Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

TPM 限制是什么意思?请用文字、数据、案例、比喻等形式进行教学

Answer

TPM 限制指的是每分钟处理的事务数(Transactions Per Minute)的限制。

以字节火山引擎为例,它默认提供了高达 500 万 TPM 的初始限流。这对于像一次工作流测试就消耗 3000 多万 tokens 的用户来说,限流的设置具有重要意义。

打个比喻,TPM 限制就好像是一条道路上设置的通行车辆数量限制,如果超过这个限制,就可能导致交通拥堵或者无法正常通行。在 AI 领域,超过 TPM 限制可能会影响服务的性能和稳定性。

比如,当有大量的请求同时发送到系统,如果没有 TPM 限制,可能会导致系统响应变慢甚至崩溃;而有了合理的 TPM 限制,就能保证系统有序地处理请求,为用户提供稳定可靠的服务。

Content generated by AI large model, please carefully verify (powered by aily)

References

获取字节火山DeepSeek系列 API完整教程,及使用方法,邀请可拿3000万tokens

对于我这种,一次工作流测试就跑3000多万tokens的消耗户来说,这个价格太“感人”了。并且!并且!火山引擎默认就提供了高达500万TPM的初始限流,没有记错的话,这已经是当前的全网最高的TPM支持量了。(/有高并发需求的小伙伴一定懂我在说什么)而且“大聪明”还做了响应测试,火山引擎推理速度第一梯队。刚好结合上周我发的《[15分钟零基础个人电脑部署DeepSeek-R1(无限制版)保姆级教程!](https://mp.weixin.qq.com/s/0e51oLAi3XWJs_QFMFqPTA)》,这次再配上火山引擎免费的满血DeepSeek-R1,就可以真的打造自己的专属AI助理了。(欢迎关注)连夜给小伙伴们安排小白教程,这羊毛咱们必须得薅上。我多遍重复了流程,整个操作比上篇更加简易,只需5分钟就可以接入一个专属于你自己的DeepSeek-R1(满血版)了!

