Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI大模型本地化部署的逻辑是什么?输入的数据不会外泄吗?

Answer

AI 大模型本地化部署的逻辑主要包括以下步骤:

  1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,要根据自身的资源、安全和性能需求来决定。
  2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。
  3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。
  4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,并优化模型结构和训练过程以提高性能。
  5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。
  6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。

关于输入数据是否会外泄,这取决于本地化部署的安全性措施和配置。如果采取了严格的安全措施,如数据加密、访问控制、网络隔离等,输入的数据外泄的风险可以大大降低。但如果安全措施不到位,就存在数据外泄的可能。例如,赞成把一个训练好就不动的模型部署在端侧(如手机或家庭计算中心),记录所有知识和记忆的相关数据就不会跑到云端,能更好地保障数据安全。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何部署和训练自己的AI开源模型

根据搜索结果,以下是部署和训练自己的大模型的主要步骤:1.选择合适的部署方式本地环境部署云计算平台部署分布式部署模型压缩和量化公共云服务商部署根据自身的资源、安全和性能需求选择合适的部署方式。2.准备训练所需的数据和计算资源确保有足够的训练数据覆盖目标应用场景准备足够的计算资源,如GPU服务器或云计算资源3.选择合适的预训练模型作为基础可以使用开源的预训练模型如BERT、GPT等作为基础也可以自行训练一个基础模型4.针对目标任务进行模型微调训练根据具体应用场景对预训练模型进行微调训练优化模型结构和训练过程以提高性能5.部署和调试模型将训练好的模型部署到生产环境对部署的模型进行在线调试和性能优化6.注意安全性和隐私保护大模型涉及大量数据和隐私信息,需要重视安全性和合规性总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。内容由AI大模型生成,请仔细甄别

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

我(阳萌)认为最后还是走一个仿生的方法——有一个足够长的Context(举了谷歌的一篇论文infinite context transform,不需要把Context做太长,可以把以前可能需要被扔掉的token深度压缩后依然保存在Context里)这就引发一个很有意思的探讨,假设现在已经有东西能保存你的一段记忆(或者说你的喜好、所有经验记忆),类似哈利波特的记忆瓶子,你是否愿意?其实手机特别适合干这个,在手机上部署一个sensor(传感器),收集声音视觉等信号,就能在本地产生一个这样的Context,你是愿意这个Context在你手机本地上面呢,还是你愿意把这个Context upload到云端去?我(阳萌)赞成把一个训练好就不动的模型部署在端侧(也就是我的手机或家庭计算中心),记录我所有知识和记忆的Context一定不能跑到云端,它只能存在与我的端侧(哈利波特里面记忆必须放在小瓶里,严加看管)。想明白这个问题,再来看马斯克与OpenAI和苹果的争论,就能理解了。访谈后面谈到安克创新和阳萌理解的创造者的特质,也很值得一看。总结来说就是抛开表面事实,回归基础原理,找到突破关键。求极致——追求长期全局最优解(对应机器学习概念中的全局最优和局部最优)最后是相信长期主义,持续学习,自我觉察和自我进化。最后总结——世界是参差的,唯有持续学习能抵御未来的变化。视频链接:1、[【包教包会】一条视频速通AI大模型原理_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV17t4218761/?vd_source=3cc4af77a2ef185635e8097d3326c893)

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

