直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

al的前沿在哪里

回答

目前 AI 的前沿领域包括以下方面:

  1. 生成式 AI 已从不受关注走向前沿,成为 AI 50 强榜单的重点。企业用户和消费者的 AI 生产力大幅提高,应用公司在 AI 50 强榜单中占据主导,众多公司将 AI 融入工作流程以扩张规模和降低成本,如 ServiceNow、Palo Alto Networks、Hubspot、Klarna 等。
  2. 不远的将来,有望看到 UX 和 UI 围绕 AI 的功能进行重新设计,开发全新的用户界面以提供新体验。
  3. OpenAI 作为一家重要的人工智能研究公司,成立于 2015 年,总部位于美国旧金山,其使命是推进人工智能技术发展。关于 OpenAI 的更多信息可参考相关时间线延伸阅读:Wiki:https://timelines.issarice.com/wiki/Timeline_of_OpenAI ,OpenAI Blog:https://openai.com/blog/ 。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

红杉|AI 50 未来公司

原文链接:https://www.sequoiacap.com/article/ai-50-2024/发表时间:2024-4-11作者:Konstantine Buhler编译:Z Potentials去年,生成式AI从不引人注意的地方走到了AI 50强榜单的前列。今年,随着我们看到企业用户和消费者的AI生产力开始大幅提高,它成为前沿和中心。尽管2023年美国的大部分AI风投都流向了基础设施领域——其中60%流向了最大的大语言模型(LLM)提供商,但应用公司仍在AI 50强榜单中占据主导地位。与此同时,我们开始看到AI如何为公司赋能。如今,许多公司正将AI融入其工作流程,以此来快速达成KPI。我们看到大公司正通过将AI融入其产品的方式而获益。工作流程自动化平台ServiceNow通过AI驱动的Now Assist,实现了近20%的事件避免率。Palo Alto Networks利用AI降低了处理费用的成本。Hubspot利用AI扩大了能够支持的用户规模。瑞典金融科技公司Klarna最近宣布,通过将AI融入用户支持,他们在运行率方面节省了4000多万美元。现在,成千上万的公司正在将AI整合到他们的工作流程中,以扩张规模和降低成本。AI 50强企业正在快速进化。不远的将来,我们有望看到UX和UI围绕AI的功能进行重新设计。在更好、更廉价地复制现有功能之后,我们将开发全新的用户界面,以提供有价值的新体验。

OpenAI 公司的时间线

OpenAl是一家人工智能研究公司,成立于2015年,总部位于美国旧金山。OpenAl的使命是推进人工智能技术的发展,为全球创造更加安全、智能的未来。OpenAI早期是个非营利机构,后来改成了有限营利形式。时间线延伸阅读:Wiki:https://timelines.issarice.com/wiki/Timeline_of_OpenAIOpenAI Blog:https://openai.com/blog/

OpenAI 真正想要什么 | WIRED

Altman并没有参与ChatGPT及其GPT-4的研究、神经网络训练或界面编码。但作为首席执行官——一个梦想家/实干家类型的人,他就像年轻版的联合创始人Elon Musk,没有包袱——一篇又一篇的新闻报道用他的照片作为人类新挑战的视觉象征。至少,那些没有用由OpenAI的视觉AI产品Dall-E生成的令人瞠目的图像作为头条的文章是如此。他是当下的先知,是人们在AI如何迎来黄金时代,或使人类变得无关紧要,或更糟的问题上首先要咨询的人物。五月的一个阳光明媚的日子,Altman的面包车载着他去参加了四次活动。第一场是与政府、学术界和工业界人士进行的一场不公开的“圆桌会议”(Round Table)。会议是在最后一刻组织的,地点在萨默斯镇咖啡馆的二楼。在酿酒师Charles Wells炯炯有神的肖像下,Altman向几乎所有听众提出了同样的问题。AI会杀死我们吗?它能被监管吗?他都一一作了详细回答,同时还不时瞄一眼自己的手机。之后,他在豪华的伦敦人酒店与牛津公会的600名会员进行了一次炉边谈话。之后,他来到地下室会议室,回答约100名企业家和工程师提出的更多技术问题。现在,他下午在伦敦大学学院的台上演讲几乎要迟到了。他和他的团队停在一个装卸区,然后被带进一系列蜿蜒曲折的走廊。一边走,主持人一边匆匆告诉Altman他要问的问题。当Altman突然出现在舞台上时,观众席上的学者、极客和记者们沸腾了。

