Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

哪些事情是ChatGPT不可代替的

Answer

以下是一些 ChatGPT 不可代替的事情:

  1. 在新媒体运营方面,核心竞争力在于内容的创新和创造力。ChatGPT 能生成文章,但依赖于大型数据库中现有文档和写作模式的组合,缺乏创造性和人情味。一个及格的新媒体运营人的文案需要让人共情,在这方面 ChatGPT 目前难以胜任。
  2. 在用户运营方面,尽管 AI 能胜任客户服务并解决单点问题,但要了解人性需求的变化并制定相应策略仍然是难题。洞察人是人类的强项,这是 ChatGPT 难以做到的。

总之,在需要创造性、对用户的深入理解和洞察等方面,ChatGPT 目前无法替代人类。

Content generated by AI large model, please carefully verify (powered by aily)

References

LLM 应用程序的新兴架构

眼尖的读者会注意到编排框中有一个看似奇怪的条目:ChatGPT。在正常情况下,ChatGPT是一个应用程序,而不是开发人员工具。但它也可以作为API进行访问。而且,如果你仔细观察,它会执行一些与其他编排框架相同的功能,例如:抽象出对定制提示的需求、维持状态,并通过插件、API或[其他来源](https://github.com/openai/chatgpt-retrieval-plugin)检索上下文数据。虽然ChatGPT不是此处列出的其他工具的直接竞争对手,但可以将其视为替代解决方案,并且它最终可能成为即时构建的可行、简单的替代方案。

大模型入门指南

尽管ChatGPT是收费的,而且还不面向中国,但现在市面上有非常多的其他选择,比如Google的Bard([11]),下图给出了一些常用服务,读者都可以去体验试试:单就写代码这个垂直领域来看,GitHub的Copilot([12])无疑是老大哥,但它并非免费,下面有几个替代品:Tabnine([13]):AI assistant that speeds up delivery and keeps your code safeCodeium([14]):Free AI Code Completion & ChatAmazon CodeWhisperer([15]):Build applications faster and more securely with your AI coding companionSourceGraph Cody([16]):The AI that knows your entire codebaseTabby([17]):Opensource,self-hosted AI coding assitantfauxpilot/fauxpilot([18]):An open-source alternative to GitHub Copilot server[heading1]总结[content]说来可笑,ChatGPT的开发者OpenAI并不像其名字那样开放,ChatGPT的源码与模型数据是不对外开放的,但不久,Meta在2023年2月份开源了LLaMA 1([19]),并在7月接着发布了进阶的Llama 2([20]),而且允许商用。Meta此举无疑极大推进的大模型的发展,坊间甚至一度流传这么一篇文章:[Google"We Have No Moat,And Neither Does OpenAI"](https://www.semianalysis.com/p/google-we-have-no-moat-and-neither"Google"We Have No Moat,And Neither Does OpenAI""),说Meta才是大模型时代的最大赢家,OpenAI、Google都要靠边站。大模型时代到来了,你的工作离被取代还远吗?

