Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI智能数据库查询助手

Answer

以下是关于您提出的“AI 智能数据库查询助手”的相关信息:

能联网检索的 AI: 存在能联网检索的 AI,它们通过连接互联网实时搜索、筛选并整合所需数据,为用户提供更精准和个性化的信息。例如:

  • ChatGPT Plus 用户现在可以开启 web browsing 功能,实现联网功能。
  • Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。
  • Bing Copilot 作为 AI 助手,旨在简化您的在线查询和浏览活动。
  • 还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。

AI 新产品|网站精选推荐:

  • AIHelperBot 自动生成 SQL Queries,支持数据库一键链接或导入。当前收费$5 每月,可免费试用 7 天。链接:https://skybox.blockadelabs.com/
  • ChartGPT by CadLabs 由 CadLabs 开发工具,基于 GPT-3.5,可以根据数据生成图表并回答问题。链接:https://chartgpt.cadlabs.org/
  • Embedding Store 功能如其名,是一站式 Embedding Marketplace,支持公开、私有及第三方数据,用于发现、评估和访问相关的嵌入(embeddings),产品还未上线。链接:https://www.embedding.store/

AI 在医疗药品零售领域的应用: AI 在医疗药品零售领域有着多方面的应用前景:

  • 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。
  • 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。
  • 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。
  • 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。
  • 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。
  • 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。
  • 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。

总之,AI 技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。

请注意,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:有没有能联网检索的AI?

是的,存在能联网检索的AI。这些AI通过连接互联网,实时搜索、筛选并整合所需数据,以提供给用户更精准和个性化的信息。例如,ChatGPT Plus用户现在可以开启web browsing功能,实现联网功能。Perplexity,它结合了ChatGPT式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。Bing Copilot,作为一个AI助手,旨在简化您的在线查询和浏览活动。还有如You.com和Neeva AI等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。这些AI搜索工具的出现,标志着在信息检索领域的一个重要发展,它们通过结合AI技术和搜索引擎,大幅提升了数据集命中预期,并为实际应用带来了更多可能性。内容由AI大模型生成,请仔细甄别。

25 个AI新产品|网站精选推荐

📦AIHelperBot自动生成SQL Queries,支持数据库一键链接或导入。在之前的文章中,我们零散地介绍过一些SQL Queries生成工具,如AI2SQL、Text2SQL、AIQuery等,但目前来看,AIHelperBot所支持的数据库结结构、格式、添加方式以及处理能力是最为全面的——当前收费$5每月,可免费试用7天。🔗https://skybox.blockadelabs.com/📊ChartGPT by CadLabs由CadLabs开发工具,基于GPT-3.5,可以根据数据生成图表并回答问题。在之前的Newsletter中,我们分享过一个同名且功能类似的工具,开发者是Next47的投资团队成员Kate Reznykova——它们的缺点也是一样的,非常容易出错😢🔗https://chartgpt.cadlabs.org/🔢Embedding Store功能恰如其名——一站式Embedding Marketplace,支持公开、私有及第三方数据,用于发现、评估和访问相关的嵌入(embeddings),产品还未上线,期待!🔗https://www.embedding.store/

问:AI在医疗药品零售领域的应用

AI在医疗药品零售领域有着多方面的应用前景:1.药品推荐系统利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。1.药品库存管理通过分析历史销售数据、天气、疫情等因素,AI系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。1.药品识别与查询借助计算机视觉技术,用户可以用手机拍摄药品图像,AI系统自动识别药名并提供说明、用法、禁忌等信息查询服务。1.客户服务智能助手基于自然语言处理技术,AI虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。1.药店运营分析AI可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。1.药品质量监控通过机器视觉、图像识别等技术,AI能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。1.药品防伪追溯利用区块链等技术,AI可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。总之,AI技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。内容由AI大模型生成,请仔细甄别。

