以下是关于用 AI 进行数据分析的最佳实践:
流程: 逻辑流程图如下:SQL 分析中,用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL 后执行,将结果数据传给 GPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,与结果数据一起返回给前端页面渲染图表、展示分析结论。个性化分析中,用户上传文件,前端解析后传给 GPT 分析数据,后续步骤与 SQL 分析一致。
个性化分析示例: 上传的数据均为假数据,包括游戏 A 流水数据、游戏产品数据、页面事件统计和用户行为数据等。包括单维度数据、多维度数据(折线图、柱状图)。有时 AI 会误将数据项作为维度分析,可输入提示告诉它用哪个字段作为维度,也可描述其他数据信息使分析更准确。
总结和展望: ChatGPT 在数据分析领域应用前景广泛,本文案例与技巧展示了其在提高效率、降低技能门槛和支持决策等方面的优势。但案例分析结果可能简单,接入业务时可定制多种分析模板,增加分析多样性。实际业务中处理大量数据时,除长类型字段限制,要指定允许查询或解析的字段,对结果数据进行两次校验。随着技术进步,相信其将为数据分析带来更多创新和突破。
问题与技巧:
逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。SQL分析:用户描述想分析的内容,后台连接DB,附带表结构信息让AI输出SQL语句,校验是SELECT类型的SQL,其他操作如UPDATE/DELETE绝不能通过!!校验通过后执行SQL返回结果数据。再将数据传给GPT(附带上下文),让AI学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给GPT分析数据,后续步骤与上面一致。流程描述得比较详细,就不具体讲解开发过程和代码了,而是会更多讲述开发时的一些问题、重点和技巧。相关重点:
注:个性化分析中上传的数据均是假数据,包括下面所有示例:游戏A流水数据、游戏产品数据、页面事件统计和用户行为数据,仅供测试。单维度数据多维度数据-折线图多维度数据-柱状图有时AI会误将数据项作为维度分析,解决方式在下一个示例可以输入提示告诉它用哪个字段作为维度,也可以描述其他数据信息,使分析更为准确[heading2]总结和展望[content]ChatGPT作为一款强大的人工智能工具,在数据分析领域具有广泛的应用前景。本文所介绍的案例与使用技巧,可以看到ChatGPT在提高数据分析效率、降低技能门槛以及支持决策过程等方面的显著优势。不过本案例分析结果可能过于简单,真正接入业务也可定制多种分析模板,让GPT按相关模板格式返回,增加分析多样性。在实际业务中通常是需要处理大量数据,除了文中提到长类型字段的限制,还要指定允许查询或解析的字段告诉ChatGPT,结果数据要进一步校验是否符合要求,超长数据可以截取关键字段的内容丢给GPT总结分析。做到前后两次校验,更为可控。我们仍需结合实际需求和场景,审慎评估其适用性。随着人工智能技术的不断进步,我们有理由相信,ChatGPT及其他类似工具将为数据分析带来更多创新和突破,助力各行各业实现更高效、更智能的决策。
1、为什么还要反复校验是不是SELECT SQL语句?这里不仅仅是AI不完全可控的原因,还有永远不要相信用户的输入,万一用户恶意输入一些描述,非要执行UPDATE/DELETE等恶意操作,那就完了。所以一定要再次校验AI生成是否是安全的SELECT SQL语句,非查询类SQL坚决不通过!!提示不支持此类请求。2、为什么到AI分析那一步骤还要拼接上下文?上文是有表结构信息和SQL语句,这些可以提供给GPT更好理解数据和字段的意义,分析更准确。3、针对表结构长类型字段,不允许直接查询,防止token消耗过多。其实最好还是告诉GPT只允许查询哪几个字段,或者用哪几个SQL函数,尽量让GPT生成可控。[heading3]个性化分析[content]1、用户上传的数据解析后需要判断数据格式是否符合要求,超长可以限制截取前面若干项,防止token消耗过多。2、在前端解析用户上传的数据,分析完可以直接用于渲染数据图表,无需再让后端再返回。3、需要支持用户补充输入,可以简单描述这是什么数据、字段意义或作用,用于辅助AI分析。如果都是易理解语义化的字段名,可以无需描述,GPT也能识别。遇到一些多维度数据,GPT可能会误将其他字段作为维度分析,为了准确性可以输入:“以xxx(字段名)为维度分析”;还可以输入:“这是xxx数据”更好帮助AI分析。