运营:腾讯运营如何用ChatGPT

AI技术的迅猛发展势必会对职业形态产生巨大影响,取代许多简单的脑力劳动的工作。但纵观历史,技术进步是人类文明发展的不可逆趋势。每一次技术的创新都会带来生产力的提升以及工作模式、社会结构的迭代。本着打不过,就加入的原则,ChatGPT应被视为一种协助我们日常工作的辅助工具。以新媒体运营为例,核心竞争力在于内容的创新和创造力。虽然ChatGPT能生成不同类型的文章,但它依赖于大型数据库中现有文档和写作模式的组合,是语料库训练的产物,是缺乏的创造性和人情味的。一个及格的新媒体运营人,ta的文案,需要让人共情的。在这方面,缺乏对用户的了解和创造力的人工智能,目前恐难以胜任。用户运营也是同理。尽管AI能胜任客户服务并解决单点问题,但要了解人性需求的变化并制定相应策略仍然是难题。还是那句话,洞察人是人类的强项。总而言之,与其焦虑不如行动,也许最好的方式是不断打磨自己应对变化的能力。在人工智能应用推陈出新的后时代,我们不妨重点提升以下能力。[heading3]a.提升你的提问技巧[content]在这个信息泛滥的时代,答案并不稀缺,而是高质量的问题。提问反映了思考方式和能力。ChatGPT作为一个答案提供工具,只需提出优质问题,便可在人机互动中找到满意答案。要发挥科技的价值,关键在于独立思考能力。避免盲目跟风和简单模仿,因为在模仿方面,人类无法与AI抗衡。[heading3]b.培养学习方法[content]面对无尽的知识海洋,人们的时间和精力是有限的。如何在有限的时间内掌握更多实用知识?需要不断提高学习能力和效率。正确的学习方法能帮助我们事半功倍,更高效地掌握知识。

Others are asking
ChatGPT
2025-03-06
国内信用卡如何开通ChatGPT plus
国内信用卡开通 ChatGPT plus 的步骤如下: 1. 安装 Google Play:到小米自带的应用商店搜索 Google Play 进行安装,安装好后打开,按照提示一步步操作登录。 2. 下载安装 ChatGPT:到谷歌商店搜索“ChatGPT”进行下载安装,注意开发者是 OpenAI。可能会遇到“google play 未在您所在的地区提供此应用”的问题,可在 google play 点按右上角的个人资料图标,依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。在此处可“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。若回到 Google Play 首页还搜不到 ChatGPT,可以卸载重装 Google Play,操作过程保持梯子的 IP 一直是美。 3. 若想订阅 GPT4 Plus 版本: 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡。 然后在 ChatGPT 里订阅 Plus,具体操作包括打开 ChatGPT 手机应用,选择谷歌账号登录,选择相应账号后点击打开外部应用,成功登录后点 Continue 继续,点击顶部 get plus 按钮,点击订阅按钮,此时会跳出谷歌支付的界面,确定订阅即可。 如日后想要取消订阅,可到谷歌商店的账号管理,付款和订阅里面取消。若在上述过程中出现未提及的问题,可私信联系相关人员寻求帮助。
2025-03-03
ChatGPT CoT 的system prompt
ChatGPT CoT 的系统提示词包括以下方面: 核心功能:扮演过度思考但讨喜的 AI 助手,将原始思维流转化为易读版本,保留用户喜爱的特质,去除冗余和混乱,平衡思考的真实性与可读性。 关键设计原则: 语气与风格:友好好奇,使用第一人称视角、口语化表达。 内容处理规则:信息过滤,忠实于原始思维链,明确标注思考修正,结构化输出。 安全与合规机制:隐私保护,过滤敏感话题和内容审查。 输出要求:符合特定的语言风格和格式,如使用特定短语、避免学术化术语等。
2025-03-02
告诉我chatGPT的官网
ChatGPT 的官网是:https://chat.openai.com/ 。ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。目前 ChatGPT 官网有两个版本,一个是 GPT3.5,一个是 GPT4。GPT3.5 是免费版本,只要拥有 GPT 账号就能使用,而 GPT4 若要使用更多功能则需要升级到 PLUS 套餐,收费标准是 20 美金一个月。
2025-02-28
我想用chatGPT帮我生成图片,告诉我他的官网
ChatGPT 本身不能直接生成图片。但 OpenAI 旗下的 DALL·E 3 可以生成图片。您可以通过以下方式获取相关信息: 打开 ChatGPT 就能使用 DALL·E 3 生成图片,OpenAI 还罕见地发布了一些技术细节。论文地址:https://cdn.openai.com/papers/dalle3.pdf 。 关于 DALL·E 3 的更多介绍:DALL·E 3 是 OpenAI 在 2023 年 9 月份发布的文生图模型,与 DALL·E 2 相比,它可以利用 ChatGPT 生成提示,生成的图质量也更高。例如对于同样的 prompt“一幅描绘篮球运动员扣篮的油画,并伴以爆炸的星云”,DALL·E 3 在细节、清晰度、明亮度等方面优于 DALL·E 2 。
