Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何利用GPT进行逻辑回归分析

Answer

利用 GPT 进行逻辑回归分析可以参考以下步骤:

  1. 首先,在数据准备阶段,明确需要分析的数据内容,例如用户描述想分析的内容,或者上传相关文件并描述其数据、字段意义或作用等,以辅助 GPT 理解数据。
  2. 对于 SQL 分析,后台连接数据库,附带表结构信息让 GPT 输出 SQL 语句,校验其是否为 SELECT 类型,其他操作如 UPDATE/DELETE 绝不能通过。校验通过后执行 SQL 返回结果数据,再将数据传给 GPT(附带上下文),让其学习并分析数据。
  3. 在与 GPT 的交互过程中,不断输入真实的业务需求场景以及现存的问题,帮助 GPT 更好地理解需求,例如输入旧代码、需求和问题,让 GPT 给出针对性的优化建议。
  4. 根据 GPT 给出的结果进行调试和优化,可能需要多轮的输入输出(类似讨论),不断强化 GPT 对真实需求的认知。
  5. 例如在 SQL 优化方面,GPT 可能提出如每次更新 1 天而不是 30 天的数据、创建中间结果表存储非二次计算的数据、利用 CASE WHEN 合并查询约束条件基本相同的指标等建议。然后根据这些建议结合自身的能力进行代码优化和测试。

需要注意的是,整个过程可能比较繁琐,需要有一定的耐心,包括查资料、处理报错、纠正 GPT、不断补充需求细节等。

Content generated by AI large model, please carefully verify (powered by aily)

References

ChatGPT 是在做什么,为什么它有效?

这个理论可能是什么样子?嗯,有一个小角落基本上已知了两千年,那就是逻辑。当然,在亚里士多德发现它的三段论形式中,逻辑基本上是一种说法,即遵循某些模式的句子是合理的,而其他句子则不合理。因此,例如说“All X are Y。This is not Y,so it's not an X.”(如“All fishes are blue。This is not blue,so it's not a fish.”)是合理的。就像人们可以想象亚里士多德通过(“机器学习式”的)许多修辞例子来发现三段论逻辑一样,我们也可以想象在ChatGPT的训练中,它通过查看网络文本等大量信息,能够“发现三段论逻辑”。(是的,尽管人们可以预期ChatGPT会产生基于三段论逻辑的“正确推论”,但是当涉及到更复杂的形式逻辑时,情况就不同了-我认为它会因为与括号匹配相同的原因而失败。)但是在逻辑的狭隘例子之外,还有什么关于如何系统地构建(或识别)甚至是合理的文本?是的,有像Mad Libs这样使用非常特定的“短语模板”的东西。但是不知怎的,ChatGPT隐含地具有一种更普遍的方式。也许除了“当您拥有1750亿个神经网络权重时,不知怎样就会发生”之外,无法说明如何做到这一点。但我强烈怀疑有一个更简单、更强大的答案。

ChatGPT 助力数据分析:实际案例与技巧

逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。SQL分析:用户描述想分析的内容,后台连接DB,附带表结构信息让AI输出SQL语句,校验是SELECT类型的SQL,其他操作如UPDATE/DELETE绝不能通过!!校验通过后执行SQL返回结果数据。再将数据传给GPT(附带上下文),让AI学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给GPT分析数据,后续步骤与上面一致。流程描述得比较详细,就不具体讲解开发过程和代码了,而是会更多讲述开发时的一些问题、重点和技巧。相关重点:

产品:产品经理如何用ChatGPT

在完成第一步的原SQL输入后,GPT已经对需求有了初步的理解,这里我再将真实的业务需求场景以及现在的问题输入给GPT:这一步的作用是帮助GPT更好的理解旧代码背后的真实业务需求,同时结合旧代码运行的问题,让GPT能进一步给出针对性的优化建议,输出更符合需求的代码。这里其实有好几轮的输入输出(可以理解为讨论),不断的强化GPT对真实需求的认知。注:SQL查询代码本身不包含涉密信息,可以放心在ChatGPT中使用[heading3]Step3:根据优化结果不断调试[content]在输入完旧代码、需求和问题之后,GPT模型给出了一些新的代码。我需要不断地根据GPT的结果进行调试和优化,直到生成满足需求的新代码,这一步比较繁琐,但惊喜也是在这一步发现的。按照原SQL的思路,是每天更新近30天的数据,并存储到一个结果表,由于指标很多且数据量大,所以耗时很长,但其实大部分的语句都是反复的读同一个表,资源浪费比较严重。所以在跟GPT反复沟通多次后,GPT提出了3点比较重要的优化建议:每次更新1天而不是30天的数据;不直接统计全量指标数据,而是创建一个中间结果表,将所有非二次计算的数据存储到该表,需要二次计算的指标直接通过该表再查询(例如:中间结果表统计了昨日总数和今日总数,变化值、环比等则通过中间表再进行二次查询统计);利用CASE WHEN合并查询约束条件基本相同的指标,这个方式大大减少了重复读表的次数,也极大的精简了SQL代码内容。前两点是GPT直接提出的,第三点是我从GPT给出的优化代码中发现的,基于这三个核心优化思路,结合我的半吊子SQL水平,花费了半天多的时间将完整的代码优化完成,并分模块在系统中测试了一下,结果完全一致。当然整个过程还是比较繁琐的,包括查资料、报错、纠正GPT、不断补充需求细节等等,需要有一定的耐心。

