Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI介入设计的相关案例

Answer

以下是大淘宝设计部 2023 年度 AI 设计实践的相关案例:

  1. 在工作流方面:
    • 主要工具为 Midjourney 和 Stabel Diffusion,辅助工具有 RUNWAY 和 PS beta 等。
    • 在营销设计中,AI 设计使整体项目设计时间大约减少 18%左右,其中在创意阶段丰富性提升 150%左右、时间节省 60%左右。
    • 创意多样,项目中不同创意概念的提出数量增加了 150%。
    • 执行加速,设计师在创意生成阶段的时间缩短了平均 60%。
    • 整体提效,从创意发散到落地执行品效都有显著提升。
  2. 具体应用场景案例:
    • 大促营销:通过 AI 生成图像或素材,再结合平面合成及修正,确保符合品牌形象,更精准表达营销活动主题,如淘宝天猫大促视觉、双 11 大促-横向会场版头模板化应用、天猫小黑盒-新品联名等。
    • AI 布景:对于定制化真人模特实景素材的主题活动,通过 AI 完成页面所有素材的生产和输出,如七夕主题活动页面、超级品类日-传播拍摄创意等。
    • 产品营销视觉:在 UI 设计场景中,采用 AI 能力快速定制多种用户需要的视觉效果,如 88VIP-AI 定制皮肤。
    • 品牌超级符号映射:根据品牌符号的模型训练和结构控制,用户输入丰富关键词即可快速完成准确的超级符号主视觉,如双 11-AI 创作赢红包、双 11 联合传播猫头海报&花车大巡游、超级品类日-品牌符号系列海报等。
    • 品牌 IP 形象 AI 生成:训练特定的天猫/淘宝/营销 IP 公仔模型,稳定输出定制化 IP 形象,如天猫 AI 玩行动-品牌联合海报、天猫双 11-出游主题喵卡、淘宝天猫一起冲亚、天猫 U 先公仔三视图生成及应用等。
    • 传播&投放:如双 11 超级发布-品牌联合海报、媒介投放开屏海报。
Content generated by AI large model, please carefully verify (powered by aily)

References

大淘宝设计部2023年度AI设计实践报告

AI在大淘宝设计部中的定位今年通过持续的探索和实战考量,在追求创新和效率的道路上,AI作为工具成为了我们的得力助手:主要工具为Midjourney和Stabel Diffusion,辅助工具有RUNWAY和PS beta等[heading1]AI介入工作流效果[content]AI改变了设计工作流的许多传统步骤,引入了新的工具和方法。我们看到在营销设计中,AI设计在营销设计整体项目设计时间大约减少18%左右,其中在创意阶段丰富性提升150%左右、时间节省60%左右。这些变革不仅缩短了项目周期,还拓宽了设计师的创意边界和技术应用范围,辅助传统工作流得到前所未有的效果提升和效率优化:1.创意多样AI的运用使得设计解决方案更为多样和创新。项目中不同创意概念的提出数量增加了150%2.执行加速AI生成的设计灵感和概念,显著缩短了创意阶段所需时间。设计师在创意生成阶段的时间缩短了平均60%3.整体提效通过与AI的多种手段结合,从创意发散到落地执行品效都有显著提升。在整体项目的设计时间减少了18%总而言之,这些AI工具不仅仅是技术上的进步,它们代表了一种全新的工作理念。

大淘宝设计部2023年度AI设计实践报告

通过AI生成图像或素材,再结合平面合成及修正,确保每一处细节都符合我们的品牌形象,并且更精准的表达营销活动的主题。它帮助我们在短时间内生成多个设计变体,并且快速进行迭代优化。案例1淘宝天猫大促视觉案例2双11大促-横向会场版头模板化应用案例3天猫小黑盒-新品联名[heading3]5.AI布景[content]对于需要定制化真人模特实景素材的主题活动,不再像以往那样,需要真人布景拍摄或摄影素材采买,耗时耗力还不能保证设计内容的一致性,通过AI可以在短时间内将策划、搭建、拍摄、设计融为一个闭环流程,完成页面所有素材的生产和输出。案例1七夕主题活动页面在12个时辰主题下,需要每个时段的场景画面,通过AI生成的方式可以不受到外部拍摄条件上的种种限制,产出风格一致且符合需求的素材:案例2超级品类日-传播拍摄创意[heading3]6.产品营销视觉[content]UI设计的场景中,采用AI能力可以快速定制多种用户需要的视觉效果,我们通过SD中controlnet的有效控制,可以生成指定范围内的ICON、界面皮肤等内容,加大了很多产品功能的定制可能性。案例88VIP-AI定制皮肤

大淘宝设计部2023年度AI设计实践报告