2025-02-28
ChatGPT 各项技术能力路线图
以下是关于 ChatGPT 技术能力路线图的相关内容: 阶段一:开卷有益阶段 理解人类语言,学习语义关系、语法规律,能够应对未见过的语言处理情况。 GPT3 习得各种词汇和语法规则、编程语言及不同语言之间的关系,但存在回答不受约束的问题,指挥很重要。 阶段二:模版规范阶段 对话模版矫正模型,可形成优质对话并实现延展能力,知道什么该说和不该说。 通过任务对话范文训练,实现理解指令要求和例子要求的能力。 同时,在 AGI 实现路径与技术预测方面: 主要技术路线与理论框架包括可能性,如硬件与计算架构的趋势(量子计算、神经形态芯片、云计算资源扩展等),软件与算法进展(深度学习、元学习、强化学习、神经符号混合、AutoML、AutoGPT 等),以及人工智能安全与对齐研究(对齐难题、可解释性等)。 实现 AGI 所需的里程碑与风险点包括可能的时间表(如 2030、2040、2050 关键技术预测)和潜在的“奇点”时刻与触发条件(硬件爆发、算法重大突破、意外的研究范式转折等)。 此外,AI 的发展历程: 从 1950 年提出,近 20 年在国内互联网发展下普及。 最初应用是基于 NLP 技术的聊天机器人和客服机器人。 随后中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中广泛应用。 以前技术突破多限于特定领域,模型应用范围狭窄。 随着 OpenAI ChatGPT 等大型语言模型的突破,展示了新的发展路线,通过大规模模型预训练,涌现出广泛的智能应用。 这种集多功能于一体的模型为 AI 未来发展提供新方向,也带来新焦虑,但“人机共生”几乎是人类发展的必然。
2025-02-27
有没有能代替人工的ai
以下是关于能否有替代人工的 AI 的相关信息: 目前 AI 仍处于“任务渗透”阶段,而非“职业颠覆”。AI 最常用于编程(37%)和写作(10%),对体力劳动和专业职业影响较小。中等收入、高学历职业 AI 采用率最高,低收入和极高收入较低。AI 增强人类工作比例(57%)大于完全自动化(43%),短期内 AI 主要是辅助工具,而非取代人工。未来可能从“人机共创”模式向“任务外包”模式演进。 Inflection AI 的联合创始人 Mustafa Suleyman 提出了现代版的图灵测试,要求 AI 具备采取行动和取得成就的能力,以及对世界产生有意义的影响,如仅用十万美元投资,在几个月内通过零售网络平台赚取一百万美元,这需要 AI 完成一系列复杂任务,包括制定策略、撰写文案、研究设计产品、与制造商和物流合作、谈判合同、创立及管理市场营销活动等,同时面临分层规划和可靠记忆等技术挑战。 3 月 4 日的 AI 资讯中,在多个领域有新进展,如在 3D 方面,Meshcapade 可从视频/图像中捕捉面部表情并具有逼真的 3D 发丝,InsTaG 能通过几秒钟视频学习快速形成逼真的 3D 说话头像效果,还有新型 3D 场景记忆框架 3DMem;在 AI 绘图方面,智谱开源了可在图像中生成中文字符的 AI 绘图 CogView4,海螺推出了 Image01 多功能文本转图像模型;在 AI 视频方面,Runway 内测能力可根据参考图像进行 Video to Video 视频风格化,Vidu 的 API 开放平台全面开放;在 AI 模型方面,Google Colab 推出 Data Science Agent,微软为医疗行业提供首个统一语音 AI 助手 Dragon Copilot,Opera 宣布推出网页浏览器的 AI 代理。
2025-03-06
怎样代替客服
以下是关于代替客服的相关内容: 目前已成熟的方式是采用 RAG+知识问答+语音条,主要场景是替代掉传统客服或者对内做培训的知识库。可以开发点击鼠标等动作的 RPA,搭配 RAG 的系统,方便现场 demo 演示。 实现难点包括 GPT4 等很多测试并不具备 planning 的能力,只能 plan 模型学过的知识库里的东西。面对更深层次的用户需求,需要一个产品经理将问题一层层拆开,未来很长时间是人与 GPT 同时存在的状态。 AIGC 在客户关系管理(CRM)领域有着广阔的应用前景,在客户服务方面,基于 AIGC 的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。 对于中小企业,利用人工智能(AI)技术,尤其是 AI 聊天机器人来自动化处理客户服务中的常见咨询,不仅可以提升客户服务的效率和质量,还可以减轻人工客服人员的工作负担。具体做法包括部署 AI 聊天机器人处理常见的客户咨询,根据企业需求和预算选择合适的解决方案并定制回答库,将其集成到多种客户服务渠道;通过机器人提供 24/7 客户支持,提升响应速度和服务质量,定期监控其性能并根据反馈优化,随着 AI 技术发展定期更新算法和知识库。
2025-02-19
AI可以代替人工数控编程吗?