我(阳萌)认为最后还是走一个仿生的方法——有一个足够长的Context(举了谷歌的一篇论文infinite context transform,不需要把Context做太长,可以把以前可能需要被扔掉的token深度压缩后依然保存在Context里)这就引发一个很有意思的探讨,假设现在已经有东西能保存你的一段记忆(或者说你的喜好、所有经验记忆),类似哈利波特的记忆瓶子,你是否愿意?其实手机特别适合干这个,在手机上部署一个sensor(传感器),收集声音视觉等信号,就能在本地产生一个这样的Context,你是愿意这个Context在你手机本地上面呢,还是你愿意把这个Context upload到云端去?我(阳萌)赞成把一个训练好就不动的模型部署在端侧(也就是我的手机或家庭计算中心),记录我所有知识和记忆的Context一定不能跑到云端,它只能存在于我的端侧(哈利波特里面记忆必须放在小瓶里,严加看管)。想明白这个问题,再来看马斯克与OpenAI和苹果的争论,就能理解了。访谈后面谈到安克创新和阳萌理解的创造者的特质,也很值得一看。总结来说就是抛开表面事实,回归基础原理,找到突破关键。求极致——追求长期全局最优解(对应机器学习概念中的全局最优和局部最优)最后是相信长期主义,持续学习,自我觉察和自我进化。最后总结——世界是参差的,唯有持续学习能抵御未来的变化。视频链接:1、[【包教包会】一条视频速通AI大模型原理_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV17t4218761/?vd_source=3cc4af77a2ef185635e8097d3326c893)

Others are asking
如何用AI搭建个人知识库
以下是用 AI 搭建个人知识库的方法: 首先,要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入(投喂)定制化的知识。但 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识往往不够。为解决此问题,OpenAI 提供了 embedding API 解决方案。 embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。比如,向量是数学中表示大小和方向的一个量,通常用一串数字表示,在计算机科学和数据科学中,向量通常用列表(list)来表示。向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。 具体操作时,可将大文本拆分成若干个小文本块(也叫 chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,并在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过 embeddings API 转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt,发送给 GPT API。 例如,有一篇万字长文,拆分成多个 Chrunks 包含不同内容。如果提问是“此文作者是谁?”,可以直观地看出与问题关联度最高的文本块,通过比较 embeddings 向量也能得到结论。最后发送给 GPT API 的问题会类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。” 此外,还有案例展示了如何在 AI 时代把碎片化信息内化为自己的知识/智慧。比如在读书时看到有触动的文本,将其整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。基于笔记中提到的 AI 对人的赋能模式,展开深度实践,生成自己的观点和决策,并打造成体系化的内容产品,实现价值。通过一个碎片化知识在左侧知识库中的“点、线、面、体”式的流转,从一个书摘变成一个体系化内容或课程,把“别人说的话”变成“自己的智慧”。
2025-02-28
怎样给AI投喂小说
给 AI 投喂小说可以参考以下步骤: 1. 首先使用 code interpreter,将小说原文喂给它并写入到 dataframe 里,全部喂完后保存成 excel 文件备用。 2. 让 GPT 读取该文件并给出反馈。AI 会从情节合理与连贯性角度给出意见。 3. 进行细节修改,反复尝试后可能会发现某些结构化 prompt 效果更好,修改的成品有部分可直接采纳。每改一段,AI 会把修改后的内容写入内存并读取新的一段。 4. 一轮修改完成后,可让 AI 再修订一轮。若重复次数过多,可先合并段落。这一轮修改可能更强调字词和标点。 5. 还可以把相关写作课程的内容贴给 AI 让其总结,并依照总结的方法修订小说。 需要注意的是,在修改过程中,对于 GPT 改得不好的地方进行简单纠正。同时,由于 GPT 不稳定,为避免白忙活,应随时保存备份。
2025-02-28
我想知道AI如何提高办公效率
以下是 AI 提高办公效率的一些方式: 1. 在日常活动中,如交通监测系统能使通勤更顺畅,银行账户欺诈检测等方面,AI 能自动处理部分工作,提高效率。 2. 在游戏行业,从前期制作到后期迭代,大模型不仅能降低成本,还能打造创新玩法,提供更好的游戏体验。例如网易的《逆水寒》,将 AIGC 应用于美术开发、NPC 与玩家的交互,还内嵌了“AI 作词机”。 3. 在人力资源管理领域,AI 应用于招聘、员工绩效评估、培训与发展等环节,显著提高工作效率。 4. 在全行业中,基础办公如 PPT、Excel、会议报告、策划会、文案包装、图文海报、客服机器人等,从单个任务到角色再到角色间协同,都能显著提高工作效率。 5. 在信息检索和处理方面,如 You.com 等多种领先的 AI 产品,能帮助我们更高效地获取信息,提升工作效率和决策质量。
2025-02-28
写论文数据最真实的ai是哪个?