Others are asking
怎样从头开始学习AI
以下是从头开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-01-08
ai提示词生成网站
以下是一些 AI 提示词生成网站: :AI 艺术提示词生成器。 :玩游戏也能练习 Prompt 书写。 NovelAI tag 生成器:设计类 Prompt 提词生成器,地址。 魔咒百科词典:魔法导论必备工具,简单易用的 AI 绘画 tag 生成器,地址。 KREA:设计 AI 的 Prompt 集合站,create better prompts,地址。 Public Prompts:免费的 prompt 合集,收集高质量的提示词,地址。 AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词,地址。 MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库,地址。 MidJourney Prompt Tool:类型多样的 promot 书写工具,点击按钮就能生成提示词修饰部分,地址。 OPS 可视化提示词:这个网站有 Mid Journey 的图片风格、镜头等写好的词典库,方便你快速可视化生成自己的绘画提示词,地址。 AIart 魔法生成器:中文版的艺术作品 Prompt 生成器,地址。 IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器,地址。 Prompt Hero:好用的 Prompt 搜索,Search prompts for Stable Diffusion,ChatGPT&Midjourney,地址。 OpenArt:AI 人工智能图像生成器,地址。 img2prompt:根据图片提取 Prompt,地址。 MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用,地址。 PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板,地址。 AiTuts Prompt:精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格供你选择,地址。
2025-01-08
ai提示词生成
以下是关于 AI 提示词生成的相关内容: 有 108 个舞蹈音乐提示词,涵盖各种舞曲子流派,如“Punchy 4/4 beats,electro bass,catchy synths,pop vocals,bright pads,clubready mixes,energetic drops”,并对其中的元素进行了详细解释,如“Punchy 4/4 beats”指节奏感强的四四拍鼓点等。 一泽 Eze 提出样例驱动的渐进式引导法,其核心要点是发挥 AI 的逻辑分析和抽象总结能力,从用户提供的样例中总结方法论,用户进行判断和提出意见,为提示词爱好者提供低门槛途径。在某些特定场景下,能让 AI 主动理解需求,不依赖 Prompt 工程师。 由于 LLM 有上下文长度限制,在长对话中使用渐进式引导法可能会触碰限制,影响输出质量,所以引入“提示词递归”的概念与方法,具体步骤包括初始提示、定期总结、重新引入、细化和拓展、验证和优化,并给出了例如说明。
2025-01-08
推荐一些适合零基础的小学生、初中生学习的实用的Ai课程
以下是为零基础的小学生、初中生推荐的实用 AI 课程: 1. 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 野菩萨的 AIGC 资深课也是不错的选择,这门课程由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程。课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 4. 如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励:4980 课程一份;亚军奖励:3980 课程一份;季军奖励:1980 课程一份;入围奖励:598 野神殿门票一张。 在学习过程中,您可以根据自己的兴趣选择特定的模块深入学习,一定要掌握提示词的技巧,它上手容易且很有用。理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。同时,与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-01-08
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-08
我想用AI生成一份海报