Others are asking
1.Gpt在教育邻域的快速发展
GPT 在教育领域的快速发展表现为以下方面: 训练方式:包括预训练、有监督微调、奖励建模、强化学习等阶段,每个阶段都有相应的数据集、算法和模型。 在教育中的影响:以 ChatGPT 为代表的生成式人工智能技术的出现,为教育带来冲击。许多教育工作者认识到大模型技术的进步对教育的意义。但目前市场上虽看好 AI 对各行业的赋能,却尚未诞生出相关的 Super APP,存在对 AI 发展的不同看法和预期。
2025-01-22
DeepSeek R1和ChatGPT相比有什么优势?
DeepSeek R1 与 ChatGPT 的优势比较如下: 在数字乘法任务中,ChatGPT 和精简版的隐式 CoT 模型无法达到 100%的准确率,而从头开始训练的 DeepSeek R1 在将扩散采样步骤设置为 1 的情况下,能够保持显著的吞吐量同时达到 100%的准确率。 在数学问题求解常用基准测试中,GPT4 相对于 ChatGPT 表现出显著的改进,GPT4 在许多复杂问题中展示了更深入的理解,并能够应用适当的推理。而 ChatGPT 通常会采用低级启发式方法,提到与问题仅是表面相关的公式和概念,表明缺乏实际理解。
2025-01-22
chatgpt如何使用
以下是关于 ChatGPT 的使用方法: 1. 英文学习使用: 推特博主分享的 GPT 工作流,先将特定 prompt 喂给 ChatGPT(建议开新对话专门用于学习英文)。 ChatGPT 会扮演美国好朋友,对输入的英文和中文表达返回更地道的表达,对俚语部分加粗,还会举一反三给出更多例子。 输入特定语句,ChatGPT 会输出对话回顾并建议 3 个任务强化记忆。 建议使用方式:开一个窗口复制 prompt,手机端打开历史记录,点右上角耳机图标打电话,既能练口语又能练听力,结束后看回顾帮助阅读。 群友在讯飞上做了类似尝试,效果不错。 2. 苹果系统安装、订阅使用: 在 AppleStore 下载 ChatGPT,中国区需切换到美区,美区 AppleID 注册教程参考知乎链接: 。 支付宝购买苹果礼品卡:打开支付,地区切换到美区任意区,找到品牌精选 折扣礼品卡,点击大牌礼品卡,下滑找到 App Store&iTunes US 礼品卡,按需购买,建议先买 20 刀。 支付宝购买礼品卡后,在 apple store 中兑换礼品卡,然后在 chatgpt 中购买订阅 gpt plus,中途不想订阅可在订阅列表中取消。 3. 使用 ChatGPT 4o: 开启对话:打开 ChatGPT 应用或网页,点击开始对话,会员在苹果或安卓手机购买的,电脑上能登录。 体验最新语音对话功能:版本切到 ChatGPT 4o,点击右下角“耳机🎧”图标,选择一个声音即可体验流畅的语音对话。
2025-01-22
怎么描述能让gpt写出可靠的代码
要让 GPT 写出可靠的代码,可以参考以下方法: 1. 当需要进行复杂计算时,不要完全依赖 GPT 模型自身,而是指导模型编写并运行代码。 2. 特别地,指示模型将要运行的代码放入指定格式,例如使用三个反引号(backticks)。 3. 对于程序开发人员,可利用 GPT 生成代码,例如在求 1000 以内的所有质数时,先让 GPT 编写代码,然后开启新对话输入代码,再让模型充当代码执行器运行代码。 4. 编写代码时,GPT4 写复杂代码的能力更强。 5. 代码执行的另一个好用例是调用外部 API,可通过向模型提供说明如何使用 API 的文档和/或代码示例来指导模型。 6. 但需注意,执行模型生成的代码本身并不安全,任何试图执行此操作的应用程序都应采取预防措施,特别是需要一个沙盒代码执行环境来限制不受信任的代码可能造成的危害。
2025-01-22
GPT 文字转语音
以下是一些与 GPT 文字转语音相关的信息: AI Voice Generator 是一款使用 OpenAI 文本转语音的工具,链接为: GPTSoVITS 实现声音克隆,相关示例包括: 在游戏《神谕》中,ChatGPT 返回的中文文字通过 TTS 服务选择合适的声音播放出来,这里使用的是内部自研的 TTS 以及代码平台。
2025-01-21
gpt拒绝读取文件怎么办
GPT 拒绝读取文件可能是由于多种原因导致的。以下是一些可能的解决方法: 1. 检查提示的准确性和完整性,确保清晰明确地告知 GPT 需要读取文件以及相关的具体要求。 2. 对于简单提示修正可能解决问题,例如更准确地描述读取文件的目的、格式等。 3. 注意模型在处理复杂任务时可能出现的错误模式,如运行不正确的命令等,及时进行纠正和调整。 同时,在与 GPT 交互时,为了获得更好的效果,可以参考以下最佳实践: 1. 编写清晰的指令: 如果输出不符合期望,如过长或过简单,明确提出要求。 不喜欢某种格式时,展示期望的格式。 减少模型的猜测,提高获得满意结果的可能性。 2. 包含详细信息: 确保请求中提供重要的细节或上下文,以获得高度相关的回复。 3. 要求模型扮演角色: 通过指定角色,使模型的回答更具特色和针对性,提升输出质量。
2025-01-21
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