下面将围绕大淘宝设计师们在下列八个场景中的多个应用案例,展开我们在设计实践中,AI应用的深度和广度:[heading3]1.品牌超级符号映射[content]根据品牌符号(如猫头框与淘字框)的模型训练和结构控制,用户只需要输入丰富的关键词,即可快速完成一张准确的超级符号主视觉。案例1双11-AI创作赢红包案例2双11联合传播猫头海报&花车大巡游案例3超级品类日-品牌符号系列海报[heading3]2.品牌IP形象AI生成[content]训练特定的天猫/淘宝/营销IP公仔模型,根据不同需求稳定输出的定制化IP形象结合,富有创造力的材质和造型,不仅可用于项目需求,还可以沉淀储备下来,形成IP形象素材库。案例1天猫AI玩行动-品牌联合海报案例2天猫双11-出游主题喵卡案例3淘宝天猫一起冲亚案例4天猫U先公仔三视图生成及应用[heading3]3.传播&投放[content]案例1双11超级发布-品牌联合海报案例2媒介投放开屏海报

Others are asking
如何生成稳定的AI视频
以下是关于生成稳定的 AI 视频的相关信息: 工具推荐: Runway: 网址:https://app.runwayml.com/videotools/ 官方使用教程:https://academy.runwayml.com/ 知识库详细教程: 特点:支持文生视频、图生视频、视频生视频;文生视频支持正向提示词、风格选择、运镜控制、运动强度控制、运动笔刷,支持多种尺寸,可设置种子值;生成好的视频可以延长时间,默认生成 4s 的视频;使用英文提示词。 Stable video: 网址:https://www.stablevideo.com/generate 知识库详细教程: 特点:支持文生视频、图生视频,仅英文;图生视频不可写 prompt,提供多种镜头控制;文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 技术差异: 代表产品如 Runway,在端到端视频生成中,涉及的技术包括 GAN 生成对抗网络、VAE 变分自编码器和 Transformer 自注意力机制。 GAN 生成对抗网络:是一种无监督的生成模型框架,能生成视觉逼真度高的视频,但控制难度大、时序建模较弱。 VAE 变分自编码器:可以学习数据分布,像压缩和解压文件一样重建视频数据,能根据条件输入控制生成过程,但质量较 GAN 略低。 GAN、VAE 生成视频速度快,但存在生成质量和分辨率较低、长度短、控制能力弱的缺点。 Transformer 自注意力机制:通过学习视频帧之间的关系,理解视频的长期时间变化和动作过程,对长视频建模更好,时序建模能力强,可实现细粒度语义控制,但计算量大。 当前面临的问题及解决方案: 当前仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。解决方案包括使用渐进生成、增强时序一致性的模型等方法,上述的补帧算法、视频完善策略也可在一定程度上缓解问题。 制作技巧: 在镜头衔接上要写运镜提示词,描述多种运镜方式,否则画面会乱变。在做视频时要不断尝试参数。
2025-02-26
AI陪伴有什么好的产品
以下是一些 AI 陪伴的好产品: 1. Character.ai:这是一个 AI 虚拟陪伴平台,用户能与数百个 AI 驱动的角色交流,还可创建自己的角色并赋予其各种特性。 2. Replika:一款 AI 虚拟陪伴应用,用户可设计理想伴侣,其会存储记忆并在未来对话中参考,甚至能发送照片。 3. Talkie:主打情感路线的 AI 虚拟陪伴应用,设计有大量 npc,游戏和休闲娱乐体验感强,每个 npc 都有自己的剧情体系,交流中会触发抽取卡牌机会。 AI 陪伴已进入成长爆发期,可能看起来是小众市场,但实际上已成为生成式 AI 主流应用场景之一。网页端和移动端数据表明其正变得越来越普及。例如,在网页端榜单上,Character.ai 领跑 AI 陪伴榜单。 陪伴应用的范畴也在迅速扩大,不仅限于“男友”“女友”概念,还涵盖友谊、指导、娱乐、医疗保健等方面。一些早期研究显示,AI 在诊断准确性和患者沟通技巧上能超越真人医生,如 Replika 聊天机器人帮助部分用户减轻了自杀念头。 移动端和网页端应用在 AI 使用类型上有明显不同。网页端产品更倾向支持内容创作和编辑的复杂工作流程,如 ElevenLabs、Leonardo、Gamma 等。移动端应用更倾向通用型助手,不少模仿了 ChatGPT。
2025-02-26
AI基础
以下是关于 AI 基础的全面介绍: 一、AI 背景知识 1. 基础理论:人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习资源和方法 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。特别推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 七、书籍推荐 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。
2025-02-26
