Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有哪些使用语言模型的最佳实践案例?

Answer

以下是一些使用语言模型的最佳实践案例:

  1. 转换类应用:
    • 大型语言模型擅长将输入转换为不同格式,如语言翻译、拼写和语法矫正、格式转换等。例如,可以输入一段不符合语法规范的文本让其修改,或输入 HTML 输出 JSON。
    • 可以执行翻译任务,模型在多种语言的大量文本上训练,能够掌握数百种语言。
  2. 基础提示词:
    • 提示词包含传递到模型的指令、问题等信息,也可包含上下文、输入或示例等详细信息,以更好地指导模型获得更好结果。
    • 对于 OpenAI 的聊天模型,可使用 system、user 和 assistant 三种角色构建 prompt,通常示例仅使用 user 消息作为 prompt。
    • 提示工程探讨如何设计最佳提示词,如通过改进提示词完善句子输出。
  3. 提示工程:
    • 将复杂任务分解为更简单的子任务,如使用意图分类识别用户查询中的指令,对长对话进行总结或过滤,将长文档分段总结。
    • 给予模型“思考”时间,如让模型在给出最终答案前先进行“思考链”推理,指导其先给出解决方案,使用“内心独白”或系列查询隐藏推理过程,询问是否遗漏信息以确保完整性。
Content generated by AI large model, please carefully verify (powered by aily)

References

6.转换类应用

大型语言模型非常擅长将其输入转换为不同的格式,例如将一种语言中的文本输入并将其转换或翻译成另一种语言,或帮助拼写和语法矫正,因此,您可以输入一段可能不完全符合语法规范的文本,并帮助你稍微修改一下,或者甚至转换格式,例如输入HTML并输出JSON。因此,我以前用一堆正则表达式写的一堆应用程序现在肯定可以更简单地实现,只需要使用一个大型语言模型和几个提示即可。大型语言模型可以使这些转换过程更加简单和高效,为人们提供更好的文本相关应用体验。是的,我现在基本上会使用ChatGPT来校对我所写的每一篇文章,所以现在我很高兴向您展示更多Notebook中的例子。所以首先我们将导入OpenAI并使用相同的getCompletion帮助函数,这是我们在视频中一直在使用的。[heading2]6.1翻译任务[content]接下来我们将执行一个翻译任务。因此,大型语言模型是在很多来源的文本上进行训练的,其中很多是互联网的内容,并且这些文本内容是以许多不同的语言呈现的。这种训练使模型具有进行翻译的能力。这些模型能够以不同程度掌握数百种语言,因此我们将讨论如何使用这种能力的一些示例。让我们从一些简单的例子开始。在第一个例子中,提示是将以下英文文本翻译成西班牙语。Hi,我想订购一个搅拌机。回复是Hola,me gustaría ordenar una licuadora。非常抱歉,对于所有的西班牙语使用者,我从未学过西班牙语,您肯定已经注意到了。好的,让我们再试一个例子。在此例中,提示是告诉我这是什么语言。然后,这是法语,Combien coûte la lampe d’air。让我们运行一下。模型已经确定这是法语。

基本概念

您可以通过简单的提示词(Prompts)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的_指令_或_问题_等信息,也可以包含其他详细信息,如_上下文_、_输入_或_示例_等。您可以通过这些元素来更好地指导模型,并因此获得更好的结果。看下面一个简单的示例:提示词输出结果如果使用的是OpenAI Playground或者其他任何LLM Playground,则可以提示模型,如以下屏幕截图所示:需要注意的是,当使用OpenAI的gpt-4或者gpt-3.5-turbo等聊天模型时,您可以使用三个不同的角色来构建prompt:system、user和assistant。其中system不是必需的,但有助于设定assistant的整体行为,帮助模型了解用户的需求,并根据这些需求提供相应的响应。上面的示例仅包含一条user消息,您可以使用user消息直接作为prompt。为简单起见,本指南所有示例(除非明确提及)将仅使用user消息来作为gpt-3.5-turbo模型的prompt。上面示例中assistant的消息是模型的响应。您还可以定义assistant消息来传递模型所需行为的示例。您可以在[此处(opens in a new tab)](https://www.promptingguide.ai/models/chatgpt)了解有关使用聊天模型的更多信息。从上面的提示示例中可以看出,语言模型能够基于我们给出的上下文内容`"The sky is"完成续写。而输出的结果可能是出人意料的,或远高于我们的任务要求。但是,我们可以通过改进提示词来获得更好的结果。让我们试着改进以下:提示词输出结果结果是不是要好一些了?本例中,我们告知模型去完善句子,因此输出的结果和我们最初的输入是完全符合的。提示工程(Prompt Engineering)就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。以上示例基本说明了现阶段的大语言模型能够发挥的功能作用。它们可以用于执行各种高级任务,如文本概括、数学推理、代码生成等。