在论文写作领域,AI 技术的应用发展迅速,能在多个方面提供辅助。以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,这些工具只是辅助,使用时要结合自身写作风格和需求,选择最合适的,且内容由 AI 大模型生成,请仔细甄别。但目前没有哪个 AI 能保证提供的数据绝对真实,仍需您对数据进行仔细核实和评估。
2025-02-28
作为互联网公司的IT,如何用AI来优化或升级自己的工作
对于互联网公司的 IT 人员,利用 AI 优化或升级工作可以从以下几个方面入手: 1. 明确自身工作目标和想法:AI 是工具,能将能力放大,帮助更好更快地实现想法。重要的是思考自己真正想为这个世界做些什么,并着手尝试通过 AI 来实现。 2. 借鉴他人的 AI 工作流: 起床时,让 AI 为自己排 TODO 优先级,做私董会的脑暴。 工作中有阳光会撒娇/卖萌的傲娇 AI 小助理加油。 重点事项如内容创作,可拆成 bot 团队组,包括选题、标题、框架、扩写等,并让两个 AIbot 互相改。 优化 bot,如内容选题 bot、短视频脚本 bot、数据分析 bot 等,并将相关知识库和 Prompt 资产放入飞书的知识库和多维表单中维护。 准备备选的生产力 AI 工具库。 未来可将整个公司业务搬入飞书,外接 MJ、ChatBot 分身等。 3. 关注 AI 发展趋势:目前 AI 在一些具体任务上已超过多数人类,但在涉及推理和自主学习任务方面还有差距,通用人工智能的定义存在争议,其发展带来了技术、伦理、安全和哲学等方面的思考。 需要注意的是,AI 终究会发展到每个人触手可及的程度,对于大部分人来说,并不需要特别关注 AI 技术本身,而应专注于自身的工作需求和目标。
2025-02-28
用AI做数据分析有什么好办法
用 AI 做数据分析的好办法包括以下几个方面: 1. 提供大模型可访问的数据源或上传数据表格,并通过提示词明确需要分析的维度和结果输出格式。观察生成结果,迭代优化提示词,最终导出满意结果。 2. 将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,针对每个环节优化 AI 性能,便于发现和修正问题。 3. 针对复杂问题,采用逐步深化和细化的方式提问。先提出宽泛问题,再根据回答进一步细化。 4. 给 AI 提供参考和学习内容,包括高质量的操作指南、行业最佳实践、案例研究等,并编写详细流程和知识。 5. 在 Prompt 中使用专业领域术语引导,如法律术语,使 AI 更精准地提供信息。 6. 对于分析结果,要进行交叉验证,结合自身专业知识筛选和判断,确保信息准确。 在实际操作中,例如在 SQL 分析中,用户描述分析内容,后台连接数据库,让 AI 输出并校验 SELECT 类型的 SQL 语句,执行后将数据传给 GPT 分析,最后返回前端页面渲染图表和结论。个性化分析中,用户上传文件并描述辅助,前端解析后传给 GPT 处理,后续步骤与前者一致。
2025-02-28
Deepseek本地化部署
以下是关于 DeepSeek 本地化部署的相关信息: 在“智能纪要:0225|最新的 DeepSeek 玩法教学 2025 年 2 月 25 日”中提到,明天(02/26 20:00)将教授 DeepSeek 本地部署。 在“第三期「AI 实训营」手把手学 AI【第三期:尝鲜阿里云上的 DeepSeek 玩法】”中,02/26 20:00 的课程主题为“人工智能平台 PAI 篇:本地部署满血版 DeepSeek”,课程内容包括 DeepSeek R1 技术原理、解锁 DeepSeek 的不同玩法(问答助手、蒸馏、微调)以及实战演练 DeepSeek R1 满血版快速部署和蒸馏训练。相关课程文档为
2025-02-26
如何本地化部署deepseek
本地化部署 DeepSeek 的步骤如下: 1. 拥有扣子专业版账号:如果您还是普通账号,请自行升级或注册专业号后使用。开通成功后会显示相应状态。 2. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。添加在线推理模型,添加后在扣子开发平台才能使用。添加过程包括添加模型和完成接入。 3. 创建智能体:点击创建,先完成一个智能体的创建。 需要注意的是,本地部署的版本能作为替补,但很难作为长期使用的版本。DeepSeek 具有三种含义指向,包括 deepseek 公司(深度求索)、deepseek 网站和手机应用,以及有推理功能的 deepseek R1 大模型(权重文件开源,可本地部署)。