普通人怎么学习AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 此外,还可以参考以下方法: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,学习或了解 AI 最好的信息源在「即刻」App 的“”等免费圈子里。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 对于纯 AI 小白,如果还在观望 AI 不知从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习资源免费开源,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。
2025-02-26
AI基础
以下是关于 AI 基础的知识: 一、背景知识 了解人工智能、机器学习、深度学习的定义及其之间的关系,简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习建议 1. 了解 AI 基本概念:阅读相关部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 2. 开始学习之旅:在入门课程中学习生成式 AI 等基础知识,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 3. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,使用各种产品创作作品,并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 此外,为您推荐三本神经科学相关的基础学科书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,系统了解认知神经科学的多方面内容。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统了解神经元的相关知识。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的名著,涵盖神经科学的方方面面。
2025-02-26
ai产品经理
以下是为您整合的关于 AI 产品经理的相关信息: 北京分队中有一位叫 Kelton 的成员,是一位 AI 产品经理,深耕 NLP 方向 2 年,作为 Owner 从 0 1 打造过两款 AIGC 产品,也完成过 LLM 评测体系的从零搭建。技术出身,还曾在云计算、元宇宙领域工作过 2 年,坐标在海淀(北四环)。 银海是一位 AI 产品经理,是通往 AGI 之路社区共建者,5 + 大模型厂商资深讲师,全网粉丝量 3W + ,在 AI Agent、多模态大模型、企业级 AI 应用等多领域具备丰富实战经验。 特看科技正在招聘 AI 产品经理,岗位要求:负责 AI 视频工具方向产品工作,对生成式 AI 产品有一定研究,熟悉 Transformer 和 Diffusion 模型的优先;英文好,有海外产品经验优先,有内容工具或 SaaS 产品经验优先;2 年以上产品岗位经验,职级根据经验能力制定,对标阿里 P6 P8 区间。该公司专注于 AI 视频和直播应用,在国内和海外市场服务众多头部品牌。能提供确定性的商业化应用场景、初创公司充沛的早期期权池、强大的工程师团队等。有电子商务、企业服务、人工智能、海外产品等行业经验为加分项。欢迎推荐或自荐简历至 qingshen@tabcut.com,或飞书与清慎联系。
2025-02-26
model endpoint ID是什么东西?请用文字、数据、案例、比喻等形式进行教学
很抱歉,目前没有关于“model endpoint ID”的相关内容。但一般来说,“model endpoint ID”可以理解为模型服务端点的标识符。 打个比方,就像每个房间都有一个独特的门牌号,“model endpoint ID”就是模型服务这个“房间”的门牌号,通过它可以准确地找到和调用特定的模型服务。 在实际的数据处理中,它可能类似于一个唯一的编码,比如“MEID12345”,用于区分不同的模型服务端点,以便系统能够准确地将请求路由到对应的模型服务进行处理。 希望这样的解释能对您有所帮助,如果您还有其他疑问,请随时向我提问。
2025-02-26
TPM 限制是什么意思?请用文字、数据、案例、比喻等形式进行教学
TPM 限制指的是每分钟处理的事务数(Transactions Per Minute)的限制。 以字节火山引擎为例,它默认提供了高达 500 万 TPM 的初始限流。这对于像一次工作流测试就消耗 3000 多万 tokens 的用户来说,限流的设置具有重要意义。 打个比喻,TPM 限制就好像是一条道路上设置的通行车辆数量限制,如果超过这个限制,就可能导致交通拥堵或者无法正常通行。在 AI 领域,超过 TPM 限制可能会影响服务的性能和稳定性。 比如,当有大量的请求同时发送到系统,如果没有 TPM 限制,可能会导致系统响应变慢甚至崩溃;而有了合理的 TPM 限制,就能保证系统有序地处理请求,为用户提供稳定可靠的服务。
2025-02-26
在短视频制作领域,有哪些AI软件可供使用?可以提供哪些帮助?有没有很好的案例参考?