AI 目前不能完全代替人工数控编程。虽然 AI 编程技术在不断发展,辅助编程效率也有所提高,但在复杂和商业化的应用中仍存在困难。 初级程序员可能会受到一定冲击,但中高级岗位仍有需求。软件开发需要人工主导复杂流程,AI 更像是“助手”而非“接管者”。代码编写只是开发中的一环,程序员的工作还包括需求评估沟通、架构设计、调试部署等多个模块。而且,大语言模型面对复杂项目可能面临改好一个 bug,产生一个新 bug 的情况。 例如,Cursor 是一款不错的编程工具,集代码编写、报错调试、运行于一体,能让小白无压力入门代码,但它比较适合简单、原型类的项目,在复杂和商业化应用时会面临挑战。 总之,在目前,AI 不能完全替代人工数控编程,未来可能会是一种人工和智能混合的工作模式。
2025-02-14
我想要能代替我直播的数字人工具
以下是一些能代替您直播的数字人工具相关信息: 数字人类型和应用场景: 1. 二维/三维虚拟人:用于游戏、IP 品牌(柳夜熙)、内容创作等。 2. 真人形象数字人:用于直播卖货、营销/投流广告视频录制(Heygen)、语言学习(CallAnnie)等。 数字人的价值: 1. 代替人说话,提升表达效率和营销效率,例如真人做不到 24 小时直播,但数字人可以。 2. 创造真实世界无法完成的对话或交流。 数字人面临的问题: 1. 平台限制:目前数字人水平参差不齐,平台担心直播观感,有一定打压限制。比如抖音出台一些标准,而微信视频号容忍度更低,人工检查封号。 2. 技术限制:形象只是皮囊,智能水平和未来想象空间,依赖大模型技术提升。 3. 需求限制:直播带货算个落地场景,但不刚。“懂得都懂”的刚需场景,国内搞不了。目前更多是体验新鲜感。 4. 伦理/法律限制:声音、影像版权等,比如换脸、数字永生等等。 数字人直播盈利方式: 1. 直接卖数字人工具软件。分实时驱动和非实时驱动两类,实时驱动在直播时能改音频话术,真人接管。市面价格在一年 4 6 万往上(标准零售价)。非实时一个月 600 元,效果很差,类似放视频的伪直播,市场价格混乱,靠发展代理割韭菜。 2. 提供数字人运营服务,按直播间成交额抽佣。 AI 直播卖货适用品类和场景: 1. 适用于不需要强展示的商品,如品牌食品饮料。如果服装就搞不了,过品快,衣服建模成本高。 2. 适用于虚拟商品,如门票、优惠券等。 3. 不适用于促销场景,这涉及主播话术、套路,调动直播间氛围能力等。 4. 电商直播分为达播跟店播,数字人直播跑下来效果最好的是店播,数据基本能保持跟真人一样(朋友公司数据)。 AI 直播的壁垒和未来市场格局: 1. 时间拉长,技术上没壁垒。但目前看仍有技术门槛,单纯靠开源算法拼的东西,实时性、可用性不高。比如更真实的对口型,更低的响应延迟等。 2. 不会一家独大,可能 4 5 家一线效果,大多二三线效果公司。因为它只是工具,迁移成本低。 3. 真正把客户服务好,能规模化扩张的公司更有价值。疯狂扩代理割韭菜,不考虑客户效果的公司,售后问题很麻烦。 4. 有资源、有业务的大平台下场,可能会带来降维打击,例如剪映马上要做,如果不仅提供数字人,还提供货品供应链、数据复盘分析等等,全环节打通会绑定商家,很难打。 虚拟主播的驱动方式: 目前,虚拟数字人从技术驱动方式上可以分为两类,一种是“中之人”驱动,另一种是由 AI 驱动。 “中之人”通过动作捕捉和面部捕捉技术,实现虚拟人与现实的交互。动作捕捉技术可以提供一套全身动捕硬件设备,售价约为 29000 元,另需缴纳 800 元的软件年度服务费。如果只需要捕捉面部表情,价格则约为 6000 元左右。总的来说,“中之人”是虚拟人物的“皮囊”,而“中之人”才是其真正的灵魂。 AI 驱动是通过 AI 技术实现虚拟人的创建、驱动和内容生成的综合技术,使其具备感知、表达等交互能力。AI 驱动的虚拟人能够智能地读取并解析外部输入信息,并根据解析结果做出决策,然后驱动人物模型生成相应的语音和动作,从而与用户进行互动。这种“一站式”技术让虚拟数字人具备更加自然、智能、人性化的交互能力。
2025-01-31
我是个外行,完全小白、没有编程基础。我有个初步的想法,做一个智能客服,来代替或者帮助我们行业的人工客服。那么,我应该从哪些知识开始学习、或者我自己能不能办到?
