律师工作: AI 大模型擅长:信息检索与整理、模式识别与预测、自动化文档处理、多任务处理能力。 AI 大模型不擅长:法律解释与推理、理解道德和情感、创新或个性化的服务。 律师擅长:法律专业知识、沟通与谈判。 3. 沉浸式翻译:主打所有网页双语翻译、PDF 文档对照阅读,新功能可一键开启网页中 Youtube 视频的双语字幕。插件安装地址:https://immersivetranslate.com/ 4. Kimi:由月之暗面科技有限公司开发,最大特点是超长文本(支持最多 20 万字的输入和输出)处理和基于文件、链接内容对话的能力,能阅读并理解多种格式文件内容为用户提供回复。
2025-01-21
ai辅助写作,去掉ai味儿,最好用的工具有哪些
以下是一些在去除 AI 味儿、辅助写作方面较好用的工具: 在论文写作方面: 文献管理和搜索:Zotero 能自动提取文献信息,Semantic Scholar 是 AI 驱动的学术搜索引擎。 内容生成和辅助写作:Grammarly 提供文本校对等,Quillbot 可重写和摘要。 研究和数据分析:Google Colab 支持数据分析,Knitro 用于数学建模。 论文结构和格式:LaTeX 结合自动化处理格式,Overleaf 是在线 LaTeX 编辑器。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭。 在邮件写作方面: Grammarly 提供语法检查等多种功能,支持多平台,多种语言。 Hemingway Editor 简化句子结构,提高可读性。 ProWritingAid 全面检查语法和风格,提供详细报告。 Writesonic 基于 AI 生成多种文本。 Lavender 专注邮件写作优化,提供个性化建议和模板。 需要注意的是,使用这些工具时应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容可能由 AI 大模型生成,请仔细甄别。
2025-01-20
如果搭建一个智能写作AI
搭建一个智能写作 AI 可以参考以下步骤: 1. 了解生成式人工智能的工作原理: 监督学习在人工智能领域一直占据很大比例,生成式 AI 由监督学习技术搭建。 大语言模型通过使用监督学习不断预测下一个词语来生成文本,需要千亿甚至万亿级别的单词数据库。 2. 认识大语言模型的特点: 大语言模型在写故事、修改文本等方面非常有用。 但它可能会编造故事产生错误信息,需要鉴别信息准确性。 网络搜索与大语言模型有区别,网络搜索可追寻信息来源,大语言模型可提供建议与策略。 3. 明确人工智能的应用空间: 人工智能有大量运用空间,如基于网络界面应用和基于软件程序应用。 使用大语言模型写作,集思广益、头脑风暴很有用,翻译也可以使用,但网络文本较少时效果可能不太好。 4. 搭建 AI 工作流: 学会搭建 AI 智能体,它能根据设定的工作流自动调用不同的 AI 工具完成全流程任务。 例如设计“写作助手”的 AI 智能体,输入文章的主题、风格和要求,它能自动完成文章大纲处理、初稿写作、修改润色和排版等工作。 5. 拆解高效写作的关键步骤: 写作是一个逐步的过程,要先梳理没有 AI 工具时的工作流,再考虑引入 AI 赋能。 比如写公众号文章,要先选题、搜资料、列提纲、起标题、配图片、排版发布等,拆解清楚每个环节,判断 AI 能提供的帮助。
2025-01-19
最好的写作AI
以下是关于写作 AI 的相关信息: 邮件写作 AI 工具: 1. Grammarly: 功能:提供语法检查、拼写纠正、风格建议和语气调整等功能。 优点:易于使用,支持多种平台(如浏览器扩展、桌面应用、手机应用),适用于多种语言。 网站:https://www.grammarly.com/ 2. Hemingway Editor: 功能:简化句子结构,提高可读性,标记复杂句和冗长句。 优点:界面简洁,重点突出,适用于改善写作风格和简洁性。 网站:http://www.hemingwayapp.com/ 3. ProWritingAid: 功能:全面的语法和风格检查,提供详细的写作报告和建议。 优点:功能强大,支持多种平台和集成,特别适合专业写作者。 网站:https://prowritingaid.com/ 4. Writesonic: 功能:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等。 优点:生成速度快,适合需要快速创作和灵感的用户。 网站:https://writesonic.com/ 5. Lavender: 功能:专注于邮件写作优化,提供个性化建议和模板,帮助用户提高邮件打开率和回复率。 优点:专注邮件领域,提供具体的改进建议和实时反馈。 使用 AI 写作的工具和方法: 最佳免费选项:Bing(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx)和 Claude 2(https://claude.ai/) 付费选项:带有插件的 ChatGPT 4.0/ChatGPT 目前,GPT4 仍然是功能最强的人工智能写作工具,您可以在 Bing(选择“创新模式”)上免费访问,或者通过购买 ChatGPT 的$20/月订阅来访问。然而,Claude 是紧随其后的第二名,也提供了有限的免费选项。 用 AI 写出好文字的方法: 1. 选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力。 2. 克服平庸,平衡“控制”与“松绑”。 3. 显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。
2025-01-17
12个prompt 框架