以下是一些可以帮助您用 AI 生成海报的信息: 设计海报的 AI 产品: Canva(可画):https://www.canva.cn/ 是一个受欢迎的在线设计工具,提供大量模板和设计元素,AI 功能可协助选择颜色搭配和字体样式。 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案。 VistaCreate:https://create.vista.com/ 简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 Microsoft Designer:https://designer.microsoft.com/ 具有简单拖放界面,能快速创建演示文稿、社交媒体帖子等视觉内容,集成丰富模板库和自动图像编辑功能。 用 AI 快速做一张满意海报的方法: 需求场景:如想发条有吸引力的朋友圈等,网上找图可能存在质量和独特性问题。 大致流程: 确定主题与文案,可借助 ChatGPT 等文本类 AI 工具协助完成。 选择风格与布局,背景可灵活调整。 使用无界 AI 输入关键词生成并筛选海报底图。 进行配文与排版,合理组合素材得到成品,排版可参考 AIGC 海报成果。 1 分钟搞定海报设计的思路案例: 确定如将老北京糖葫芦做成北京建筑等思路。 借助 AI 生成海报,挑选喜欢的。 确定风格后,替换同材质的北京建筑物延续风格设计一系列海报,调整关键词生成单个建筑物,用 PS 稍作处理。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-08
如何部署本地的智能数据库
以下是关于如何部署本地智能数据库的详细步骤: 1. 引言: 作者是致力于使用 AI 工具将自己打造为超级个体的程序员,目前沉浸于 AI Agent 研究。 本文将分享如何部署本地大模型以及搭建个人知识库,让您了解相关流程和技术。 2. 本地知识库进阶: 若要更灵活掌控知识库,可使用额外软件 AnythingLLM,它包含所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 AnythingLLM 中有 Workspace 的概念,可创建独有 Workspace 与其他项目数据隔离。 构建本地知识库的步骤: 首先创建一个工作空间。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,包括 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 完成配置后即可进行测试对话。 3. 写在最后: 作者推崇“看十遍不如实操一遍,实操十遍不如分享一遍”。 若对 AI Agent 技术感兴趣,可联系作者或加入其免费知识星球(备注 AGI 知识库)。
2024-12-02
我想知道如果我上传给Coze数据库,我的数据安全有保障吗
关于您上传数据到 Coze 数据库的数据安全保障问题,以下是相关信息: 合规说明方面: 不存在产出违法违规内容,包括色情暴力、政治敏感和违法犯罪等。 不存在爬取行为,遵循 robot.txt 爬虫协议,未使用匿名代理。 不存在版权争议问题,未爬取强版权资源、付费内容等。 不存在跨境数据传输,未使用海外 API 和海外模型。 有安全合规声明,作者声明作品没有侵权,作品安全可用且公开可接受。 Coze 数据库的功能特点: 知识库功能不仅支持上传和存储外部知识内容,还提供多样化的检索能力,能解决大模型可能出现的幻觉问题和专业领域知识的不足,显著提升回复准确性。支持从多种数据源上传文本和表格数据,自动将知识内容切分成多个片段进行存储,并允许用户自定义内容分片规则,提供多种检索方式,适应各种使用场景。 数据库具备记忆能力,可以存储和检索用户的交互历史,以提供更加个性化的服务。支持实时更新,确保信息最新。能存储用户的交互历史,包括提问、回答和反馈,用于理解用户需求和优化对话流程,可进行个性化服务和错误纠正与学习。 综上所述,从目前的信息来看,您上传给 Coze 数据库的数据在一定程度上是有安全保障的。但具体情况还需参考 Coze 数据库的最新政策和规定。
2024-11-14
大模型如何接入企业数据库