其他人在问
如何写一个al聊天机器人
以下是关于如何写一个 AI 聊天机器人的相关内容: 一、打造聊天机器人 1. 对于订单聊天机器人,需要收集整个订单并总结,再次确认客户是否需要添加其他内容。若涉及送货,需询问地址并收取支付款项,以简短、口语化且友好的方式回应。同时要澄清所有选项、附加项和规格,唯一地从菜单中识别出项目。 2. 可以利用大型语言模型构建自定义聊天机器人,如为餐厅扮演 AI 客户服务代理或 AI 点餐员等角色。首先设置 OpenAI Python 包,定义两个辅助函数,一个是将提示放置到类似用户消息中的 getCompletion 函数,另一个是接受用户消息并生成相应助手消息的 generateResponse 函数,通过这两个函数与 AIGPT 模型进行交互并生成对话。 二、零基础模板化搭建 AI 微信聊天机器人 1. 在复制的 dockercompose.yml 文件中,修改具体配置来串联微信号和已创建好的 AI 机器人。配置参考官方来源:https://docs.linkai.tech/cow/quickstart/config 。 2. 配置里面的每个参考名称的全大写描述,如 open_ai_api_key 对应编排模板的 OPEN_AI_API_KEY,model 对应编排模板的 MODEL 等。 3. 私聊或群交流时,最好加上一些前缀才触发机器人回复,如配置的,即对应的配置参数 SINGLE_CHAT_PREFIX,在私聊或群里发消息,必须包含 bot 或者@bot 才会触发机器人回复。在群组里,对应配置参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。 4. GROUP_NAME_WHITE_LIST 参数用来配置哪些群组的消息需要自动回复。
2024-12-18
如何将网站搜索,修改成al聊天提问回答
要将网站搜索修改为 AI 聊天提问回答,您可以参考以下内容: 在 Cursor 中: Chat 聊天:允许您与看到您代码库的 AI 交谈,始终能看到当前文件和光标,可通过“⌘+Shift+L 或‘@’将特定代码块添加到上下文中,使用“⌘+Enter 与整个代码库聊天。 Codebase Answers 代码库答案:使用“@Codebase 或“⌘Enter 询问有关代码库的问题,Cursor 会搜索代码库以查找相关代码。 Reference your Code 引用您的代码:通过带有“@符号的参考代码用作 AI 的上下文,只需键入“@即可查看文件夹中所有文件和代码符号的列表。 Use Images 使用图像:点击聊天下方的图片按钮或拖入图片到输入框以包含视觉上下文。 Ask the Web 询问 Web:使用“@Web 从 Internet 获取最新信息,Cursor 会为您搜索网络并使用最新信息回答问题。 在 Customize 自定义方面: 可以在 Cursor Settings>Features>Chat 下自定义光标聊天。相关设置包括: 始终在网上搜索答案:这会使 AI 模型在每个查询中浏览网络以获取最新信息。 添加聊天淡入淡出动画:为生成的 AI 消息添加平滑动画。 默认为无上下文:使 AI 模型仅使用用户消息作为上下文,不包含其他上下文如当前文件。 自动滚动聊天:在 AI 在线程底部生成文本时自动滚动聊天。 在聊天窗格中缩小滚动条。 开始新聊天时显示聊天历史记录。
2024-12-18
如何学习Al
新手学习 AI 可以按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 如果是系统学习 LLM 开发,需要涵盖以下多个方面的知识和技能: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 了解 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。
2024-12-13
AI for social science 有哪些重要的资源
以下是一些关于 AI for social science 的重要资源: 1. 《人工智能权利法案蓝图》:其中提到了公民权利、公民自由和隐私方面的内容,包括言论自由、投票自由以及免受歧视、过度惩罚、非法监视和侵犯隐私等,还涉及机会均等和获取关键资源或服务等方面。 2. AGI 万字长文(下)| 2024,分叉与洪流:如果从“AGI 已经出现”的阴谋论出发,AGI 所需要的基本资源无法回避,在能源领域,如可控核聚变技术,在 AI 的协助下有了一定进展。 3. 4.5.2016 EN:通过耦合注册表中的信息,研究者能够在诸如心血管疾病、癌症和抑郁症等广泛的医疗状况方面获得极有价值的新知识。在社会科学领域,基于注册表的研究使研究者能够获得关于失业、教育等一系列社会状况与其他生活状况的长期相关性的重要知识。通过注册表获得的研究结果提供了坚实、高质量的知识,可为基于知识的政策的制定和实施提供基础,提高许多人的生活质量,并提高社会服务的效率。
2024-12-10
帮我写一个可以训练的分类器代码, python 代码,目的是将样本的扰动分为 0,0.001,0.003,0.005 四类,按照以下步骤写 第一步:导入需要的库 第二步:加载位于/public/xdw/ls/signaldefense/AS/perturbed_data.npy 的数据 第三步:获取数据样本的扰动值 第四步:判断扰动值的大小,比如扰动值为 0,则加一计数 第五步:打印出判断各类扰动值的正确率