当前国内逻辑推理能力最强的大模型是什么
目前国内逻辑推理能力较强的大模型有以下几种: 1. Baichuan213BChat(百川智能):是百川智能自主训练的开源大语言模型。在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名 200 亿参数量级国内模型第一,其中逻辑推理能力超过 34B 参数量级的大模型,生成与创作能力超过 72B 参数量级的模型。可应用于小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,还能部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务。 2. 智谱清言(清华&智谱 AI):是智谱 AI 和清华大学推出的大模型产品,基础模型为 ChatGLM 大模型。在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。可应用于 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景,在较复杂推理应用上的效果也不错,广告文案、文学写作方面也是很好的选择。 3. 文心一言 4.0API(百度):在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。另外在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。能力栈较为广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面,在科学研究、教育、工业方面的落地能力也值得关注。
2024-12-08
不确定逻辑增长模型
对于逻辑增长模型的相关问题,以下是为您提供的信息: 张俊林在相关研究中指出,对于简单或中等难度的逻辑推理问题,通过 inferencetime 增加算力,比如树搜索等方式,比增强模型“预训练”阶段的逻辑推理能力效果更明显。这一结论来自于文献“Scaling LLM TestTime Compute Optimally can be More Effective than Scaling Model Parameters”及“Are More LM Calls All You Need?Towards the Scaling Properties of Compound AI Systems”。 其原因在于,对于简单或中等难度的问题,模型在 inference 时很可能给出答案中的大部分步骤是对的(或多次采样中多数是对的),只有个别步骤错误,通过如 BestofN Sampling 这种简单树搜索方法增加输出的多样性,加上靠谱的 Verifier 筛选,较容易修正小错误。但对于高难度的逻辑问题,模型输出内容中大部分步骤可能都是错的(或多次采样中大多数都是错的),此时仅靠 inferencetime 增加算力难以解决。 此外,OpenAI o1 的基座模型,在 Pretraining 还是 Posttraining 阶段,大概率极大增强了基座模型的复杂逻辑推理能力,这是它能在后续 inferencetime 增加算力解决复杂问题的根基。所以,只靠 inferencetime 增加算力,仅对容易和中等难度的逻辑问题有用,想要不断提升模型的复杂推理能力,还需要继续在 PreTrain 和 PostTraining 阶段下功夫。
2024-12-05
哪款AI工具写小说逻辑性更好
以下是一些在写小说逻辑性方面表现较好的 AI 工具: ChatGPT:擅长构思。 Claude:文笔好于 ChatGPT。 使用 AI 写小说时存在一些固有问题,如上下文长度限制、易忘记要求、文笔简略、一致性难以保证、对叙述方式敏感等。但人类可以通过一些技巧来利用 AI 辅助创作,例如让 AI 以表格形式输出细节描述等。同时要记住,AI 只是辅助创作,最后仍需人类进行加工和修改以满足读者要求。
2024-11-25
文本可视化形成各种鱼骨图,逻辑图,时序图等等
以下是关于文本可视化形成各种鱼骨图、逻辑图、时序图等的相关内容: 生成流程图、时序图的方式主要有两种: 1. 可视化拖拽: 代表产品有:(web 工具)、visio(本地软件)。 优点:直观。 缺点:需要花时间在布局上。 2. 语法渲染成图形: 代表语法:。 优点: 只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,比如在用 tyora、markdown 写文档时。 多样性,不同渲染引擎可渲染成多种样式。 缺点:有点抽象。 使用 ChatGPT 生成图形语法的流程如下: 1. 确定制作目标。 2. 通过自然语法描述逻辑。 3. 在线校验测试是否成功。 在软件架构设计中,以下是一些可以用于绘制逻辑视图、功能视图和部署视图的 AI 工具和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可使用拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2024-11-25
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