大模型接入企业数据库的相关内容如下: 原理介绍: 从文档处理角度来看,实现流程包括配置要求。 配置要求: ChatGLM6B 模型硬件需求: 模型文件下载至本地需要 15GB 存储空间。 量化等级不同,最低 GPU 显存(推理)和最低 GPU 显存(高效参数微调)要求不同: FP16(无量化):分别为 13GB 和 14GB。 INT8:分别为 8GB 和 9GB。 INT4:分别为 6GB 和 7GB。 MOSS 模型硬件需求: 模型文件下载至本地需要 70GB 存储空间。 量化等级不同,最低 GPU 显存(推理)和最低 GPU 显存(高效参数微调)要求不同: FP16(无量化):分别为 68GB 和 。 INT8:分别为 20GB 和 。 Embedding 模型硬件需求:默认选用的 Embedding 模型约占用显存 3GB,也可修改为在 CPU 中运行。 项目启动: Web 启动:运行 web.py,若显存不足则调整 configs/model_config.py 文件中 LLM_MODEL 参数更换模型,若连接无法连接修改 web.py 文件末尾 lauch 中 0.0.0.0 为 127.0.0.1,点击 URL 进入 UI 界面。 API 模式启动。 命令行模式启动。 上传知识库: 左侧知识库问答中选择新建知识库,可传输 txt、pdf 等。可以调整 prompt,匹配不同的知识库,让 LLM 扮演不同的角色。例如上传公司财报,充当财务分析师;上传客服聊天记录,充当智能客服;上传经典 Case,充当律师助手;上传医院百科全书,充当在线问诊医生等等,MOSS 同理。 使用数据表: 通过在工作流中添加数据库节点对数据表进行操作。在工作流中可通过 NL2SQL 方式和代码方式进行调用,支持完整读写模式。参考以下操作,在工作流中添加并配置工作流节点。在工作流中配置数据库节点前,确保已经搭建了一个 Bot,并在这个 Bot 中创建好了数据表。 1. 单击页面顶部的工作流页签,然后单击创建工作流。 2. 输入工作流名称和工作流的使用描述,然后单击确认。工作流名称和描述可以帮助大语言模型理解什么场景下需要调用该工作流。 1. 在基础节点页签下,将数据库节点拖入到工作流配置画布区域。 2. 根据以下信息配置数据库节点。 输入:添加 SQL 执行中需要的参数,可以是一个变量,也可以是一个固定值。 SQL:输入要执行的 SQL 语句,可以直接使用输入参数中的变量。可单击自动生成使用大模型生成 SQL。在弹出的页面中,选择这个数据库工作流生效的 Bot 和数据表,然后使用自然语言描述要执行的操作,单击自动生成生成 SQL 语句,最后单击使用。 注意:不支持 Select语法,不支持多表 Join 操作,最多返回 100 行数据。
2024-10-11
向量数据库
向量数据库是大语言模型从工具走向生产力实践中热门的 RAG 方式所必备的基础设施。 RAG 能够从海量文本数据中检索相关信息并生成高质量文本输出,而向量数据库在其中发挥着重要作用。 目前市面上的向量数据库众多,操作方式无统一标准。本文将基于 LangChain 提供的 VectorStore 类中的统一操作方法,以 chroma 向量数据库作为示例,从最为基础的 CRUD 入手介绍其使用方法。 向量数据库的工作原理如下: 如果是文本,会通过模型转换成向量对象,对象存入数据库中再去使用。传统数据库以表格形式存储简单数据,向量数据库处理的是复杂的向量数据,并使用独特方法进行搜索。常规数据库搜索精确匹配数据,向量数据库则使用特定相似性度量寻找最接近匹配,使用特殊的近似近邻(ANN)搜索技术,包括散列搜索和基于图的搜索等方法。 要理解向量数据库的工作原理及其与传统关系数据库(如 SQL)的不同,必须先理解嵌入的概念。非结构化数据(如文本、图像和音频)缺乏预定义格式,给传统数据库带来挑战。为在人工智能和机器学习应用中利用这些数据,需使用嵌入技术将其转换为数字表示,嵌入就像给每个项目赋予独特代码,以捕捉其含义或本质。
2024-09-02
如何在coze的prompt中调用数据库
在 Coze 的 prompt 中调用数据库可以参考以下步骤: 1. 基础框架: 本 bot 由提示词、数据库和工作流三部分构成。提示词使用结构化框架,要求大模型根据不同行为调用不同工作流。数据库用于记录不同用户历史记账记录,工作流中会用到。 2. 工作流: 增加记账记录 add_accounting_record: 开始:定义一个{{prompt}},把用户在 bot 输入的记账内容传入进来。 大模型:任务简单,使用任意模型均可,无需调整参数。输入定义了{{input}}引用开始节点的 prompt 参数。提示词让大模型拆解用户输入内容,识别【记账事项】、【发生时间】、【变动金额】,并分别赋值到{{item}}、{{occurrence_time}}、{{balance_change}}。输出定义了相应的{{item}}、{{occurrence_time}}、{{balance_change}}。 数据库——插入记账记录:输入定义了{{item}}、{{occurrence_time}}、{{balance_change}},用于接收大模型节点输出传入的内容。SQL 命令中,因数据库存入金额最小单位是分,所以当用户输入花费金额时,需乘以 100 存储。 3. 使用数据表: 用户通过自然语言与 Bot 交互来插入或查询数据库中的数据。Bot 会根据用户输入自动创建新记录并存储,也可根据用户查询条件检索数据返回。 在 Prompt 中添加并使用数据表时: 明确说明要执行的操作和涉及的字段,包括字段使用说明,以使大语言模型更准确执行操作。 在数据库功能区域添加要操作的数据表。 在调试区域进行测试,可单击调试区域右上方的已存数据查看数据表中的数据。