在短视频制作领域,以下是一些可供使用的 AI 软件及其所能提供的帮助和相关案例参考: 1. ChatGPT + 剪映:ChatGPT 可生成视频脚本,剪映能依据脚本自动分析所需场景、角色、镜头等要素并生成素材和文本框架,实现从文字到画面的快速转化,节省时间和精力。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:AI 视频生成器,允许用户轻松创建和编辑高质量视频,用户提供文本描述即可生成相应内容。 4. VEED.IO:提供 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划视频内容。 5. Runway:AI 视频创作工具,能将文本转化为风格化的视频内容,适用于多种场景,但存在爱变色、光影不稳定的问题。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,可根据文本脚本生成视频。 案例参考:在制作 AI 短片时,会根据不同工具对画面的处理能力进行组合使用。例如,Pixverse 擅长物体滑行运动,有手部特殊运动的画面会用 Runway 来辅助完成,需要人物表情自然的画面会用 Pika 来生成。在声音方面,使用 11labs 进行对白制作,但存在 AI 声音没有情绪和情感的问题。在剪辑方面,先进行粗剪确定画面逻辑,再进行定剪调整和替换画面素材。音效和音乐方面,剪映中有简单音效库,复杂音效可能需另外制作,商用音乐要注意版权。特效方面,剪映可添加一些光影效果。包装方面,剪映智能匹配字幕较为方便。
2025-02-25
deepseek 落地案例
以下是关于 DeepSeek 的落地案例: 1. 华尔街分析师认为 DeepSeek 以小成本实现媲美领先 AI 产品的性能,并在全球主要市场 App Store 登顶。高盛认为其或改变科技格局,降低 AI 行业的进入门槛。详情:https://www.xiaohu.ai/c/xiaohuai/deepseek 2. DeepSeek 在中文场景表现优秀,日常写作和表达习惯贴近人类,但专业论文总结略弱。数学能力不错,编程能力逊于 GPT。采用 GRPO 算法替代传统 PPO,提升语言评价灵活性与训练速度。更多信息:https://x.com/imxiaohu/status/1883843200756170873 ,GRPO 详情:https://www.xiaohu.ai/c/ai/grpodeepseekr18c6cff0cdeb84937a4197066af987e43 3. 举办了全国 23 城近 4000 人玩转 DeepSeek 的活动,如郑州场展示搭建的无敌工作流,深圳场分享 DeepSeek+出海的落地方案,北京场玩起 AR+机械汪,广州场探讨如何使用 DeepSeek 辅助速通吃“霸王餐”,福州场有最年轻的分享者展示玩转 DS 的示例。同时,活动展示了飞书多维表格和 DeepSeek 的结合的强大之处,且 DeepSeek R1 大模型全面融入飞书多维表格、飞书智能伙伴创建平台等多款产品。详情:https://waytoagi.feishu.cn/wiki/KRtwwVqKKiB7PKkgzu3chsX6nzF 4. 在芯片行业,如存储芯片负责人考虑与 DeepSeek 谈 HBM4 定制合作,台积电研发中心因对方技术调整产能,ASML 总部针对对方算法调整策略,中芯国际因 DeepSeek 证明的技术提高产线利用率并获得追加投资。
2025-02-24
AI案例
以下是一些 AI 在不同领域的应用案例: 活动策划方面: 1. 活动主题及内容生成:根据活动目标、参与者背景等信息,AI 可以生成合适的活动主题和内容框架建议,例如通过对话生成模型提出活动主题和议程草案。 2. 邀请函和宣传文案生成:AI 可以基于活动信息生成吸引人的邀请函和宣传文案,增强宣传效果。例如微软在 Build 大会上,使用 AI 生成了 8000 多份个性化的邀请函。 3. 现场活动管理:利用计算机视觉、语音识别等,AI 可以辅助管理活动现场的人流、秩序等。例如基于人群密度的通道引导、实时翻译等。 4. 