标准曲线 回归线斜率 线性什么关系
标准曲线和回归线在统计学和数据分析中密切相关。标准曲线通常用于描述自变量和因变量之间的定量关系,而回归线则是通过对数据点进行拟合得到的一条直线,用于表示这种关系的趋势。 斜率在线性关系中是一个关键参数。对于线性关系而言,斜率表示因变量随自变量变化的速率。在标准曲线和回归线中,斜率反映了变量之间变化的比例关系。 如果标准曲线或回归线呈现线性,那么斜率能够定量地描述这种线性关系的特征。斜率的大小和正负决定了线性关系的方向和强度。 总之,标准曲线、回归线和斜率在线性关系的描述和分析中相互关联,共同帮助我们理解和解释变量之间的关系。
2025-01-10
你了解符号回归吗
符号回归(Symbolic Regression)是一种数学和计算方法,它使用符号推理来从数据中发现和建模函数关系。与传统的数值回归方法不同,符号回归不仅试图找到数据的最佳拟合线,而且还尝试发现数据背后的潜在数学公式。 符号回归通常涉及以下步骤: 1. 候选公式生成:系统自动生成一组候选的数学表达式,这些表达式可能包括变量的不同次幂、对数、指数、三角函数等。 2. 评估和选择:使用统计标准(如均方误差MSE、决定系数R²等)来评估每个候选公式对数据的拟合程度。 3. 优化:通过调整公式中的参数(系数、指数等)来优化拟合度。 4. 剪枝和简化:对模型进行简化,移除不必要的项,以避免过度拟合,并提高模型的泛化能力。 5. 迭代搜索:这个过程是迭代的,系统会不断生成新的公式,评估它们,并选择最佳模型。 符号回归在以下领域特别有用: 科学发现:在实验科学中,符号回归可以帮助研究者从实验数据中发现物理定律和自然现象的数学描述。 工程设计:在工程设计中,符号回归可以用来优化设计参数,发现性能指标与设计变量之间的关系。 经济学:在经济学中,符号回归可以用来建模经济指标之间的关系,预测市场趋势等。 符号回归的一个关键挑战是搜索空间可能非常大,因为可能的数学表达式数量是无限的。为了有效进行符号回归,需要使用高级的算法,如遗传算法、粒子群优化(PSO)、模拟退火等启发式搜索方法。 符号回归工具,如Eureqa(由Nutonian公司开发)和GP Provenance(基于遗传编程的方法),提供了自动化的符号回归平台,允许用户输入数据并自动发现数据背后的数学模型。
2024-05-25
如何利用openai进行logical回归分析
逻辑回归分析是一种常用的统计方法,用于预测二元或多元分类变量的可能性。在Python中,我们通常使用像`scikitlearn`这样的库来进行逻辑回归分析。以下是一个简单的逻辑回归分析的例子: ```python from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import pandas as pd 假设我们有一个名为'data.csv'的数据集,其中'feature1'和'feature2'是特征,'target'是目标变量 data = pd.read_csv 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split 创建逻辑回归模型 model = LogisticRegression 训练模型 model.fit 预测测试集 predictions = model.predict 打印分类报告 print ``` 这段代码首先从一个CSV文件中读取数据,然后将数据分割为训练集和测试集。然后,它创建一个逻辑回归模型,并使用训练数据对其进行训练。最后,它使用测试数据进行预测,并打印出分类报告,以评估模型的性能。 请注意,这只是一个基本的示例,实际的数据分析可能需要更复杂的数据预处理和模型调整步骤。此外,您需要安装`scikitlearn`和`pandas`库才能运行此代码¹²。 希望这些信息对您有所帮助!
2024-04-21
如何利用AI读书
以下是关于如何利用 AI 读书的一些方法和建议: 1. 尝试撰写结构化 prompt 或使用李继刚等的 prompt 最佳实践。 2. 进行 AI 绘画,画一幅能表达中秋的画面。 3. 实操:在中找一些案例实操。 4. 数据:查看 AI 产品榜数据库>。 5. 阅读:通往 AGI 之路知识库阅读,每日小互的推特阅读获取最新动态:http://waytoagi.com/xiaohu。 6. 探索:生成式视频案例可以找一些欣赏,有机会自己动手做一个视频。 在读书时,可参考以下案例: 1. 如读万维钢的新书《拐点》时,看到有触动但需保持批判性思考和怀疑的文本,若足够强势,当前 AI 对人的作用有三个:信息杠杆、发现自己真正想要的、帮助形成自己的观点和决策。 2. 将上述书摘整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。 3. 基于笔记中提到的 AI 对人的三种最终的赋能模式,以自己深度思考的问题为例,践行这套方法论,体会“信息杠杆”如何令“思维换挡”,感受如何“让自己发现究竟想要什么”。 4. 通过 AI 信息杠杆,利用 AI 搜索引擎和大模型,迅速掌握“如何用好飞书文档”“markdown 语法基础”并结合两者完成“永飞书创建提示词库、飞书+markdown 打造个人知识库”等思考。 5. 基于上述实践,生成“自己的观点和决策”,并将其打造成体系化的内容产品,实现价值。 同时,虽然在利用 AI 辅助写作等方面可能存在一些困难,如打断心流、失去掌控等,但应保持好奇和开放心态,为自己和孩子们寻找更多借助 AI 拓展思维边界的方式。