对于完全没有编程基础但想做智能客服的小白,以下是一些建议: 1. 先对 AI 有初步的了解,明确自己的需求和目标。 2. 学习一些基本的概念,比如什么是 AI、提示词工程等。 3. 可以参考他人的学习路径,例如以“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”等为关键词。 4. 要有耐心,在 AI 的帮助下一步一步来,并在这个过程中逐渐学习一些编程知识。 5. 避免追求“大而全”和完美主义,从小的功能和简单的应用开始,尽快让系统“跑起来”,获得实际使用的反馈,再不断改进。 同时,有一些成功的案例可供参考。比如有人从完全不懂代码和英语很差的状态,通过不断学习和实践,在公司中实现了智能客服从创建到应用的过程,还创建了多个智能体。但也要注意,现实中真正的应用往往有复杂的需求,不能完全依赖 AI 一次性搞定,需要自己不断努力和积累。
2024-12-23
金融业在哪些方面是不能被AI所代替的
在金融业中,以下方面不太容易被 AI 所替代: 1. 战略决策:CFO 及其直接报告人应专注于金字塔顶端的战略决策,这需要综合的判断力、对宏观环境的深刻理解和长期的经验积累,AI 难以完全胜任。 2. 复杂的情感决策:金融服务被认为是情感购买,决策树复杂且难以自动化,需要人类根据客户的个人情况提供个性化的建议。 3. 合规与法律处理:金融服务高度受监管,复杂且非结构化的法律合规要求人类员工的参与和判断,以确保符合规定。 尽管 AI 在金融领域的预测、报告、会计和税务、采购和应付账款等方面能够提供帮助和实现自动化,但上述几个方面仍依赖人类的专业能力和经验。
2024-12-18
可不可以续写歌曲
以下是关于续写歌曲的相关内容: 《西游不能停》这首歌在年前创作时使用的是 suno V2 版本,单次最多只能生成 80s 的音乐,无法唱完所有歌词,所以需要续写。 在 web 端,在想要续写的歌曲处点击“continue from this song”;在 discord 中,则点击“⏩continue 1/2”的 icon。 如果续写时正好卡在一个段落的中间,有两个细节需注意: 1. 不要在 lyrics 的最前头加任何 Metatag,否则会被当做一个新的段落,丢失掉连贯性。 2. 如果第一段的结尾最后一个字哪怕没有唱完,只发了一点点音,续写的时候也直接从下一个字开始。例如《西游不能停》的第一段在八戒的“我自有我抱负”这句结束,并且“负”字只发了一半的音,那么续写的时候直接从“尊嘟假嘟....”开始。您可以直接跳到 Part 1 的最后和 Part 2 的开始听。 另外,Suno 操作指北 V2 中提到关于歌词延续的常见问题: 1. 如果歌词被切断,在下一个片段开始,接上它们停止的地方。如果一个单词被切成两半,用下一个单词开始继续的歌词。且不要再次使用被中断的元标签。 2. 如果 Chirp 尝试重复它刚唱过的完整行,或者逐字重复合唱,使用来打断歌曲流程。可以考虑回到之前的片段,重新使用延续功能生成。 还有,在进入一段器乐后,若想让它停止并进入歌词,可以试着在歌词前加入语气词,比如,来提示 Chirp 这里有人声,让它做好过渡准备,有时有用。 此外,“无法生成”或“尝试另一个提示”的错误意味着文本请求被阻止了。被拒绝的提示将退还积分。一个歌曲提示可能因为多种原因被阻止: 1. 歌词受版权保护。 2. 音乐风格或歌曲描述使用了真实的乐队或艺术家名称。 3. 歌词包含违规词汇。 4. 实际积分用尽了,但网页没有同步(刷新页面)。 5. 在默认模式或“生成随机歌词”按钮下,AI 无法理解如何将请求转化为歌曲。