虚拟助手:AI 对话系统可以作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务。例如,Replika 提供了智能的虚拟活动助手应用。 5. 活动反馈分析:AI 可以自动分析活动反馈(文字、语音等),总结关键观点和改进建议。例如飞书和钉钉的会议总结功能。 6. 活动营销优化:基于参与者行为数据,AI 可以优化营销策略,实现个性化营销。例如,针对目标受众的定向广告投放等。 其他领域: 1. 客户服务聊天机器人中的自然语言处理:具有适应性,能根据大量数据集训练对实时客户消息做出响应,并可能随着系统学习而增加个性化;具有自主性,基于客户文本输入生成类似人类的输出,回答查询、帮助客户查找产品和服务或发送有针对性的更新,操作时几乎不需要人工监督或干预。但可能存在无意包含不准确或误导信息等监管问题。 2. 医疗保健分诊系统的自动化:具有适应性,能根据医疗数据集、患者记录和实时健康数据分析预测患者病情;具有自主性,为医疗专业人员或直接为患者生成有关患者症状可能原因的信息,并推荐潜在的干预措施和治疗方法。 扣子案例: 1. 2. 3. 4. 5. 6. 7. 8. 9.
2025-02-22
如何权构建个人AI知识库,请提供详尽的方案,并提供相关工具应用案例。
以下是构建个人 AI 知识库的详尽方案及相关工具应用案例: 方案: 1. 知识收集:学习如何有效地收集、整理和检索信息,例如分新闻、观点、访谈、论文翻译来进行提炼。 2. 知识管理:通过实际操作,体验工具在知识管理方面的应用。 3. 数据处理:使用工具对数据进行转换、提取和呈现,如从图像和图形中提取数据。 4. 内容总结:总结视频内容、翻译和改换风格等。 工具应用案例: 1. 知识收集与整理: 通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 本机跑大语言模型工具:https://ollama.com 选词翻译、解读、拓展:https://snapbox.app 与各种 AI 机器人聊天:https://opencat.app 、https://chathub.gg/ 、https://www.elmo.chat/ 定义提示语,根据不同类型提取有用信息:https://memo.ac/zh/ 2. 数据获取与处理: 下载视频:Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 开源免费屏幕录制工具 OBS:https://obsproject.com/ 用 losslessCut 快速切块 3. 构建知识库: 将文本转换成向量(如使用 embeddings API),先把大文本拆分成若干小文本块(chunk),将小文本块转换成 embeddings 向量并在向量储存库中保存,当用户提问时,通过比对向量提取关联度最高的文本块与问题组合成新的 prompt 发送给 GPT API。 例如对于一篇包含多个文本块的文章,如“文本块 1:本文作者:越山。xxxx。”“文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。”等,当提问“此文作者是谁?”时,可通过比较 embeddings 向量找出关联度最高的文本块。 4. 工具入门: 提示词:现成好用的 Prompt: AI Agent:Agent 工具 小白的 Coze 之旅: AI Pic:现在主流的 AI 绘图工具网站:
2025-02-22
如何从零开始介入AI学习
以下是从零开始介入 AI 学习的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 对于中学生: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响,培养思考和判断能力。 7. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。
2024-12-30
小白如何用ai开始学习图片设计