2024-09-02
向量数据库高效储存是什么意思 举个例子
向量数据库高效储存指的是专门用于存储高维向量,以实现快速准确的相似性搜索。在人工智能领域,尤其是自然语言处理和计算机视觉等方面,模型会生成并处理大量高维向量,传统数据库难以有效应对,向量数据库则为这些应用提供了高度优化的环境。 例如,像 GPT3 这样的大型语言模型,有 1750 亿个参数,会产生大量向量化数据,传统数据库很难有效处理,而向量数据库能够有效地管理和查询这些向量。 从系统角度看,预处理管道中向量数据库至关重要,负责高效存储、比较和检索多达数十亿的嵌入(即向量)。市场上常见的选择如 Pinecone,完全由云托管,容易上手,具备大型企业在生产中所需的多种功能。同时,还有 Weaviate、Vespa 和 Qdrant 等开源系统,通常具有出色的单节点性能,可针对特定应用定制;Chroma 和 Faiss 等本地向量管理库,有丰富的开发人员经验,便于启动小型应用程序和开发实验;pgvector 之类的 OLTP 扩展,对于特定开发人员和企业也是一种解决方案。 向量存储是用于存储和检索文本嵌入向量的工具,这些向量是文本数据的数值表示,能让计算机理解和处理自然语言。其主要功能包括高效存储大量文本向量、快速检索相似文本向量以及支持复杂的查询操作,如范围搜索和最近邻搜索。
2024-08-27
用于训练销售助手类型业务的私有模型
以下是关于训练销售助手类型业务私有模型的相关信息: 1. 提示词方面:设计了一套模拟江南皮革厂销售的拟人化提示词模板,并将其应用于国内的豆包角色扮演模型,生成吸引人的广告词。若与语音技术结合用于宣传,能创造出有趣且有效的销售助手,吸引顾客注意。拟人化提示词母体可通过关注作者微信领取。 2. 增加私有知识方面:通过前面步骤拥有可与客户对话的 AI 助手后,若想让其像公司员工一样精准专业回答商品相关问题,需为大模型应用配置知识库。例如在售卖智能手机的公司,网站上有很多相关信息,不同机型的详细配置清单可参考相关文档。
2025-01-07
开发简单的 Agent 助手
开发简单的 Agent 助手可以参考以下内容: 基于结构化数据来 RAG 实战:以餐饮生活助手为例,它是基于结构化数据 RAG 方法的应用,能从大规模餐饮数据集中检索合适餐厅并提供信息服务。实现餐饮生活助手 RAG 的 Langchain 代码实战需完成以下步骤:定义餐饮数据源,将其转化为 Langchain 可识别和操作的形式并注册;定义 LLM 的代理,通过 Langchain 的代理根据用户问题提取信息、形成查询语句、检索数据源并生成答案。 从基础案例入门: 三分钟捏 Bot: 登录控制台:登录扣子控制台(coze.cn),使用手机号或抖音注册/登录。 在我的空间创建 Agent:在扣子主页左上角点击“创建 Bot”,选择空间名称为“个人空间”、Bot 名称为“第一个 Bot”并确认。 编写 Prompt:填写 Prompt,即 Bot 功能说明,第一次可用简短词语作为提示词。 优化 Prompt:点击“优化”进行优化。 设置开场白及其他环节。 发布到多平台&使用。 进阶之路: 15 分钟:查看其他 Bot 获取灵感。 1 小时:找到与兴趣、工作方向结合的 Bot 深入沟通,阅读相关文章。 一周:了解基础组件,寻找不错的扣子借鉴复制,加入 Agent 共学小组,尝试在群里问第一个问题。 一个月:合理安排时间,参与 WaytoAGI Agent 共学计划,创建 Agent 并分享经历心得。 《执笔者》:基于多 Agent 模式的全能写手: 操作步骤: 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面自动切换,相比单 agent 多了中间的 agent 连接区。 添加合适节点:有两种方式选择,用已发布的 bot 或创建新的 agent,按需选取并连接在默认总管 agent 后面,无结束节点。 添加合适的 prompt:为每个 agent 填写合适 prompt,外围人设填写主要功能,内部 bot 填写应用场景。 调试与美化:经过以上三步基本搭建完成,后续需调试,调整提示词优化交互。
2025-01-07
一个好玩的车载语音助手应该是什么样子的?