以下是为您生成的 Python 代码示例,用于实现将样本的扰动分为 0、0.001、0.003、0.005 四类的分类器: ```python import numpy as np 第一步:导入需要的库 import numpy as np 第二步:加载数据 data = np.load 第三步:获取数据样本的扰动值 perturbation_values = data 假设扰动值在第二列 第四步:判断扰动值的大小并计数 count_0 = 0 count_0_001 = 0 count_0_003 = 0 count_0_005 = 0 for value in perturbation_values: if value == 0: count_0 += 1 elif value == 0.001: count_0_001 += 1 elif value == 0.003: count_0_003 += 1 elif value == 0.005: count_0_005 += 1 第五步:计算正确率 total_samples = len accuracy_0 = count_0 / total_samples accuracy_0_001 = count_0_001 / total_samples accuracy_0_003 = count_0_003 / total_samples accuracy_0_005 = count_0_005 / total_samples print print print print ```
2024-12-05
在comfyui中节点报错UNETLoader Error while deserializing header: MetadatalncompleteBuffei
很抱歉,仅根据您提供的“在 ComfyUI 中节点报错‘UNETLoader Error while deserializing header: MetadatalncompleteBuffei’”的信息,难以准确判断问题的具体原因和解决办法。这可能是由于多种因素导致的,比如模型文件损坏、软件版本不兼容、配置错误等。建议您检查模型文件的完整性,确保 ComfyUI 软件为最新版本,并检查相关配置是否正确。如果问题仍然存在,您可以尝试在相关的技术论坛或社区中搜索类似问题,以获取更多可能的解决方案。
2024-12-04
AI领域最前沿技术的最核心的论文
以下是为您整理的关于 AI 领域最前沿技术核心论文的相关内容: 1. 《Attention is All You Need》:这篇由 Google Brain 团队撰写的论文介绍了 Transformer 架构,彻底改变了 AI 领域的格局。它能够处理未标记的、混乱的数据,并且比以前的方法更加高效。 2. 杰弗里·辛顿(Geoffrey E. Hinton)的相关论文: 描述极化子的“The Contribution of Excitons to the Complex Dielectric Constant of Crystals”(1958 年)。 描述长程电子转移量子力学的“Electron transfer between biological molecules by thermally activated tunneling”(1974 年)。 “Kinetic Proofreading:1974 年)。 “神经网络和具有突发性集体计算能力的物理系统”(1982 年)(被称为 Hopfield 网络)。 与 D.W.Tank 合著的“优化问题中决策的神经计算”(1985 年)。 在这篇文章中,作者分享了一份用于更深入了解现代 AI 的精选资源列表,称其为“AI 典藏”。这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。同时,还介绍了 AI 技术的发展历程,如 2015 年 AI 系统的局限性,以及 Transformer 架构出现后为 OpenAI 发展带来的影响。
2024-12-19
当前AI绘图的前沿图景
当前 AI 绘图的前沿图景包括以下几个方面: 定义与发展: AI 绘画是利用人工智能技术,通过算法和模型让计算机生成具有一定艺术效果的图像。早期成果较为简单粗糙,随着技术进步,尤其是深度学习算法如卷积神经网络的应用,能生成更复杂、逼真和富有创意的图像,涵盖各种风格和题材,并在与人类艺术家的互动融合中不断创新,为艺术创作带来新的可能和挑战。 场景应用: 1. 广告设计:可快速生成各种创意概念图,为广告策划提供灵感和初稿。 2. 游戏开发:用于创建游戏场景、角色形象等,提高开发效率。 3. 影视制作:辅助生成特效场景、概念设计等。 4. 建筑设计:帮助设计师构想建筑外观和内部布局。 艺术与科技的融合: 艺术与科技的融合呈现出前所未有的奇妙景象,AI 绘画作为杰出代表,将二者完美结合,开启探索之旅,引领艺术界走向未来。艺术创作通常依赖手工技艺和个人感悟,而人工智能技术的发展使艺术创作经历革命性变革,AI 绘画利用机器学习和深度学习等技术,能模拟创作过程并生成令人惊叹的作品,为艺术家提供新工具,为观众带来新体验,也打破了传统创作的局限,为缺乏绘画技巧的人提供参与机会,使艺术更具民主化和包容性。 商业实战案例: 如 Midjourney 在概念篇中生成令人惊叹的宇宙星空、未来主题等超现实主义的图片,包括宇宙飞船、星系、行星、太空等元素,呈现出高度详细、动态、富有表现力的效果,具有逼真的灯光和阴影,应用于未来太空科技风格等领域,带来震撼的视觉体验。 您可以通过以下链接体验 AI 绘画助手: BotID:7387390303403671587
2024-12-03
ai绘画的最前沿技术以及效果