对于小白如何用 AI 开始学习图片设计,以下是一些建议: 1. 图像流搭建 创建第一个图像流:由于文本类型大语言模型无法直接生成图片,需要通过【技能】部分的图像流为文本大模型提供图像生成能力。为 bot 加入图像流时,要设定图像流名称以及描述(名称只能是英文)。 了解图像流节点的意义:图像流编辑界面左侧的工具栏集合了所有可能用到的功能,大致可分为智能处理工具(如“智能生成”“智能抠图”“画质提升”等)、基础编辑工具(如画板、裁剪、调整、添加文字等)和风格处理类工具(如风格迁移、背景替换等)。从基础编辑工具开始尝试,熟悉后再探索其他功能。右侧类似画布,可拖拽左侧工具或点击“+”拖放各种工具模块,工具之间可连接形成工作流程。 根据需求进行图像流设计:例如生成海报功能,在总结故事后,将完整的故事作为输入,对输入的故事进行一轮提示词优化,从自然语言转变为更符合文生图大模型的提示词,将优化后的提示词输入生图大模型,调整生图的基础风格和信息,输出最终的配图海报。 测试图像流。 2. 利用即梦 AI 生成海报 提示词:皮克斯风格,三宫格漫画:一只小狗,坐在办公桌前,文字“KPI 达标了吗?”。一只小狗,拿着一个写满计划的大本子,微微皱着眉头,文字“OKR 写好了吗?”。一只小狗坐在电脑前,文字“PPT 做好了吗?”。 实操教程: 打开即梦 AI:https://jimeng.jianying.com/aitool/home 。 点击 AI 作图中的图片生成。 填写绘图提示词,选择生图模型 2.1,点击立刻生成。 3. 进阶技巧和关键词 图片内容一般分为二维插画以及三维立体两种主要表现形式。 主题描述:可以描述场景、故事、元素、物体或人物细节、搭配等。描述场景中的人物时,最好独立描述,不要用一长串文字,否则 AI 可能识别不到。 设计风格:可找风格类关键词参考或垫图/喂图,让 AI 根据给出的图片风格结合主题描述生成图片。对于某些材质的描述,关键词的运用有很多门道,需要针对某一种风格单独进行“咒语测试”。
2025-02-26
关于飞书表格和deepseek联动的设计
以下是关于飞书表格和 DeepSeek 联动的相关内容: 1. 《喂饭级教程:飞书多维表格+DeepSeek=10 倍速用 AI》介绍了将飞书多维表格与 DeepSeek R1 结合,实现批量处理信息、提升工作效率的方法。用户可批量转换文风、快速回复消息,甚至利用 AI 生成文案,操作简单便捷,让普通人无需编程知识也能轻松使用 AI。 2. 在一场全国 23 城近 4000 人玩转 DeepSeek 的活动中,展示了飞书多维表格和 DeepSeek 的结合的强大之处,DeepSeek R1 大模型已全面融入飞书多维表格等多款产品。
2025-02-25
在室内软装设计领域,ai实际可以如何运用
在室内软装设计领域,AI 有以下实际运用方式: 1. 工具辅助: Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有探索。设计师输入房间面积需求和土地约束,软件能自动生成户型图并提供详细设计结果。 2. 创意生成: 利用 AI 图像生成工具,输入相关关键词,生成多种室内软装创意设计方案,获取新颖独特的灵感。 3. 模拟可视化: 借助 AR/VR 等技术,将 AI 生成的设计方案在实际环境中模拟和可视化,更好地评估和验证设计。 4. 分析优化: 使用 AI 工具对室内软装设计方案进行采光、动线、材料等方面的分析和优化,以符合使用者需求和体验。 5. 自动化设计: 利用 AI 自动生成符合设计规范的室内软装平面图等,提高设计效率,缩短设计周期。 6. 协作模式: 人工设计师与 AI 工具形成互补,在创意、分析、优化等环节充分发挥各自优势。 同时,还有字节旗下的 Coze AI 的图像工作流可用于快速出家装设计效果图,并根据客户咨询信息收集用户联系方式形成销售线索,体验地址为:https://www.coze.cn/store/bot/7374039392832405554?panel=1&bid=6cq1cccs00017 。但需注意,每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-02-25
我希望通过ai做好我企业内部的智能巡检。巡检内容主要是针对企业的门店的招牌门头是否合规给出意见。主要合规性检查包括:Logo是否符合公司的设计标准;门头的颜色搭配、尺寸是否符合标准(还要提醒褪色),请问大体应该是各什么思路?