2025-02-11
deepseek的本地化部署对于软硬件的具体要求
DeepSeek 的本地化部署对于软硬件的具体要求如下: 系统:Windows 7 以上(不建议使用 XP 系统)。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘:留有足够的空间,最低 100G 起步(包括模型)。 内存和显存配置: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 需要注意的是,mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。最低配置可能运行非常慢。
2025-02-06
ai本地化部署
AI 本地化部署主要包括以下方面: 线上和线下本地部署的 AI 特点: 线上 AI 出图速度快,不吃本地显卡配置,无需下载大模型,能看他人作品,但出图尺寸受限。 线下部署可添加插件,不卡算力,出图质量高,但使用时电脑易宕机,配置不高可能爆显存导致出图失败。 线上和线下平台的结合使用: 线上用于找参考、测试模型。 线下作为主要出图工具。 智谱 BigModel 共学营第二期微信助手本地电脑环境部署(以 Windows 为例): 程序在本地运行,关闭窗口进程结束,若要持续使用需保持窗口打开和运行。 若突然不管用,可点击窗口并按空格,因选中状态下 powershell 窗口不继续执行。 完成部署后: 登录成功给微信发送消息可看到正常回复。 可在智谱清流更改 AI 功能或人设,即时生效。 对文件内代码更改需重新打印登陆二维码,在“文件”的【终端】输入 python app.py 重新扫码登录。 无手机登录可用夜神模拟器模拟。 报错“wxsid”可能因微信未实名,实名即可。 制作完成后 24 小时内会掉线一次,重新登录即可,先不要急着加好友。
2025-01-31
如何本地化部署一个ai助手
本地化部署一个 AI 助手可以参考以下几种方式: 1. 在网站上增加 AI 助手: 搭建示例网站: 创建应用:点击打开函数计算应用模板,参考相关选择直接部署、填写百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,取消相关位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果,网站的右下角会出现 AI 助手图标,点击即可唤起 AI 助手。 2. 从 LLM 大语言模型、知识库到微信机器人的全本地部署(以 windows10 系统为例): 本地 Hook 或 COW 机器人(二选一,建议先选择 COW): 注意:本教程完成后,程序将在您的电脑本地运行,假如关掉了窗口,进程也就结束。所以,如果想让 AI 持续使用,就必须保持窗口打开和运行,也就是电脑不能关。 安装环境: 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 在命令窗口中,粘贴入相关代码,确认是否有 python 和 pip。 如果没有,先进行 python 的安装,可点击下载:。 部署项目:下载 COW 机器人项目,解压缩。 3. 把大模型接入小米音箱(node.js): 第四步:填写 API 服务: 智普:接口地址:https://open.bigmodel.cn/api/paas/v4,模型:glm4flash。 硅基:选择 AI 服务为自定义,接口地址:https://api.siliconflow.cn/v1。 其他模型的 API 端口请参考官方文档:https://migptgui.com/docs/apply/。 第五步:语音服务:官方说明:https://migptgui.com/docs/faqs/tts。 第六步:启动服务:在最上方可导出编辑的内容,格式为 json 格式,如果改错了可以导入之前保存的配置。单击启动,回到 powshell 界面。每次调整设置都需要重置后重新启动。建议回答完毕后增加结束的提示语,可以提高连续对话的稳定性。官方常见问题文档:https://migptgui.com/docs/faqs/noreply。
2025-01-05
能够本地化部署的AI文字助手
