搭建一个用于帮助学生找工作的 AI Agent 工作流可以参考以下步骤:
规划
实施
完善
此外,在技术实现方面,例如实现无代码开发和工具调用,您可以参考以下操作:
打开Comfyui界面后,右键点击界面,即可找到Comfyui LLM party的目录,你既可以如下图一样,学习如何手动连接这些节点,从而实现一个最简单的AI女友工作流,也可以直接将[工具调用对比实验](https://github.com/heshengtao/comfyui_LLM_party/blob/main/workflow/%E6%8F%90%E7%A4%BA%E8%AF%8D%E5%B7%A5%E7%A8%8B%E8%8E%B7%E5%BE%97%E5%B7%A5%E5%85%B7%E8%B0%83%E7%94%A8%E5%AF%B9%E6%AF%94%E5%AE%9E%E9%AA%8C.json)工作流文件拖拽到Comfyui界面中一键复刻我的提示词工程实验。[heading2]4、启动ollama[content]从ollama的github仓库找到对应版本并下载:启动ollama后,在cmd中输入ollama run gemma2将自动下载gemma2模型到本地并启动。将ollama的默认base URL=http://127.0.0.1:11434/v1/以及api_key=ollama填入LLM加载器节点即可调用ollama中的模型进行实验。[heading2]5、常见报错及解决方案[content]1.如果ollama连接不上,很可能是代理服务器的问题,请将你的127.0.0.1:11434添加到不使用代理服务器的列表中。
在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法2.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性3.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。
在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法2.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性3.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。