2025-01-15
我想用AI完成一个编程项目,帮我从零到一完成一个个人介绍网站,我现在使用vo.dev完成了一个网站,但是不可以供我使用我上传github后再vercel运行发现会出现404请问我该怎么办
很抱歉,暂时没有关于您所描述问题的相关内容。出现 404 错误通常是由于页面未找到导致的。您可以先检查一下以下几个方面: 1. 确认您在 GitHub 上的代码上传是否完整且正确,包括相关的配置文件和依赖项。 2. 检查 Vercel 的部署设置,确保配置正确,例如域名绑定、环境变量等。 3. 查看服务器的日志,以获取更详细的错误信息,从而确定问题的具体原因。 希望这些建议能对您有所帮助,如果问题仍未解决,建议您进一步查阅相关的技术文档或向技术社区寻求帮助。
2024-12-19
可不可以提供一个本地化的大模型方法,让我建立这个合规法律的知识库
以下是为您提供的本地化大模型及搭建合规法律知识库的方法: 一、通过 Open WebUI 使用大模型 1. 首先访问相关网址。打开页面时需使用邮箱注册账号。 2. 登陆成功后,若您使用过类似 ChatGPT 的大模型对话网站,对该页面不会陌生。 3. Open WebUI 一般有两种使用方式: 聊天对话。 RAG 能力,即让模型根据文档内容回答问题,这是构建知识库的基础之一。 4. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现对话功能。 5. ChatGPT 访问速度快且回答效果好的原因: 速度快是因为 GPT 大模型部署的服务器配置高。 效果好是因为 GPT 大模型的训练参数多、数据更优及训练算法更好。 二、您的硬件达标了么 运行大模型需要很高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 1. 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 2. 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 3. 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 最低配置运行非常慢,不建议使用。但这不妨碍我们亲自实操一遍,以加深对大模型构建知识库底层原理的了解。若想要更顺滑的体验知识库,可以参考文章: 三、本地知识库进阶 若要更灵活掌控知识库,需额外软件 AnythingLLM。它包含 Open WebUI 的所有能力,并额外支持以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 AnythingLLM 安装和配置 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库 AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。具体步骤: 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅依靠文档中的数据给出答案。 4. 测试对话。完成上述配置后,即可与大模型进行对话。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。若您对 AI Agent 技术感兴趣,可以联系我或者加我的免费知识星球(备注 AGI 知识库)。
2024-12-18
可不可以用AI制作一个自己专属的聊天机器人,能模仿自己喜欢或敬佩的角色?