很抱歉,飞书知识库中没有与您关于通过 AI 做好企业内部门店招牌门头智能巡检思路的直接相关内容。但一般来说,您可以考虑以下思路: 1. 数据采集:使用图像采集设备获取门店招牌门头的图像数据。 2. 图像识别技术:运用 AI 的图像识别能力,对采集到的图像进行分析,识别 Logo、颜色、尺寸等元素。 3. 建立标准模型:根据公司设计的标准,建立合规性的模型,以便与采集到的图像进行对比。 4. 智能判断:通过算法判断门头的各项元素是否符合标准,包括 Logo 是否与标准一致,颜色搭配、尺寸是否在规定范围内,以及是否存在褪色等问题。 5. 生成报告和提醒:根据判断结果生成详细的报告,并及时提醒相关人员进行整改。
2025-02-25
提示词如何设计
提示词的设计需要遵循以下要点和准则: 明确描述想要的内容:模型能完成多种任务,所以要清晰展示需求,而非简单告知。 遵循三个基本准则: 展示和告知:通过说明、示例或两者结合表明需求。如让模型排序或分类,要展示示例。 提供高质量数据:构建分类器或遵循某种模式时,确保有足够且正确的示例。 检查设置:温度和 top_p 控制模型生成响应的确定性,根据需求设置合适的值。 故障排除:若 API 未达预期,检查是否清楚预期结果、提供足够示例、示例有无错误、是否正确使用温度和 top_p。 让代理明确任务以提高表现:采用合理结构并清晰指令,如为不同代理设置不同指令结构,包括角色预设、回复要求、提供示例和所需掌握的知识等。 通用流程: 数据准备:收集高质量案例数据。 模型选择:根据创作目的选合适模型。 提示词设计:结合数据设计初版,注意角色、背景、目标、约束等要点。 测试与迭代:输入提示词测试,与模型交流获取优化建议,修正提示词,重复测试、交流、修正过程,直至满意。 总结提炼:归纳优化经验,形成最佳实践。 应用拓展:将方法论用于其他创意内容设计。 使用他人写好的 prompt 时,要深入揣摩背后思路,理解编写方式的原因和逻辑,关键在于养成充分利用模型、不断迭代、深度交流和思考的习惯。
2025-02-24
适合电商设计运用的AI工具
以下是一些适合电商设计运用的 AI 工具及相关应用: Midjourney 新编辑器: 产品海报设计:将产品图片导入编辑器,通过简单操作和提示词生成不同风格的海报。 家具材质变化:利用图像重纹理化模式,快速为家具图片换上各种材质。 艺术字体海报:通过白底字体图和图像重纹理化模式,变换成各种炫酷的字体海报风格,建议使用竖版白底文字图。 用于阿里巴巴营销技巧和产品页面优化的 AI 应用: 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况。 关键词优化:AI 推荐高流量、高转化的关键词,优化产品标题和描述。 产品页面设计:AI 设计工具生成吸引人的产品页面布局。 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 图像识别和优化:选择或生成高质量的产品图片。 价格策略:分析不同价格点对销量的影响,制定有竞争力的价格策略。 客户反馈分析:了解客户需求,优化产品和服务。 个性化推荐:根据用户购买历史和偏好提供个性化产品推荐。 聊天机器人:提供 24/7 客户服务,解答疑问,提高满意度。 营销活动分析:了解活动效果,吸引顾客并产生销售。 库存管理:预测需求,优化库存管理。 支付和交易优化:分析支付方式对交易成功率的影响,优化支付流程。 社交媒体营销:在社交媒体上找到目标客户群体,精准营销提高知名度。 直播和视频营销:分析观众行为,优化直播和视频内容,提高参与度和转化率。 其他生成式 AI 工具: :帮助品牌创建引人注目的产品照片。 :制作用于电子邮件或社交媒体的营销材料。 :编写经过 SEO 优化的产品描述。未来有望仅通过描述期望的审美并点击按钮,创建完整的电商商店及营销材料。
2025-02-24