提示工程: 如何与大型语言模型高效沟通【OpenAI官网翻译】

正如软件工程中将复杂系统分解成多个模块一样,将提交给语言模型的任务分解成更小的子任务也是一种良好的实践。复杂任务通常比简单任务更容易出错,而且可以将复杂任务重新定义为一系列简单任务的工作流程,其中每个任务的输出作为下一个任务的输入。策略:使用意图分类识别用户查询中最相关的指令,根据用户意图选择最相关的指令集。对于需要很长对话的应用,总结或过滤之前的对话内容,避免超出模型的上下文窗口大小限制。将长文档分段总结,并递归构建完整摘要,逐步总结长文档的内容。[heading3]4.给予模型“思考”时间[content]就像你需要时间计算17乘以28一样,模型也需要时间进行推理才能得到正确答案。在回答问题之前,给予模型一定的“思考”时间可以减少推理错误。可以让模型在给出最终答案之前先进行“思考链”推理,提高答案的可靠性。策略:指导模型在得出结论之前先尝试给出自己的解决方案,避免受到用户提供的错误解决方案的干扰。使用“内心独白”或一系列查询来隐藏模型的推理过程,避免在某些应用场景中泄露答案。询问模型是否在之前的回答中遗漏了什么,确保信息的完整性。

Others are asking
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
生成式AI教育场景应用 项目式学习 中小学案例
以下是一些中小学在生成式 AI 教育场景应用中采用项目式学习的案例: 北京市新英才学校: 开设“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导和帮助下,主导设计一款实用的桌游。 学生们提出解决学校面积大导致新生和访客迷路的问题,决定制作一款学校地图桌游。 课程中,学生有时听老师讲解人工智能知识和工具使用方法,有时自己写 prompt 与大语言模型对话,还使用文生图 AI 工具生成桌游卡牌背后的图案,手绘第一版学校地图,选择游戏机制并梳理游戏流程。 在教育领域,生成式 AI 带来了诸多改变: 解决了教育科技长期以来在有效性和规模之间的权衡问题,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,如实时交流并给予发音或措辞反馈的语言老师。 出现了众多辅助学习的产品,如教授新概念、帮助学习者解决各学科问题、指导数学作业、提升写作水平、协助创建演示文稿等。
2025-02-18
生成式AI教育场景应用 中小学案例
以下是北京市新英才学校在中小学教育场景中生成式 AI 的应用案例: 特色课程方面:学校开设了“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导下,用 AIGC 工具设计一款实用的桌游。学生主导从收集需求、定义问题到设计背景、机制、内容、视觉,再到测试、迭代的全过程。例如,为解决学校面积大导致新生和访客迷路的问题,学生决定做一款学校地图桌游。课程中,学生学习人工智能知识、使用工具写 prompt 与大语言模型对话,还使用 OpenInnoLab平台生成桌游卡牌图案、手绘地图、选择游戏机制、梳理游戏流程。此外,还邀请中国传媒大学的吴卓浩教授合作,采用“大学生,小学生同上一节课”的方式,大学生为小学生讲解 AI 工具、试玩桌游。本学期,学生们测试并迭代桌游,使用 3D 打印机打印配件,用 ChatGPT 和 Midjourney 增强视觉设计,用 Kimi 辅助编写说明书,还计划让学生尝试用文生音乐工具 Suno 制作歌曲加入桌游 2.0 版本。 英语主课方面:初中部的英语课也融入了 AIGC 工具。魏一然协助初中部的英文老师杨佳欣和刘奕玚进行探索。在课程初期,更多是老师带着学生使用 AIGC 工具,prompt 由学生提出,老师引导。例如,在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话,了解处理方法,让 ChatGPT 为学生生成生词解释和例句,形成生词库,并灵活加工生词生成题目、游戏或文章帮助学生复习单词。在关于社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。
2025-02-18
飞书接入deepseek 多维表格处理案例