Others are asking
model endpoint ID是什么东西?请用文字、数据、案例、比喻等形式进行教学
很抱歉,目前没有关于“model endpoint ID”的相关内容。但一般来说,“model endpoint ID”可以理解为模型服务端点的标识符。 打个比方,就像每个房间都有一个独特的门牌号,“model endpoint ID”就是模型服务这个“房间”的门牌号,通过它可以准确地找到和调用特定的模型服务。 在实际的数据处理中,它可能类似于一个唯一的编码,比如“MEID12345”,用于区分不同的模型服务端点,以便系统能够准确地将请求路由到对应的模型服务进行处理。 希望这样的解释能对您有所帮助,如果您还有其他疑问,请随时向我提问。
2025-02-26
AI模型是什么意思?请用文字、数据、比喻等形式进行教学
AI 模型是指通过一系列技术和算法构建的能够处理和生成信息的系统。 以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 为了让您更好地理解,我们可以把 AI 模型想象成一个非常聪明的学生。它通过大量的学习资料(训练数据)来掌握知识和规律,就像学生通过课本和练习题来提高自己的能力一样。监督学习就像是有老师指导的学习,老师会告诉它答案是对是错;无监督学习则像是自己探索,没有老师的直接指导;强化学习就像通过奖励和惩罚来激励它找到更好的方法。而深度学习就像是这个学生有了非常复杂和深入的思考方式,能够更好地理解和处理复杂的问题。
2025-02-26
AI介入设计的相关案例
以下是大淘宝设计部 2023 年度 AI 设计实践的相关案例: 1. 在工作流方面: 主要工具为 Midjourney 和 Stabel Diffusion,辅助工具有 RUNWAY 和 PS beta 等。 在营销设计中,AI 设计使整体项目设计时间大约减少 18%左右,其中在创意阶段丰富性提升 150%左右、时间节省 60%左右。 创意多样,项目中不同创意概念的提出数量增加了 150%。 执行加速,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效,从创意发散到落地执行品效都有显著提升。 2. 具体应用场景案例: 大促营销:通过 AI 生成图像或素材,再结合平面合成及修正,确保符合品牌形象,更精准表达营销活动主题,如淘宝天猫大促视觉、双 11 大促横向会场版头模板化应用、天猫小黑盒新品联名等。 AI 布景:对于定制化真人模特实景素材的主题活动,通过 AI 完成页面所有素材的生产和输出,如七夕主题活动页面、超级品类日传播拍摄创意等。 产品营销视觉:在 UI 设计场景中,采用 AI 能力快速定制多种用户需要的视觉效果,如 88VIPAI 定制皮肤。 品牌超级符号映射:根据品牌符号的模型训练和结构控制,用户输入丰富关键词即可快速完成准确的超级符号主视觉,如双 11AI 创作赢红包、双 11 联合传播猫头海报&花车大巡游、超级品类日品牌符号系列海报等。 品牌 IP 形象 AI 生成:训练特定的天猫/淘宝/营销 IP 公仔模型,稳定输出定制化 IP 形象,如天猫 AI 玩行动品牌联合海报、天猫双 11出游主题喵卡、淘宝天猫一起冲亚、天猫 U 先公仔三视图生成及应用等。 传播&投放:如双 11 超级发布品牌联合海报、媒介投放开屏海报。
2025-02-26
在短视频制作领域,有哪些AI软件可供使用?可以提供哪些帮助?有没有很好的案例参考?
在短视频制作领域,以下是一些可供使用的 AI 软件及其所能提供的帮助和相关案例参考: 1. ChatGPT + 剪映:ChatGPT 可生成视频脚本,剪映能依据脚本自动分析所需场景、角色、镜头等要素并生成素材和文本框架,实现从文字到画面的快速转化,节省时间和精力。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:AI 视频生成器,允许用户轻松创建和编辑高质量视频,用户提供文本描述即可生成相应内容。 4. VEED.IO:提供 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划视频内容。 5. Runway:AI 视频创作工具,能将文本转化为风格化的视频内容,适用于多种场景,但存在爱变色、光影不稳定的问题。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,可根据文本脚本生成视频。 案例参考:在制作 AI 短片时,会根据不同工具对画面的处理能力进行组合使用。例如,Pixverse 擅长物体滑行运动,有手部特殊运动的画面会用 Runway 来辅助完成,需要人物表情自然的画面会用 Pika 来生成。在声音方面,使用 11labs 进行对白制作,但存在 AI 声音没有情绪和情感的问题。在剪辑方面,先进行粗剪确定画面逻辑,再进行定剪调整和替换画面素材。音效和音乐方面,剪映中有简单音效库,复杂音效可能需另外制作,商用音乐要注意版权。特效方面,剪映可添加一些光影效果。包装方面,剪映智能匹配字幕较为方便。
2025-02-25
deepseek 落地案例