一个好玩的车载语音助手可以有以下特点和形式: Glowby Basic:能够让用户搭建一个拥有自己声音的 AI 语音助手,您可以通过 🔗https://github.com/glowbom/glowby 了解更多。 Dreamkeeper:在 AI 的帮助下记录并了解梦境。它使用多个 Gen AI 模型,具体流程为:由 ChatGPT 驱动的助手向用户提问以记住用户的梦,并根据回答调整内容;通过 Stable Diffusion 模型提取 ChatGPT 生成的关于用户梦境的摘要描述中的关键词来生成图像;将图像传输至图生视频模型创建基于用户梦境的动画;用 GPT 进行嵌入处理,将用户想要保留的梦保留在一个画廊中。您可以访问 🔗https://thedreamkeeper.co/ 进一步了解。 Andrej Karpathy 开发的 Awesome movies:这是一个电影搜索与推荐平台,搭建该网站共分三步,包括抓取自 1970 年以来的所有 11,768 部电影,从维基百科上抓取每部电影的简介和情节,并使用 OpenAI API(ada002)进行嵌入处理,最后将所有信息整合成一个电影搜索/推荐引擎网站。您可以通过 🔗https://awesomemovies.life/ 查看。
2025-01-06
如何搭建一个本地的ai助手,通过学习本地文档进行训练
搭建一个本地的 AI 助手并通过学习本地文档进行训练,可参考以下步骤: 1. 设计 AI 机器人: 编写【prompt】提示词,设定 Bot 的身份和目标。 2. 创建知识库: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 创建知识库路径:个人空间 知识库 创建知识库。 知识库文档类型支持本地文档、在线数据、飞书文档、Notion 等,本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:在内容中加上特殊分割符“”,以便于自动切分数据。分段标识符号选择“自定义”,内容填“”。 同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。 3. 创建工作流: 告诉 AI 机器人应该按什么流程处理信息。 创建工作流路径:个人空间 工作流 创建工作流。 工作流设计好后,先点击右上角“试运行”,测试工作流无误后,就可以点击发布。 如果任务和逻辑复杂,可以结合左边“节点”工具来实现。比如:可以在工作流中再次调用【大模型】,总结分析知识库内容;可以调用【数据库】存储用户输入的信息;可以调用【代码】来处理复杂逻辑等。 个人建议:工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很重要。 另外,您还可以参考以下 10 分钟在网站上增加一个 AI 助手的方法: 1. 搭建示例网站: 点击打开提供的函数计算应用模板,参考下图选择直接部署、并填写前面获取到的百炼应用 ID 以及 APIKEY。 其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 2. 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消③所在位置的代码注释即可。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果。此时您会发现网站的右下角出现了 AI 助手图标,点击即可唤起 AI 助手。
2025-01-06
我想学习创建自己的AI助手
以下是创建自己的 AI 助手的相关内容: 使用 Coze 免费打造微信 AI 机器人 搭建步骤: 1. 创建好 Bot 后,从“个人空间”入口找到自己的机器人。 2. 设计环节:在 Coze 里称为“编排”。 常用概念和功能: 提示词:设定 Bot 的身份和目标。 插件:通过 API 连接集成各种平台和服务。 工作流:设计复杂的多步骤任务。 触发器:创建定时任务。 记忆库:保留对话细节,支持外部知识库。 变量:保存用户个人信息。 数据库:存储和管理结构化数据。 长期记忆:总结聊天对话内容。 3. 设计步骤(以“AI 前线”Bot 为例): 确定目的:比如“AI 前线”,目的是成为一个 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,提供高效的站内信息检索服务。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问可查官方指南。 在网站上增加一个 AI 助手(以百炼为例) 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用,在对话框选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。也可以输入一些 Prompt 来设置人设以引导大模型更好地应对客户咨询。 在页面右侧提问验证模型效果,点击右上角的发布。 2. 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID,保存到本地用于后续配置。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面。在页面右侧,点击创建我的 APIKEY,在弹出窗口中创建一个新 APIKEY,保存到本地用于后续配置。