以下是关于本地化部署的 AI 文字助手以及相关排版和润色工具的信息: 本地化部署的 AI 文字助手: 在让 AI 助手能准确回答问题之前,可先快速将其集成到网站中。 1. 搭建示例网站: 创建应用:点击打开函数计算应用模板,参考相关选择直接部署、填写百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击查看确认部署成功。 2. 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情底部找到函数资源,点击函数名称进入函数详情页,在代码视图中找到 public/index.html 文件,取消相关位置的代码注释,最后点击部署代码等待完成。 验证网站上的 AI 助手:重新访问示例网站页面查看最新效果,会发现网站右下角出现 AI 助手图标,点击唤起。 AI 文章排版工具: 主要用于自动化和优化文档布局和格式,特别是处理学术论文和专业文档。一些流行的工具包括: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 文章润色工具: 常见的有: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 这些 AI 工具涵盖文章润色的各个环节,可提高写作效率和质量,科研人员和学生可根据自身需求选择。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-05
有没有这样的产品,能够通过输入X主页,获取这个人的历史所有推特的信息分析与总结
目前没有这样合法合规且普遍可用的产品。获取他人的推特信息需要遵循相关平台的规定和法律法规,未经授权获取他人的信息是不被允许的。
2025-02-28
如何将大量记录的文本内容输入知识库,并且形成有效问答问答
要将大量记录的文本内容输入知识库并形成有效问答,可参考以下方法: 1. 使用 embeddings 技术: 将文本转换成向量(一串数字),可理解为索引。 把大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,这些向量与文本块的语义相关。 在向量储存库中保存 embeddings 向量和文本块。 当用户提出问题时,将问题转换成向量,与向量储存库的向量比对,查找距离最小的几个向量,提取对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 2. 创建知识库并上传文本内容: 在线数据: 自动采集:适用于内容量大、需批量快速导入的场景。 在文本格式页签选择在线数据,单击下一步。 单击自动采集。 单击新增 URL,输入网站地址,选择是否定期同步及周期,单击确认。 上传完成后单击下一步,系统自动分片。 手动采集:适用于精准采集网页指定内容的场景。 安装扩展程序,参考。 在文本格式页签选择在线数据,单击下一步。 点击手动采集,完成授权。 输入采集内容网址,标注提取内容,查看数据确认后完成采集。 本地文档: 在文本格式页签选择本地文档,单击下一步。 拖拽或选择要上传的文档,支持.txt、.pdf、.docx 格式,每个文件不大于 20M,一次最多上传 10 个文件。 上传完成后单击下一步,选择内容分段方式,包括自动分段与清洗(系统自动处理)和自定义(手动设置分段规则和预处理规则)。
2025-02-28
我想通过在sciencedirect上输入关键词后,让AI帮助我整理该词条下文献的内容,输出当今的研究现状、现存问题、解决方法
目前在 ScienceDirect 上,还没有直接通过输入关键词让 AI 为您整理文献内容并输出研究现状、现存问题及解决方法的成熟功能。但您可以利用一些 AI 工具,如文献分析类的软件,先将从 ScienceDirect 下载的文献导入其中,然后让其协助您进行分析和总结。不过,在使用任何工具时,都需要您自己对结果进行评估和筛选,以确保准确性和可靠性。
2025-02-25
怎么更好地输入指令词
以下是关于如何更好地输入指令词的相关内容: 星流一站式 AI 设计工具: 1. 提示词用于描绘您想生成的画面。 输入语言:星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 提示词优化:启用提示词优化后,可帮您扩展提示词,更生动地描述画面内容。 2. 写好提示词的方法: 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解您不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 【SD】文生图: 下次作图时,先选择模板,然后点击倒数第二个按钮,就能快速输入标准提示词。