以下是关于飞书接入 DeepSeek 多维表格处理的相关案例和信息: 自定义 AI(DeepSeek 版):https://bytedance.larkoffice.com/base/extension/replit_3f6c0f185eac23fb ,支持 DeepSeek R1、V3 模型,以及 DeepSeek 官方、火山方舟、硅基流动三个服务商。 有案例如“笨笨 v 泡泡”的 deepseekr1:7b 模型行测试题分析过程及结果,可参考:https://mp.weixin.qq.com/s/kjYiRS9RE25vywm0EsP6A?token=8615663&lang=zh_CN 。 相关文章和教程: 《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》:https://waytoagi.feishu.cn/wiki/RZE9wP94tiEO6bkU5cTcyecHnnb 。 《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》:https://waytoagi.feishu.cn/wiki/HzHSwEwtCiBmWrkRm6fc0J0Qneh 。 《喂饭级教程:飞书多维表格+DeepSeek=10 倍速用 AI》:https://mp.weixin.qq.com/s/aIi4tIy0CCINyQE_3AfF_Q ,介绍了如何结合实现批量处理信息、提升工作效率等。 飞书多维表格的接入方法在整理列上这两天直播教程中的所有模板中有提及。 2 月 10 日的社区动态中有 DeepSeek R1 赏析分享会等相关内容。 2 月 14 日的社区动态中有关于另外一款推理模型 zero 的推理过程等相关内容。
2025-02-17
目前针对H5,有哪些可以和ai结合的案例
目前在 H5 领域,与 AI 结合的案例相对较少。但一些可能的方向包括:利用 AI 进行个性化内容推荐,根据用户的浏览历史和偏好为其推送相关的 H5 页面内容;通过 AI 实现智能客服,在 H5 页面中为用户提供实时的问题解答和帮助;运用 AI 图像识别技术,让用户可以通过拍照或上传图片在 H5 页面中获取相关信息或进行互动。
2025-02-17
AI智能体在企业应用案例
以下是一些 AI 智能体在企业中的应用案例: 决策智能体: 以 Anterior 为例,它是一家健康计划自动化公司,开发了用于自动化理赔提交审核的临床决策引擎。将付款方规则转换为有向无环图,智能体遍历决策树,利用 LLM 评估相关临床文件是否符合规则,在复杂任务中选择最佳方法并更新状态,直至最终确定。 Norm AI 正在为监管合规打造 AI 智能体,Parcha 正在为 KYC 建立智能体。 检索增强生成(RAG): 以 Sana 的企业搜索用例为例,应用程序加载和转换无结构文件,将其分块并作为向量嵌入存储在数据库中。当用户提问时,系统检索相关上下文块,折叠到“元提示”中与检索信息一起喂给 LLM,合成答复返回给用户。 Eve 法律研究的共同驾驭员会将研究查询分解为独立提示链,运行每个提示链生成中间输出,并综合编写最终备忘录。 生成式 AI 应用: 具有搜索、合成和生成三个核心用例,Menlo Ventures 投资组合公司如 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)是早期突破性的代表。 领先的应用程序构建商如 Anterior、Sema4 和 Cognition 正在建立解决方案,处理之前只能由大量人力解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,拓展 AI 能力边界,实现端到端流程自动化。
2025-02-16
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
什么是大模型一体机
大模型一体机是一个相对复杂的概念。通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其本质是两个文件:一个是参数文件,类似于问答机器人的“大脑镜像”,负责处理和生成文本信息;另一个是包含运行这些参数的代码文件。 大模型的训练和使用过程可以类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 大模型的特点包括: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 在架构方面,大模型有 encoderonly、encoderdecoder、decoderonly 等类型。目前常见的 AI 助手多采用 decoderonly 架构。
2025-02-18
传统AI、大模型、AGI的区别