以下是 12 种 Prompt 框架: 1. Instruction(指令):即希望 AI 执行的具体任务,如翻译或写一段文字。 2. Context(背景信息):给 AI 更多背景信息,引导模型做出更贴合需求的回复。 3. Input Data(输入数据):告知模型需要处理的数据。 4. Output Indicator(输出引导):告知模型输出的类型或风格。 5. Capacity and Role(能力和角色):ChatGPT 应扮演的角色。 6. Insight(见解):提供请求背后的见解、背景和上下文。 7. Statement(声明):说明要求 ChatGPT 做什么。 8. Personality(个性):希望 ChatGPT 以何种风格、个性或方式回应。 9. Experiment(实验):请求 ChatGPT 回复多个示例。 10. Background(背景):说明背景,为 ChatGPT 提供充足信息。 11. Role(角色):希望 ChatGPT 扮演的角色。 12. Objectives(目标):希望实现的目标。 此外,还有以下框架: 1. TASK(任务):定义特定任务。 2. ACTION(行动):描述需要做的事情。 3. GOAL(目标):解释最终目标。 4. INPUT(输入):描述信息或资源。 5. STEPS(步骤):询问详细的步骤。 6. EXPECTATION(期望):描述所需的结果。 7. REQUEST(请求):描述您的要求。 8. Key Result(关键结果):要什么具体效果,试验并调整。 9. Evolve(试验并改进):三种改进方法自由组合,包括改进输入、改进答案、重新生成。 10. CONTEXT(上下文背景):为对话设定舞台。 11. OBJECTIVE(目的):描述目标。 12. SCENARIO(方案):描述场景。 同时,还有一些特定的框架,如 ICIO 框架、CRISPE 框架、BROKE 框架等。
2025-01-23
dify编排框架是什么意思
Dify 编排框架是一种在 AI 领域中应用的可视化编排框架,例如在 workflow 可视化编排页面中使用(框架:React Flow)。它具有以下特点和优势: 1. 集各家所长,在用户体验方面表现出色。 2. 可以人为编排 Workflow 里的子任务,与 AutoGPT 由大模型编排任务的方式不同,这种手动编排方式带来了明显的优化,如在流程中加入人类 Knowhow 以补足模型知识的不足,通过专家测试试跑减少生产环境中的反复无效反思,引入图的概念灵活组织节点、连接各类工具等。 3. 加入图的概念后,workflow 的天花板变得非常高,可以在流程中任意增加节点和各种类型的节点,不仅能套工具、套其它 agent,还能写代码用硬逻辑处理或接大模型进行判断,能力上限很大程度取决于想象力。 4. 对于个人开发者构建高质量的 AI 数字人很有帮助,有大量开源工作者维护,集成了各种主流的模型供应商、工具以及算法实现等,可以通过它快速编排出自己的 AI Agent,赋予数字人灵魂。利用其编排和可视化交互能任意修改流程,构造不同的 AI Agent,并实现相对复杂的功能,如知识库搭建、工具使用等,无需任何编码和重新部署工作。同时,Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这两个接口可将数字人的语音识别和语音生成都交由 Dify 控制。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台进行部署。此外,数字人 GUI 工程中仍保留了多个模块,能保持更好的扩展。 在使用 Dify 接口时,需要注意必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,可自行选择方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
2025-01-21
18种提示词框架
以下是 18 种提示词框架: 1. Instruction(指令):即您希望 AI 执行的具体任务,比如翻译或者写一段什么文字。 2. Context(背景信息):给 AI 更多的背景信息,引导模型做出更贴合需求的回复。 3. Input Data(输入数据):告知模型需要处理的数据。 4. Output Indicator(输出引导):告知模型我们要输出的类型或风格。 5. Capacity and Role(能力和角色):ChatGPT 应扮演什么角色。 6. Insight(见解):提供您请求的背后见解、背景和上下文。 7. Statement(声明):您要求 ChatGPT 做什么。 8. Personality(个性):您希望 ChatGPT 以何种风格、个性或方式回应。 9. Experiment(实验):请求 ChatGPT 为您回复多个示例。 10. Background(背景):说明背景,为 ChatGPT 提供充足信息。 11. Role(角色):您希望 ChatGPT 扮演的角色。 12. Objectives(目标):我们希望实现什么。 13. Key Result(关键结果):您要什么具体效果,试验并调整。 14. Evolve(试验并改进):三种改进方法自由组合:a.改进输入:从答案的不足之处着手改进背景、目标与关键结果;b.改进答案:在后续对话中指正 ChatGPT 答案缺点;c.重新生成:尝试在 Prompt 不变的情况下多次生成结果,优中选优。 15. CONTEXT 上下文背景:为对话设定舞台。 16. OBJECTIVE 目的:描述目标。 17. ACTION 行动:解释所需的动作。 18. SCENARIO 方案:描述场景。 