可以用 AI 制作一个自己专属的聊天机器人,能模仿自己喜欢或敬佩的角色。以下是一些相关信息: 使用大型语言模型可以构建自定义聊天机器人,为餐厅扮演 AI 客户服务代理或 AI 点餐员等角色。 是一款基于 LLM 的聊天机器人网站,用户可以与预先创建的角色交流,也可以自己创作角色。 许多初创公司正考虑使用生成性 AI 来创建可信角色,目前有数百家用类似 GPT3 的语言模型驱动的公司正在构建通用聊天机器人。 这些信息表明,利用 AI 技术制作专属聊天机器人是可行的,并且有多种选择和应用场景。
2024-07-03
如何搭建一个工作流来做ai agent 的事情,帮助学生找工作的整个流程,从找合适岗位-> 投递简历 -> 和hr联系 ->做面试前的search工作和面试准备-> 提醒参加面试-> 面试结果追踪,后续的复盘,得到面试经验
搭建一个用于帮助学生找工作的 AI Agent 工作流可以参考以下步骤: 1. 规划 总结任务目标与执行形式,明确帮助学生从找合适岗位到面试结果追踪及复盘的全过程。 将任务分解为可管理的子任务,例如找合适岗位、投递简历、与 HR 联系、面试前准备、提醒参加面试、面试结果追踪和复盘等,并确立它们的逻辑顺序和依赖关系。 设计每个子任务的执行方法,比如确定合适的岗位筛选标准、制定简历投递策略、规划与 HR 沟通的方式等。 2. 实施 在相应的平台(如 Coze 等)上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,例如设置岗位筛选的参数、简历模板和投递渠道、与 HR 联系的话术等,并验证每个子任务的可用性。 3. 完善 整体试运行工作流,识别功能和性能的卡点。 通过反复测试和迭代,优化工作流,直至达到预期效果,例如提高学生找到合适工作的成功率、提升面试表现等。 此外,在技术实现方面,例如实现无代码开发和工具调用,您可以参考以下操作: 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的工作流,也可以直接将相关工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 从 ollama 的 github 仓库找到对应版本并下载,启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。如果 ollama 连接不上,很可能是代理服务器的问题,请将您的 127.0.0.1:11434 添加到不使用代理服务器的列表中。
2025-02-27
你能回答关于AI以外的事情吗?有关于AI的方面你又知道多少。
以下是关于 AI 的相关知识: 1. 基础方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 2. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 3. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 4. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 关于 WaytoAGI 网站,它提供以下功能: 1. 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 请注意,我只能为您提供与 AI 相关的知识和指导,对于其他非 AI 领域的内容,我的知识库中没有相关信息。
2025-02-16
目前大家用AI做得最多的事情是什么?
目前大家用 AI 做的事情较多,主要集中在以下几个方面: 1. 内容创作:包括营销以及小说和短剧创作等。例如开发智能营销矩阵平台,为各细分行业的头部企业服务。 2. 写代码:写小脚本方便且能在短时间内完成较大工作量,但存在 debug 困难、技术局限性以及无法完成大型任务等问题。 3. 日常活动自动化:如交通监测系统使通勤更顺畅,银行账户欺诈检测等。 4. 工业中的大规模安全关键实践:像控制核聚变过程。 5. 科学研究:加速新药物的发现和应对气候变化的技术等。 6. 提升工作效率和安全性:支持人们更好地完成现有工作。 总之,AI 在多个领域都展现出了巨大的潜力和应用价值。
2025-02-13
关于Deepseek的所有事情