通常的描述逻辑包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。对于新手,有功能型辅助网站帮助书写提示词,如 http://www.atoolbox.net/ ,通过选项卡快速填写关键词信息;https://ai.dawnmark.cn/ ,每种参数有缩略图参考,更直观选择提示词;还可去 C 站(https://civitai.com/)抄作业,复制图的详细参数粘贴到正向提示词栏,注意图像作者使用的大模型和 LORA,也可选取部分好的描述词使用。 RAG 提示工程(二):安全与防护实践: 1. 应对提示词攻击的方法(蓝方视角) 输入侧防护—增强类—鲁棒任务描述:本质是在系统提示里添加描述攻击招数和应对方法,使模型能坚守本职工作,防范恶意提示攻击。 输入侧防护—增强类—少样本提示:在系统提示里放几个“负面提示对的回答”样本,让模型学会应对负面输入,提高给出正确回答的能力。 输入侧防护—增强类—特殊标记:给用户输入添加特殊标记,如 XML 标签、随机字符串、尖括号等,帮助模型分清界限,提升识别用户输入的能力,但不同模型对特殊符号的理解程度不一。
2025-02-24
有没有输入点子可以生成视频文案的多维表格模板
以下是关于输入点子生成视频文案的多维表格模板的相关信息: 概述: 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建。感谢开源,现提供教程参考。 先看效果: 功能: 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具: 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 大体路径: 1. 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 coze 智能体到飞书多维表格。 3. 在多维表格中使用字段捷径,引用该智能体。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。 获取字节火山 DeepSeek 系列 API 完整教程及使用方法: 邀请可拿 3000 万 tokens,附上宝藏飞书多维表格模板,包括营销类、投资和电商、工具论文效率类、有趣类等,如: 智能体发布到飞书多维表格: 1. 工作流调试完成后,加入到智能体中。可以选择工作流绑定卡片数据,智能体通过卡片回复。 2. 发布时选择需要的发布渠道,重点讲飞书多维表格。记得智能体提示词的 4 个变量,发布时会自动出现,目的是为了在多维表格中选择关联字段。填写上架信息(为快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 多维表格的字段捷径使用: 1. 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。选择“自动更新”,输入 4 个字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 2. 表单分享,实现填写表单自动创建文案短视频。 自动化推送: 点击多维表格右上角的“自动化”,创建想要的自动化流程。
2025-02-24
如果我想让AI帮我写一篇楼盘推广软文,我要如何输入指令
如果您想让 AI 帮您写一篇楼盘推广软文,以下是一些输入指令的建议: 1. 明确指令:使用清晰、直接的语言告诉 AI 您的需求,例如“为我写一篇楼盘推广软文”。 2. 提供背景信息:包括楼盘的位置、特色、目标受众等,比如“这是位于市中心的高端楼盘,目标受众是追求高品质生活的成功人士”。 3. 描述输入数据:如果有相关的楼盘资料、图片、周边环境介绍等,可以提供给 AI,例如“楼盘拥有独特的园林设计,周边配套有大型商场和优质学校”。 4. 给出输出引导:明确软文的格式、语气、长度等要求,比如“以生动活泼的语言,写成一篇 800 字左右的软文,采用故事性的叙述方式”。 同时,您还需要注意以下几点: 1. 指令要简洁明了,避免歧义。 2. 尽量提供详细和准确的信息,以便 AI 更好地理解您的需求。 3. 可以参考一些结构化的提示词设计方法,如 ICIO 框架,即 Instruction(指令)、Context(背景信息)、Input Data(输入数据)和 Output Indicator(输出引导)。
2025-02-24