2025-01-22
利用自己的声音歌唱AI生成歌曲
以下是一些利用自己的声音歌唱 AI 生成歌曲的相关信息: 1. LAIVE:这是一个利用 AI 技术一次性生成音乐、歌词、主唱等的创作平台。使用者可以选择喜欢的类型和情调,上传参考音源,AI 会通过分析生成音乐,还可以选择主唱和修改歌词,目前为开放测试阶段。输入促销代码“LAIVEcreator”可获得 50 代币(入口在个人资料),令牌有效期为输入代码后的 30 天,促销码失效日期为 4 月 17 日。链接:https://www.laive.io/ 2. Combobulator:DataMind Audio 推出的基于 AI 的效果插件,利用神经网络通过样式转移的过程重新合成输入音频,从而使用您自己的声音重现其他艺术家的风格。链接:https://datamindaudio.ai/ 3. 大峰的经验分享:用 Suno 生成歌曲时,在填写歌曲风格时填写少量风格词,如中国风,给 AI 更多发挥空间。靠音乐审美从生成的歌曲中选出中意的歌曲。将歌词发给 GPT 并告知想法,让其以英文 AI 绘画提示词的形式提供每句歌词的每个分镜,然后丢进 AI 生图平台(如 Midjourney)生成图片,再用 Runway 进行图生视频。 4. UDIO 制作音乐:Udio 不会使用艺术家的声音生成歌曲,在幕后风格参考会被一组相关标签替换。在文本输入下方有两种类型的建议标签可点击添加到提示中,自动完成是当前单词的建议标签补全,您可以移动插入符号到提示的任何部分,相应更改完成。
2025-01-20
如何利用Ai为我们工作
以下是利用 AI 为我们工作的一些方法: 1. 写作方面: 草拟各种初稿,如博客文章、论文、宣传材料、演讲、讲座、剧本、短篇小说等,只需给出提示。 提升写作质量,将文本粘贴到 AI 中,要求其改进内容、提供针对特定受众的建议、创建不同风格的草稿、使内容更生动或添加例子,以激发自己做得更好。 帮助完成任务,如写邮件、创建销售模板、提供商业计划的下一步等。 从写作困难中解脱,让自己更有动力。 2. 获取信息和学习方面: 利用 AI 辅助教育,包括自学。可以要求 AI 解释概念,能获得较好的结果。但要注意因 AI 可能产生幻觉,对关键数据要根据其他来源仔细检查。
2025-01-15
如何利用Ai制作一张关于英语招生的海报
以下是利用 AI 制作一张关于英语招生海报的方法: 1. 需求场景: 当您想通过社交媒体发布招生信息,纯文字可能吸引力不足。 网上找的图可能质量差且易撞图。 2. 大致流程: 主题与文案:确定英语招生的海报主题,借助 ChatGPT 等文本类 AI 工具完成文案。 风格与布局:选择适合的风格意向,背景可灵活调整,根据文案和风格规划画面布局。 生成与筛选:使用无界 AI ,输入相关关键词,生成并挑选满意的海报底图。 配文与排版:将生成的素材进行合理排版,得到成品。排版可参考 AIGC 海报成果。 3. 软件指引: 使用工具:无界 AI ,网址为 https://www.wujieai.cc/ 。 做图逻辑类似于 SD ,优势在于国内网络可稳定使用、有免费出图点数、支持中文关键词输入、无需额外下载风格模型可直接取用。 使用模型:皮克斯卡通,本案例应用场景为朋友圈 po 图,画幅比例选择 1:1 。 4. 关键词类别: 场景:如教室、校园等。 氛围:积极、活跃等。 人物:老师和学生等。 造型:发型、服饰等。 情绪:快乐、专注等。 道具:英语书、笔等。 构图:全身、特写等。 画面:色彩鲜艳。 特殊:根据具体需求添加。
2025-01-15
利用布鲁姆分类法,规划我的AI学习路径
以下是利用布鲁姆分类法为您规划的 AI 学习路径: 1. 记忆: 先从 AI 的历史、基本术语、重要人物、方法和原理等开始了解。 查看入门课程。 2. 分析: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 应用: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用来解决实际问题或提升效率。 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-13
如何利用ai做卷烟营销工商管理类论文的选题
利用 AI 做卷烟营销工商管理类论文的选题是一个具有挑战性的任务,因为卷烟营销受到严格的法律法规限制。然而,您可以从以下几个方面考虑选题: 1. 基于 AI 的卷烟市场需求预测模型研究:探讨如何运用 AI 技术分析市场数据,预测消费者对卷烟的需求趋势。 2. AI 在卷烟品牌形象塑造与传播中的应用策略:研究如何利用 AI 技术优化卷烟品牌的形象塑造和传播方式。 3. 运用 AI 提升卷烟营销渠道管理效率的研究:分析 AI 技术在优化卷烟销售渠道、提高配送效率等方面的作用。 需要注意的是,卷烟营销必须严格遵守相关法律法规和道德规范。
2025-01-13