传统 AI、大模型、AGI 存在以下区别: 传统 AI: 语音技能 NLU 通常通过一系列规则、分词策略等训练而成。 运作逻辑规律可观测,具有 ifelse 式的逻辑性。 大模型: 凭借海量数据在向量空间中学习知识的关联性。 运作逻辑难以观测,脱离了 ifelse 的层面。 Transformer 是其底层结构,是一个大参数(千亿级别)的回归方程,底层是 function loss 损失函数,能在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。与 Alpha Go 相比,Alpha Go 是增强学习模型,有推理能力,而大语言模型这块很弱。 AGI(通用人工智能): 部分人觉得 LLM(大语言模型)具有 AGI 潜力,但 LeCun 反对。 目前对于能否到达 AGI 阶段尚不明确。 在公众传播层面: AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。 LLM 指 NLP 领域的大语言模型,如 ChatGPT。 GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。 公众传播一般会混用上述名词,但底层是 transformer 结构。
2025-02-18
音效AI生成 最佳方案
以下是关于音效 AI 生成的一些信息和最佳方案: 音效是 AI 的一个具有吸引力的开放领域。目前已有学术论文探讨使用 AI 在电影中生成“现场效果音”,但在游戏中的商业产品尚属稀少。 在游戏中,为玩家角色生成脚步声音时,传统方法使用少量预先录制的声音,存在繁琐、重复和不真实的问题。更好的方式是使用实时的生成性 AI 模型来制作现场效果音,它能根据游戏参数实时生成略有不同且合适的音效。 在音乐方面,AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要的各类音效、不同游戏场景中用以渲染氛围的各种音乐。像 MusicLM 等模型已支持生成多音轨作品,使用 AI 生成音乐为原型并佐以专业制作人的协调,可使其更快进入游戏制作与发行的生产线。 在实际应用中,如《新哪吒闹海》的配音一开始打算用 AI 但因情绪不够丰满而选择专业声音表演者,音效需求简单时可采用剪映中的音效资源库。同时,为您分享三个音效资源站: 1. https://www.lookae.com/sucai/sfx/ ,大部分免费且分好类的音效包可供下载。 2. https://www.epidemicsound.com/ ,专业的音效站点,Gen48 合作站。 3. https://sc.chinaz.com/yinxiao/ ,适合搜索单个音效下载的站点。
2025-02-08
用Ai进行财务分析的最佳实践
以下是关于用 AI 进行财务分析的最佳实践: 1. 更动态的预测和报告: 生成式 AI 能帮助金融服务团队改进内部流程,简化财务团队日常工作。 可从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。 预测方面,能帮助编写公式和查询,发现模式,为预测建议输入并适应模型。 报告方面,能自动创建文本、图表等内容,并根据不同示例调整报告。 会计和税务方面,能帮助综合、总结并提出可能答案。 采购和应付账款方面,能帮助自动生成和调整合同、订单、发票及提醒。 2. 局限性与挑战: 生成式 AI 输出当前有局限性,在需要判断或精确答案的领域,常需人工审查。 面临的挑战包括使用金融数据训练 LLM,新进入者可能先使用公开金融数据微调模型,现有参与者可利用专有数据,但可能过于保守,新进入者有竞争优势。 模型输出准确性至关重要,金融问题答案需尽可能准确,初期人类常作为最终验证环节。 总之,生成式 AI 为金融服务带来巨大变革,有潜力催生多种优势,但也面临挑战,未来消费者将是最终赢家。
2025-02-08
用Ai进行数据分析的最佳实践
以下是关于用 AI 进行数据分析的最佳实践: 流程: 逻辑流程图如下:SQL 分析中,用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL 后执行,将结果数据传给 GPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,与结果数据一起返回给前端页面渲染图表、展示分析结论。个性化分析中,用户上传文件,前端解析后传给 GPT 分析数据,后续步骤与 SQL 分析一致。 个性化分析示例: 上传的数据均为假数据,包括游戏 A 流水数据、游戏产品数据、页面事件统计和用户行为数据等。包括单维度数据、多维度数据(折线图、柱状图)。有时 AI 会误将数据项作为维度分析,可输入提示告诉它用哪个字段作为维度,也可描述其他数据信息使分析更准确。 总结和展望: ChatGPT 在数据分析领域应用前景广泛,本文案例与技巧展示了其在提高效率、降低技能门槛和支持决策等方面的优势。