以下是关于 DeepSeek 的相关信息: 媒体报道和网络文章: 通往 AGI 之路:关于 DeepSeek 的所有事情【知识库持续更新中】,链接:https://mp.weixin.qq.com/s/n0WrrJL0fVX6zLeTBWpZXA 数字生命卡兹克:DeepSeek 的提示词技巧,就是没有技巧,链接:https://mp.weixin.qq.com/s/KwFfItlMvS9FCDwNbvVWu7A 宝玉:教你如何破解 DeepSeek R1 系统提示词,链接:https://mp.weixin.qq.com/s/vAp2wI5ozTw7R6jreLMw 橘子汽水铺:中国开源,震撼世界:DeepSeek R1 的变革、启示与展望,链接:https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw 橘子汽水铺:自学成才之路,DeepSeek R1 论文解读,链接:https://mp.weixin.qq.com/s/gmdHyh6fsUdj1JhM1sV9bg 新智元:史上首次,DeepSeek 登顶中美 AppStore!NYU 教授:全球「AI 霸权」之争已结束,链接:https://mp.weixin.qq.com/s/ybvV8RMX0yyS5YfG1qNWgg 一支烟花 AI:用流程图对比 DeepSeekR1,OpenAI O1,Claude 说明强化学习在 AI 大模型训练、推理的创新和意义,链接:https://mp.weixin.qq.com/s/mdGtOcg1RuQOEBn31KhxQ 腾讯科技:一文读懂|DeepSeek 新模型大揭秘,为何它能震动全球 AI 圈,链接:https://mp.weixin.qq.com/s/cp4rQx09wygE9uHBadI7RA 张小珺腾讯科技:一场关于 DeepSeek 的高质量闭门会:比技术更重要的是愿景,链接:https://mp.weixin.qq.com/s/a7C5NjHbMGh2CLYk1bhfYw 评论集合: 游戏科学创始人、黑神话悟空制作人冯骥认为 DeepSeek 是一个超级了不起的突破,它做到了以下六点: 1. 强大。比肩 OpenAI O1 的推理能力,暂时没有之一。 2. 便宜。参数少,训练开销与使用费用小了一个数量级。 3. 开源。任何人均可自行下载与部署,提供论文详细说明训练步骤与窍门,甚至提供了可以运行在手机上的 mini 模型。 4. 免费。官方目前提供的服务完全免费,任何人随时随地可用。 5. 联网。暂时唯一支持联网搜索的推理模型(OpenAI O1 还不支持)。 6. 本土。深度求索是一家很小规模的年轻中国公司,由没有海外经历甚至没有资深从业经验的本土团队开发完成。 冯骥还给出了使用建议: 1. 请直接访问:网页链接马上用起来,也有移动 APP。 2. 使劲用,疯狂用,尝试用它基本取代传统搜索。请想象你已经认识每个领域的顶尖专家,而且他们都是你随时在线的好朋友,把所有可能需要“请教别人”的问题,都拿去先问它——无论是构建一个复杂函数,搞清楚附近哪个游泳池最好,检查合同里的法律陷阱,让新写的歌词再押韵点,或者帮父母确认某个保健品是否真的有效。 3. 去看看别人是怎么用的,去试试其他大模型,了解 AI 擅长什么,不擅长什么,如何调教,然后继续解锁与迭代属于自己的用法与更多工具。 冯骥希望 DeepSeek R1 会让人们对当前最先进的 AI 祛魅,让 AI 逐渐变成生活中的水和电。并感慨这样震撼的突破来自一个纯粹的中国公司,知识与信息平权又往前迈出了坚实的一步。
2025-02-13
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
我在写小说,怎么让AI在写作时能很好地根据整体故事情节和上下文进行故事的展开和描写
以下是一些让 AI 在写作小说时能很好地根据整体故事情节和上下文进行故事展开和描写的方法: 1. 创作穿越故事的 Prompt 时,明确以下内容: 标题:“generate:小说的标题” 设置:“generate:小说的情景设置细节,包括时间段、地点和所有相关背景信息” 主角:“generate:小说主角的名字、年龄、职业,以及他们的性格和动机、简要的描述” 反派角色:“generate:小说反派角色的名字、年龄、职业,以及他们的性格和动机、简要的描述” 冲突:“generate:小说故事的主要冲突,包括主角面临的问题和涉及的利害关系” 对话:“generate:以对话的形式描述情节,揭示人物,以此提供一些提示给读者” 主题:“generate:小说中心主题,并说明如何在整个情节、角色和背景中展开” 基调:“generate:整体故事的基调,以及保持背景和人物的一致性和适当性的说明” 节奏:“generate:调节故事节奏以建立和释放紧张气氛,推进情节,创造戏剧效果的说明” 其它:“generate:任何额外的细节或对故事的要求,如特定的字数或题材限制” 根据上面的模板生成为特定题材小说填充内容,并分章节,生成小说的目录。 2. 接下来,让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并在其基础上按自己的审美略做修改。 3. 可以让 AI 以表格的形式输出细节描述。这样做有三个好处: 打破 AI 原本的叙事习惯,避免陈词滥调。 按编号做局部调整很容易,指哪改哪,别的内容都能够稳定保持不变。 确保内容都是具体的细节,避免整段输出时缩减导致丢光细节只有笼统介绍。 4. 把生成的表格依次复制粘贴,让 AI 照着写文章,偶尔根据需要给 AI 提供建议。 5. 注意小说大赛的要求,如最后的作品必须是 AI 直接吐出来的,不能有任何改动,不能超过规定字数等。如果需要修改,可能会遇到像 GPT4 记性不好或 Claude 改掉关键情节等问题。
2025-01-26