2025-01-05
如何本地化部署一个ai助手
本地化部署一个 AI 助手可以参考以下几种方式: 1. 在网站上增加 AI 助手: 搭建示例网站: 创建应用:点击打开函数计算应用模板,参考相关选择直接部署、填写百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,取消相关位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果,网站的右下角会出现 AI 助手图标,点击即可唤起 AI 助手。 2. 从 LLM 大语言模型、知识库到微信机器人的全本地部署(以 windows10 系统为例): 本地 Hook 或 COW 机器人(二选一,建议先选择 COW): 注意:本教程完成后,程序将在您的电脑本地运行,假如关掉了窗口,进程也就结束。所以,如果想让 AI 持续使用,就必须保持窗口打开和运行,也就是电脑不能关。 安装环境: 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 在命令窗口中,粘贴入相关代码,确认是否有 python 和 pip。 如果没有,先进行 python 的安装,可点击下载:。 部署项目:下载 COW 机器人项目,解压缩。 3. 把大模型接入小米音箱(node.js): 第四步:填写 API 服务: 智普:接口地址:https://open.bigmodel.cn/api/paas/v4,模型:glm4flash。 硅基:选择 AI 服务为自定义,接口地址:https://api.siliconflow.cn/v1。 其他模型的 API 端口请参考官方文档:https://migptgui.com/docs/apply/。 第五步:语音服务:官方说明:https://migptgui.com/docs/faqs/tts。 第六步:启动服务:在最上方可导出编辑的内容,格式为 json 格式,如果改错了可以导入之前保存的配置。单击启动,回到 powshell 界面。每次调整设置都需要重置后重新启动。建议回答完毕后增加结束的提示语,可以提高连续对话的稳定性。官方常见问题文档:https://migptgui.com/docs/faqs/noreply。
2025-01-05
现在在学术论文文献查询方面做的最好的ai是哪个
在学术论文文献查询方面,以下是一些表现较好的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还有一些专门的工具,如: 1. TXYZ: 帮助搜索、查询专业文献并进行对话,提供一站式服务。 是与预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 支持用户上传 PDF 论文或链接,迅速找到所需答案和内容。 在对话中提供论文参考,给出可信背书。 2. 开搜 AI 搜索: 免费无广告,直达结果。 帮助在校学生快速搜集学术资料,智能总结关键信息,助力撰写论文和报告,且支持查看来源出处。 为教师群体获取教学资源、生成教案和课题研究报告提供帮助。 方便职场办公人群高效查找工作信息,简化文案撰写、PPT 制作和工作汇报准备。 为学术研究人员提供行业分析,整合和总结大量数据形成研究报告。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
有可以查询图片的快速方法吗?
以下为一些快速查询图片的方法: 1. 利用 Perplexity.AI 的 Search Images 功能:点击搜索结果旁的加号,可快速浏览并选择与主题紧密相连的图片资源。在挑选图片时,要避免使用带有水印、画质不清晰或分辨率较低的图片。图片出处主要在 twitter 和官方网站。 2. 对于 Midjourney 生成的图片: 作业 ID 是其唯一标识符,格式类似于 9333dcd0681e4840a29c801e502ae424,可以在图像文件名的第一部分、网站上的 URL 和图像文件名中找到。 在网页上,可通过选择...> Copy...>作业 ID 来在作品库中查找任何图像的作业 ID。 从 URL 中,可在打开作品的网页链接末尾找到 Job ID。 从文件名中,Job ID 在文件名的最后一部分。 使用表情符号✉️可以将已完成的作业发送到私信中,私信中将包括图像的 seed 号和作业 ID,但✉️表情符号只适用于您自己的作业。 3. 如果不喜欢用模板找封面图,可根据文章内容搜索匹配的封面。比如在公众号中搜索同行的封面,直接“拿来主义”。若文章正文里没有封面图,可用壹伴浏览器插件的“查看封面”按钮(需会员),或者使用秘塔 AI 搜索工具,输入文章链接获取封面。相关在线工具链接:https://www.mgpaiban.com/tool/wxfm.html ,为方便使用可将其收藏。