但案例分析结果可能简单,接入业务时可定制多种分析模板,增加分析多样性。实际业务中处理大量数据时,除长类型字段限制,要指定允许查询或解析的字段,对结果数据进行两次校验。随着技术进步,相信其将为数据分析带来更多创新和突破。 问题与技巧: SQL 分析: 反复校验是否为 SELECT SQL 语句,不仅因 AI 不完全可控,还因不能相信用户输入,防止恶意操作。 到 AI 分析步骤拼接上下文,提供表结构信息和 SQL 语句,助 GPT 更好理解数据和字段意义,使分析更准确。 针对表结构长类型字段,不允许直接查询,最好告诉 GPT 允许查询的字段或 SQL 函数,使生成可控。 个性化分析: 用户上传数据解析后判断格式是否符合要求,超长可限制截取前面若干项。 前端解析用户上传数据后可直接用于渲染数据图表,无需后端返回。 支持用户补充输入,描述数据、字段意义或作用辅助 AI 分析。遇到多维度数据,GPT 可能误将其他字段作为维度分析,可输入特定提示帮助分析。
2025-02-08
TTS的最佳解决方案
以下是关于 TTS 的一些最佳解决方案: 在线 TTS 工具推荐: Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型。 TTS 音库制作和文本前端: 录音文本收集:在一个语种的语音合成建设之初,可同步收集该语种对应的大文本。录音文本的选择一般遵循以下原则: 音素覆盖:构建基础的文本前端,确保录音文本的音素或音素组合尽可能覆盖全。 场景定制:根据通用或特定场景需求,确保相关内容有所覆盖,并与需求方紧密沟通。 文本正确性:确保录音文本拼写无误,内容正确。 照片数字人工作流及语音合成(TTS)API 出门问问 Mobvoi: 接口请求域名:https://open.mobvoi.com/api/tts/v1 。 接口请求频率限制:5 次/秒。 可以将任意文本转化为语音,应用场景广泛,提供多种方言、发音人和风格,实时合成支持 SSML。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-07
企业管理咨询顾问应用AI辅助工作的最佳实践
以下是企业管理咨询顾问应用 AI 辅助工作的一些最佳实践: 对于企业管理者: 1. AI 辅助决策:在小规模决策中运用 AI 分析工具,如利用其分析客户反馈或市场趋势数据,以此作为决策参考。 2. 员工培训计划:制定 AI 工具使用的培训计划,助力团队成员在日常工作中有效利用 AI。 3. 流程优化:识别公司内可能受益于 AI 自动化的重复性任务,先从一个小流程开始测试 AI 解决方案的效果。 4. AI 伦理和政策:着手制定公司的 AI 使用政策,确保 AI 的应用符合伦理标准和法律要求。 对于商业顾问: 1. 工具服务小型企业:生成式 AI 对于小型企业是一个重要的应用场景,如 Sameday 可接电话并预约,Truelark 能处理短信、电子邮件和聊天等。 2. 特定类型企业的垂直化工具:出现了为特定类型企业工作流定制的工具,如 Harvey 和 Spellbook 帮助法律团队自动化任务,Interior AI 和 Zuma 在房地产行业发挥作用。 无论您属于哪个群体,与 AI 协作是一个学习过程。应从小处着手,保持好奇心和开放态度,将 AI 视为强大的工具而非完全依赖的解决方案。同时,始终保持批判性思维,您会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。
2025-02-06
AI阅读书籍的最佳实践是什么?
以下是关于 AI 阅读书籍的一些最佳实践: 1. 方法论萃取: 针对不同类型书籍的阅读和记忆方法进行分类,探讨共性方法论。 研究阅读和记忆的思维模型及小技巧。 思考如何优先选择自己“一定看得下去”的书籍,通过目录大纲确定核心内容。 确定一本书的阅读次数和顺序。 考虑读书过程中做笔记还是读完后回忆做大纲。 探索如何教刚毕业的孩子学会有效读书。 根据上述问题的答案设计“书籍阅读助手”“催我读书”等 Prompt,并不断优化和迭代。 2. 成为博物学家: 了解各个领域的知识,在恰当的时候调用。 参考权威、准确、有框架、成体系且好读的推荐书单,如涵盖心理学、人工智能、经济学等 13 个学科的书单。 3. 批判性思考: 思考在哪些情况下使用和不使用 AI 辅助阅读。 避免将 AI 作为默认选项,例如在使用地图导航时,不应完全依赖,而应注重自身对环境的观察和记忆。
2025-01-31
coze的deepseek实践