以下是关于 DeepSeek 的落地案例: 1. 华尔街分析师认为 DeepSeek 以小成本实现媲美领先 AI 产品的性能,并在全球主要市场 App Store 登顶。高盛认为其或改变科技格局,降低 AI 行业的进入门槛。详情:https://www.xiaohu.ai/c/xiaohuai/deepseek 2. DeepSeek 在中文场景表现优秀,日常写作和表达习惯贴近人类,但专业论文总结略弱。数学能力不错,编程能力逊于 GPT。采用 GRPO 算法替代传统 PPO,提升语言评价灵活性与训练速度。更多信息:https://x.com/imxiaohu/status/1883843200756170873 ,GRPO 详情:https://www.xiaohu.ai/c/ai/grpodeepseekr18c6cff0cdeb84937a4197066af987e43 3. 举办了全国 23 城近 4000 人玩转 DeepSeek 的活动,如郑州场展示搭建的无敌工作流,深圳场分享 DeepSeek+出海的落地方案,北京场玩起 AR+机械汪,广州场探讨如何使用 DeepSeek 辅助速通吃“霸王餐”,福州场有最年轻的分享者展示玩转 DS 的示例。同时,活动展示了飞书多维表格和 DeepSeek 的结合的强大之处,且 DeepSeek R1 大模型全面融入飞书多维表格、飞书智能伙伴创建平台等多款产品。详情:https://waytoagi.feishu.cn/wiki/KRtwwVqKKiB7PKkgzu3chsX6nzF 4. 在芯片行业,如存储芯片负责人考虑与 DeepSeek 谈 HBM4 定制合作,台积电研发中心因对方技术调整产能,ASML 总部针对对方算法调整策略,中芯国际因 DeepSeek 证明的技术提高产线利用率并获得追加投资。
2025-02-24
AI案例
以下是一些 AI 在不同领域的应用案例: 活动策划方面: 1. 活动主题及内容生成:根据活动目标、参与者背景等信息,AI 可以生成合适的活动主题和内容框架建议,例如通过对话生成模型提出活动主题和议程草案。 2. 邀请函和宣传文案生成:AI 可以基于活动信息生成吸引人的邀请函和宣传文案,增强宣传效果。例如微软在 Build 大会上,使用 AI 生成了 8000 多份个性化的邀请函。 3. 现场活动管理:利用计算机视觉、语音识别等,AI 可以辅助管理活动现场的人流、秩序等。例如基于人群密度的通道引导、实时翻译等。 4. 虚拟助手:AI 对话系统可以作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务。例如,Replika 提供了智能的虚拟活动助手应用。 5. 活动反馈分析:AI 可以自动分析活动反馈(文字、语音等),总结关键观点和改进建议。例如飞书和钉钉的会议总结功能。 6. 活动营销优化:基于参与者行为数据,AI 可以优化营销策略,实现个性化营销。例如,针对目标受众的定向广告投放等。 其他领域: 1. 客户服务聊天机器人中的自然语言处理:具有适应性,能根据大量数据集训练对实时客户消息做出响应,并可能随着系统学习而增加个性化;具有自主性,基于客户文本输入生成类似人类的输出,回答查询、帮助客户查找产品和服务或发送有针对性的更新,操作时几乎不需要人工监督或干预。但可能存在无意包含不准确或误导信息等监管问题。 2. 医疗保健分诊系统的自动化:具有适应性,能根据医疗数据集、患者记录和实时健康数据分析预测患者病情;具有自主性,为医疗专业人员或直接为患者生成有关患者症状可能原因的信息,并推荐潜在的干预措施和治疗方法。 扣子案例: 1. 2. 3. 4. 5. 6. 7. 8. 9.
2025-02-22
如何权构建个人AI知识库,请提供详尽的方案,并提供相关工具应用案例。
以下是构建个人 AI 知识库的详尽方案及相关工具应用案例: 方案: 1. 知识收集:学习如何有效地收集、整理和检索信息,例如分新闻、观点、访谈、论文翻译来进行提炼。 2. 知识管理:通过实际操作,体验工具在知识管理方面的应用。 3. 数据处理:使用工具对数据进行转换、提取和呈现,如从图像和图形中提取数据。 4. 内容总结:总结视频内容、翻译和改换风格等。 工具应用案例: 1. 知识收集与整理: 通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 本机跑大语言模型工具:https://ollama.com 选词翻译、解读、拓展:https://snapbox.app 与各种 AI 机器人聊天:https://opencat.app 、https://chathub.gg/ 、https://www.elmo.chat/ 定义提示语,根据不同类型提取有用信息:https://memo.ac/zh/ 2. 数据获取与处理: 下载视频:Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 开源免费屏幕录制工具 OBS:https://obsproject.com/ 用 losslessCut 快速切块 3. 构建知识库: 将文本转换成向量(如使用 embeddings API),先把大文本拆分成若干小文本块(chunk),将小文本块转换成 embeddings 向量并在向量储存库中保存,当用户提问时,通过比对向量提取关联度最高的文本块与问题组合成新的 prompt 发送给 GPT API。 例如对于一篇包含多个文本块的文章,如“文本块 1:本文作者:越山。xxxx。”“文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。”等,当提问“此文作者是谁?”时,可通过比较 embeddings 向量找出关联度最高的文本块。 4. 工具入门: 提示词:现成好用的 Prompt: AI Agent:Agent 工具 小白的 Coze 之旅: AI Pic:现在主流的 AI 绘图工具网站:
2025-02-22
中学教师如何学习AI,以方便教育教学
中学教师学习 AI 以方便教育教学可以从以下几个方面入手: 1. 获取信息和自学:可以利用人工智能来解释概念,例如通过相关提示获得类似自动导师的帮助,如的直接链接来激活 ChatGPT 中的导师。但要注意因人工智能可能产生幻觉,关键数据需根据其他来源仔细检查。 2. 课堂应用: 输入书上例题,让 AI 生成新颖解法,引发学生思考。 进行交互式学习,随时要求解释关键代码并举例,为学生提供支架。 利用人工智能分担低阶认知,让人有精力投入高阶认知加工,但要注意对思维训练的引导,提高对学生表现的要求,关注和引导“偷懒”学生。 3. 个性化学习计划:借助 AI 大规模部署个性化学习计划,为每个学生提供“口袋里的老师”,理解其独特需求,回答问题或测试技能。例如像 Speak、Quazel、Lingostar 等已经在做这样的事情。 4. 学科学习辅助:利用相关应用帮助学生学习特定科目,如 Photomath、Mathly 指导数学问题,PeopleAI、Historical Figures 模拟与杰出人物聊天教授历史。 5. 作业辅助:使用工具如 Grammarly、Orchard、Lex 帮助学生克服写作难题,提升写作水平。处理其他形式内容的产品如 Tome、Beautiful.ai 可协助创建演示文稿。 您还可以了解更多关于。
2025-02-25
PATHON+AI 如何应用到实际工作中,你这边有没有实际案例教学
以下是一个关于 Python + AI 在实际工作中的应用案例: 在自动驾驶车辆领域,对于 AI 系统的可解释性需求程度高度取决于具体情境,包括应用的安全关键程度。例如,设计自动驾驶车辆的技术专家需要理解系统的决策能力以进行测试、评估和改进;普通用户可能仅需了解决策过程以安全使用车辆;若车辆发生故障并导致有害结果,监管机构可能需要有关系统如何运作的信息以分配责任。尽管 AI 可解释性仍是技术挑战和活跃的研究领域,但监管机构已在开展相关工作以解决此问题。如 2021 年,ICO 和艾伦图灵研究所共同发布了关于用 AI 解释决策的指导,为组织提供了实用建议,以帮助向受其影响的个人解释由 AI 交付或协助的流程、服务和决策。
2025-02-22
再罗列10个关注量最多的优质ai公众号教学或资讯
以下是 10 个关注量较多的优质 AI 公众号教学或资讯: 1. 超时空视角:提供 AI 资讯。 2. EverAI:在小红书、抖音、B 站等平台有教程及 AI 工具界面操作。 3. 猫叔个人公众号:AI 替代人类。 4. 小鱼干了:SD 喂饭达人,教程详细,案例丰富。 5. 白马少年:分享心得 blender,SD 出图练模型教程。 6. okingjo:lora 训练教程和心得。 7. 樊川:城市设计建筑大模型 IUrbanDesign。 8. 努力的五花肉:MJ 高手,热衷且擅长于 UI&UX 领域的内容创作与分享。 9. 文小言 APP 中的学习强国公文助手:可以帮助用户进行文汇检索,AI 公文书写,AI 公文润色等。 10. Recraft AI:提供多种样式的可选风格,对所有用户每日都有免费的试用点数,并允许对生成的图像进行商业使用。
2025-02-20
语文教学如何使用大模型
在语文教学中使用大模型,可以参考以下方面: 1. 提示词设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更随机、多样化或具创造性的产出。对于质量保障等任务,可设置低参数值;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确答案时调低参数值,想要更多样化答案时调高。一般改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,减少响应中单词的重复。 2. 了解大模型: 大模型通俗来讲是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 训练和使用大模型可类比上学参加工作:找学校(需要大量 GPU 计算)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 Token 是模型处理和生成的文本单位,在将输入进行分词时会形成词汇表。 需要注意的是,在实际应用中,可能需要根据具体的教学需求和场景进行调整和实验,以找到最适合的设置和方法。
2025-02-17