此外,还有一些常见的特定框架,如: 1. ICIP 框架:包括指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填)。 2. BROKE 框架:着重于背景(Background)、角色定义(Role)、目标设定(Objectives)、关键成果展示(Key Result)以及持续的试验与优化(Evolve)。 3. CRISPE 框架:分为上下文(Context)、角色(Role)、说明(Instruction)、主题(Subject)、预设(Preset)和例外(Exception)。 提示词工程师是专门负责为大语言模型设计、优化和实施 Prompt 的技术角色,他们深刻理解模型的工作原理,能够根据具体需求定制合适的 Prompt,确保其有效性。随着大语言模型在商业和研究领域的应用,定制化的 Prompt 编写服务日渐受到欢迎。这些专业服务往往由资深的提示词工程师提供,他们会深入了解客户的具体需求,从而为其设计、优化并定制出最合适的 Prompt。
2025-01-15
对话框架都有哪些
以下是一些常见的对话框架: 1. 智谱·AI 开源模型列表中的 Chat 模型框架: ChatGLM36B:第三代 ChatGLM 对话模型,采用全新 Prompt 格式,原生支持工具调用、代码执行和 Agent 任务等复杂场景,上下文 token 数为 8K。 ChatGLM36Bbase:第三代 ChatGLM 基座模型,采用更多样训练数据、更充分训练步数和更合理训练策略,在 10B 以下基础模型中性能最强,上下文 token 数为 8K。 ChatGLM36B32k:第三代 ChatGLM 长上下文对话模型,在 ChatGLM36B 基础上强化长文本理解能力,能处理最多 32K 长度上下文。 ChatGLM26B32k:第二代 ChatGLM 长上下文对话模型,在 ChatGLM26B 基础上进一步强化长文本理解能力,能处理最多 32K 长度上下文。 ChatGLM26B32kint4:ChatGLM26B32K 的 int4 版本。 ChatGLM6B:第一代 ChatGLM 对话模型,支持中英双语,基于 General Language Model架构,具有 62 亿参数,结合模型量化技术可在消费级显卡上本地部署,上下文 token 数为 2K。 2. COSTAR 框架: 定义:指明文本的整体风格,包括词汇选择、句式结构及可能的参照对象。 重要性:不同风格适合不同场合,如学术论文和社交媒体帖子。 示例:科学论文需正式语言和客观语气,博客文章可采用轻松、个人色彩写作风格。 Tone(语气) 定义:设定文本的情感基调,确保符合预期氛围。 重要性:正确语气可建立与读者联系,传达适当态度。 示例:商业计划书需正式、专业且有说服力语气,产品评测可采用轻松幽默语气。 Audience(受众) 定义:明确回答或文本的目标读者。 重要性:了解受众有助于调整语言复杂度、术语使用及整体信息传递方式。 示例:专业人士可用行业术语和复杂概念,大众需简化语言避免专业化术语。 Response(回复) 定义:指定最终输出的形式和结构。 重要性:正确格式使信息更易理解和消化。 示例:详细分析报告按标准报告格式组织,简单问答可直接列表呈现答案。
2025-01-14
提示词框架
以下是关于提示词框架的相关内容: 视频模型中的提示词框架: Vidu Prompt 基本构成: 提示词基础架构:包括主体/场景、场景描述、环境描述、艺术风格/媒介。需调整句式和语序,避免主体物过多/复杂、模糊术语表达,使用流畅准确的口语化措辞,丰富、准确和完整的描述以生成特定艺术风格、满足需求的视频。 提示词与画面联想程度的说明:以单帧图像为例,通过具体详实的位置描述/环境描述进行构图,艺术风格描述提升效果和氛围,统一画面风格。 AI 提示词工程师相关的提示词框架: 提示词工程师是专门负责为大语言模型设计、优化和实施 Prompt 的技术角色,不仅编写 Prompt,还需测试和优化以确保输出内容质量。 发展出多种提示词框架,如 ICIP 框架(包括指令、背景信息、输入数据、输出指示器)、BROKE 框架(包括背景、角色定义、目标设定、关键成果展示、持续的试验与优化)、CRISPE 框架(包括上下文、角色、说明、主题、预设、例外)。 有定制化的 Prompt 编写服务,由资深提示词工程师深入了解客户需求设计、优化并定制最合适的 Prompt。 RAG 提示工程中的提示词框架: 在输入环节构建全面的提示词框架,包含伦理审查及针对不同类型攻击的审查规则,具体划分为伦理审查及对越狱类、泄露类、目标劫持类等攻击类型的审查。融入人格设定元素,利用大型模型的注意力机制,加固输入防护的审核能力及人格设定的稳定性。
2025-01-13
ai agent 框架有哪些
目前常见的 AI Agent 框架主要有以下几种: 1. LangChain 的 LangGraph:通过简化标准底层任务,如调用 LLM、定义和解析工具、链接调用等,使入门变得容易,但可能创建额外抽象层,增加调试难度。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet:拖放式 GUI 的 LLM 工作流构建器。 4. Vellum:用于构建和测试复杂工作流的 GUI 工具。 此外,行业里常用于为 LLM 增加工具、记忆、行动、规划等能力的框架是 LangChain,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。AutoGPT 被描述为使 GPT4 完全自主的实验性开源尝试,也是一种重要的框架。但需要注意的是,当前大多数代理框架都处于概念验证阶段,还不能可靠、可重现地完成任务。
2025-01-08