2024-10-16
coze 是否可以通过LLM生成python代码运行查询excel表格信息?
在 Coze 中,可以通过以下步骤实现相关操作: 1. 进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。 3. 新建后的编辑视图与功能中,左侧「选择节点」模块根据子任务需要,实际用到的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。如本案例中的思维导图、英文音频,无法通过 LLM 生成,需依赖插件实现。 大模型:调用 LLM,实现各项文本内容的生成。如本案例中的中文翻译、英文大纲、单词注释等依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 4. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 需要注意的是,因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。
2024-10-16
查询工程项目招标和工程进度的AI工具和网站
目前在 AI 领域,专门用于查询工程项目招标和工程进度的工具和网站相对较少。但您可以通过一些综合性的数据分析和信息检索平台来获取相关信息,例如天眼查、企查查等,它们能够提供部分企业的工程项目相关数据。另外,一些政府部门的官方网站也会发布工程项目招标和进度的信息。
2024-09-14
1. 国内各个大模型有什么区别,请基于数据库/擅长方向分析 2. 推荐好用的搜索ai工具,需要查询权威资料,要求信息源可靠
以下是关于您提出的问题的回答: 国内各个大模型的区别: 北京企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 在聊天状态下能生成 Markdown 格式的有智谱清言、商量 Sensechat;目前不能进行自然语言交流的有昇思(可以对文本进行是否由 AI 生成的检测,类似论文查重,准确度不错);受限制使用的有 MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值)。特色功能方面,昇思可以生图,MiniMax 可以语音合成。 关于好用的搜索 AI 工具:目前没有明确的权威资料推荐特定的搜索 AI 工具。但需要指出的是,中国大模型在数据方面存在一些问题。在人工智能领域,数据质量至关重要。虽然 OpenAI 训练大模型所用的中文数据也源自中国的互联网平台,但他们在数据处理上更加精细,类似于将粗糙的原石打磨成璀璨的钻石。而在中国,高质量的数据处理服务相对稀缺,国内大模型主要以中文数据为基础,但中文互联网数据的质量普遍被认为相对较低。这导致在 IT 从业者搜索专业信息时,往往会首选 Google、arXiv 或 Bing 等国际平台,而不是国内的搜索引擎。
2024-08-26
查询相关信息源的工具推荐
以下是为您推荐的查询相关信息源的工具: 1. Textero.ai AI Essay Writer: 相关来源查找器:输入论文主题或问题,从超过 2.14 亿个来源的数据库中找到相关来源,可探索推荐资料并下载 PDF 文件阅读摘要,还能上传自己的来源。 AI 研究助理:“Ask AI”功能提供来源的详细见解和智能推荐,信息可复制到草稿中。 灵感助手和自定义提示的文本编辑:利用创意生成功能根据广泛的来源数据库创建内容,可使用命令编辑文本,如“缩短”“改写”“扩展”等,还能格式化文本并下载文件。 文本摘要生成器:对大型研究和学术论文进行总结,提供详细摘要,节省时间并专注写作。 大纲生成器:自动为论文生成大纲,可请求特定部分。 2. OpenAI 官方指南:模型可利用外部信息源作为输入的一部分,生成更明智和最新的响应。嵌入可用于实现高效的知识检索,将文本语料库分割成块,通过嵌入和存储,给定查询嵌入后进行向量搜索,找到最相关的嵌入文本块。 3. 历史老师使用 GPT 给学生讲课:历史专业学生已训练识别 ChatGPT 等服务的常见陷阱,如事实不准确,并通过事实核查等技能解决。语言模型对多种语言的历史原始资料有大量训练,对历史学家和历史专业学生是好事,但短期内给历史老师等教育工作者带来重大问题,教授需重新思考作业布置,通过迭代反馈和知名提示方法能显著改善结果。
2024-08-09