AI 绘画的最前沿技术及效果包括以下方面: 技术融合:将艺术与先进的机器学习、深度学习等技术完美结合,如利用卷积神经网络等算法模拟人类创作过程。 打破局限:不再局限于传统手工绘画技巧,通过编程、算法和数据分析等开拓全新创作领域,为艺术家提供灵感,为缺乏绘画技巧的人提供创作机会,使艺术更具民主化和包容性。 效果提升:能够生成更加复杂、逼真和富有创意的图像,涵盖各种风格和题材,从写实到抽象,从风景到人物。 应用广泛:在广告设计、游戏开发、影视制作、建筑设计等领域发挥作用,可快速生成创意概念图、创建场景和角色形象、辅助特效场景和概念设计、帮助构想建筑外观和内部布局等。 色彩与情感表达:着色画通过色彩的丰富性、情感表达、细节和纹理的突出以及创意发挥,增加作品的表现力和独特性。 关键词结构思路:包括基础描述、风格指定、色彩要求和细节强调等方面。 进阶玩法:如使用 MJ 的 Retexture 功能或即梦参考功能,通过写提示词或垫图功能给着色画上色。
2024-12-03
大模型有哪些前沿论文
以下是一些关于大模型的前沿论文: 2017 年发布的《Attention Is All You Need》,开启了大模型发展的序幕。 2018 年 Google 提出的 BERT(Bidirectional Encoder Representations from Transformers),创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模,参数规模在 110M 到 340M 之间。 2018 年 OpenAI 提出的 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标的方式,参数规模达 1750 亿。 2021 年 Meta 提出的 Large LAnguage Model Approach(LLAMA),是首个开源模型,为构建更大规模、更通用的语言模型提供了方法与工具,参数规模在十亿到千亿之间。 2024 年苹果公布的《MM1:Methods,Analysis & Insights from Multimodal LLM Pretraining》,这是一个具有高达 30B 参数的多模态 LLM 系列,探讨了不同架构组件和数据选择的重要性。
2024-11-15
可以找到产品相关的前沿科技报道和论文 的AI工具
以下是一些可以帮助找到产品相关前沿科技报道和论文的 AI 工具: 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。 此外,在“AI+教育”方面,也有一些相关案例和投稿,如: 《AI 洞察:一线医生如何实际使用 ChatGPT》:来自纽约时报最新报道,再现了 ChatGPT 在美国一流医院的实际场景。 《笔记:与 AI+教育前辈聊天》:亲测有效的让某人主动学习 AI 的方式。 《数学:OpenAI 发表论文大幅提高 ChatGPT 的数学准确性》:探讨了 ChatGPT 在数学方面的挑战和改进。 《书籍推荐:三本神经科学书籍》:强调多学科交叉对学习和运用 AI 的作用。
2024-10-30
ai行业前沿技术突破
以下是关于 AI 行业前沿技术突破的相关内容: 2024 年,AI 模型在生物医学、气象预测等领域取得了重要突破。诺贝尔物理学奖和化学奖先后颁给了 AI,这不仅推动了机器学习的理论创新,还揭示了蛋白质折叠问题,标志着人工智能已成为一门科学学科和加速科学的工具。 在具体的技术应用方面: 基于深度学习和 Transformer 架构的蛋白质结构预测模型 AlphaFold 3 能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,将为细胞功能解析、药物设计和生物科学的发展提供有力支持。 DeepMind 展示的新的实验生物学能力 AlphaProteo 是一种能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。 生物学前沿模型的扩展方面,Meta 发布的 ESM3 是一种前沿多模态生成模型,它在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。 此外,在学习路径方面,偏向技术研究方向需要掌握数学基础(如线性代数、概率论、优化理论等)、机器学习基础(监督学习、无监督学习、强化学习等)、深度学习(神经网络、卷积网络、递归网络、注意力机制等)、自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等,还包括前沿领域如大模型、多模态 AI、自监督学习、小样本学习等以及科研实践。 偏向应用方向则需要具备编程基础(Python、C++等)、机器学习基础(监督学习、无监督学习等)、深度学习框架(TensorFlow、PyTorch 等),了解应用领域(自然语言处理、计算机视觉、推荐系统等)、数据处理(数据采集、清洗、特征工程等)、模型部署(模型优化、模型服务等),并进行行业实践。 AI 技术的发展历程大致为:早期阶段有专家系统、博弈论、机器学习初步理论;知识驱动时期有专家系统、知识表示、自动推理;统计学习时期有机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期有深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括: 大模型,如 GPT、PaLM 等。 多模态 AI,如视觉语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 小样本学习,如元学习、一次学习、提示学习等。 可解释 AI,包括模型可解释性、因果推理、符号推理等。 机器人学,涉及强化学习、运动规划、人机交互等。 量子 AI,包含量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2024-10-28