以下是关于 coze 的 deepseek 实践的相关信息: 一个提示词让 DeepSeek 的能力更上一层楼: 效果对比:用 Coze 做了小测试,可对比查看相关视频。 如何使用:搜索 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 Deepseek,认真阅读开场白后正式开始对话。 设计思路:将 Agent 封装成 Prompt 并储存在文件,通过提示词文件让 DeepSeek 实现同时使用联网和深度思考功能,在模型默认能力基础上优化输出质量,设计阈值系统,用 XML 进行规范设定。 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。 字节火山上线了 DeepSeek 系列模型并更改了模型服务价格: 2 月 14 日 8 点有直播,直播结束可看回放,相关学习文档可查看。 重点更新:上线 DeepSeek 系列模型,DeepSeekR1、V3 模型分别提供 50 万免费额度和 API 半价活动,即日起至 2025 年 2 月 18 日 23:59:59 所有用户均可享受价格优惠。 2024 年 7 月 18 日历史更新(归档): 《长文深度解析 Coze 的多 Agent 模式的实现机制》:艾木老师深入研究了 Coze 的多 Agent 模式机制,分析了三种节点跳转模式及应用场景和不足。 《揭秘 DeepSeek: 一个更极致的中国技术理想主义故事》:DeepSeek 以独特技术创新崭露头角,发布颠覆性价格的源模型 DeepSeek V2,创始人梁文锋是技术理想主义者。 《10 万卡集群:通往 AGI 的新门票》:分析了 10 万 GPU 集群建设的相关问题,指出数据中心设计和网络拓扑结构对大型 AI 训练集的重要性。
2025-02-16
ai实践的内容
以下是关于 AI 实践的相关内容: 社区 AI 讲师招募 招募要求: 具有丰富的企业端 AI 实践经验,涵盖以下场景之一或多个: AI 生成爆款内容,如借助 AI 分析挖掘同品类爆款,利用 AI 工具生成电商商品图、小红书图文内容、种草短视频等。 公域阵地场景,基于视频号、抖音、小红书、公众号等平台搭建企业营销推广能力,包括矩阵号和 IP 号,通过短视频、直播等方式获取 leads,涉及矩阵号工具、内容抓取分析、脚本创作、AI 剪辑、自动回复评论、无人直播工具等。 私域阵地场景,如朋友圈、小红书、社群、个人 IP 的获客转化,使用销售企微 SCRM 工具、企业智能体进行 AI 内容抓取和自动回复。 服务自动化工具,包括数据监控和预警、流程优化、自动运营等。 快速搭建数据分析看板。 跨境电商场景,如 tiktok 视频制作及投放、电商图片设计、精准营销、语言翻译、AI 独立站建设、社媒私域、批量混剪、海外达人直播、无人直播(数字人直播)等。 具备良好的表达能力,能清晰阐述技术和业务方面的沉淀。 招募流程:感兴趣的小伙伴提交个人简历(包括基本信息介绍、学历、专业、工作经验,以及 AI 企业端的案例),填写问卷,预约电话面谈,面谈通过后进行公开课试讲。 陈财猫:如何用 AI 写出比人更好的文字? AI+内容创作是现阶段的优质赛道,具有完美的产品模型匹配和产品市场匹配,且发展上限高。 AI 写作的实践成果包括营销、小说和短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,推出小财鼠程序版 agent。 好文字能引发人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣从而写出好文字。 用 AI 写出好文字的方法:选择合适的模型,评估模型的文风、语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 对 AI 创作的看法:AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌 AI 是因其未改变多数人生活或自身是受害者,作者期望 AI 能力进一步提升以改变每个人的生活。 熊猫 Jay:用 AI+思维模型探索问题的全新解答 案例实践:利用 AI+六顶思考帽做个人 IP 定位。 推荐使用 GPT4,效果更稳定,内容质量更高。包括初始化提示词、回答每顶帽子对应的问题,最终得到答案和建议。 文心 4.0 同样包括初始化提示词、回答每顶帽子对应的问题,并得到答案和建议。 小结:该案例借助六顶思考帽提供不同思考维度,引导全面思考问题。当把思考后的信息输入给 AI 后,能总结出满意的答案和建议。开头提到人的惰性问题,借助 AI 可以更全面剖析个人决策或团队会议中的问题,找到更正确的决策方式。之后,大家可用六顶思考帽+AI 解决困扰自己的问题,无论是个人决策还是团队讨论。
2025-02-13