直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

SD好的模型分享

回答

以下是为您分享的关于 SD 模型的相关内容:

  • 对于 SDXL 的 ControlNet 模型中的 Canny 硬边缘模型,有不同型号,如 4080ti 笔记本测试中,12G 显存下,sdxl base+refiner 模型,使用 diffusers 的 2.5Gfull 模型绘制 1024*1024 尺寸图片需 2 分 57 秒,320Mb 的 small 模型用时 34s,质量差距不大但时间优势明显。其他作者如 kohya 的用时 33 秒,更接近真实质感。sai 的 128lora 和 256lora 分别用时 39 秒和 1 分 08 秒,偏绘画感觉。t2i 的用时 34s,偏插画。关闭 refiner 能节省一半左右时间,平均 17 秒左右。
  • 在 Depth 深度模型测试中,图形尺寸 664*1024,diffusers 的 full 模型用时 2 分 48 秒,small 模型用时 23s,kohya 模型用时 42 秒,sai 模型用时 1 分 12 秒,sargezt 模型用时 1 分 52 秒。
  • 用 Stable Diffusion 时,要先确定照片风格,如生成真人 AI 小姐姐可选用 chilloutmix 的大模型。部分常用大模型可在分享的链接中根据文件夹名称找到。文章第三部分会详细介绍模型下载位置和存放位置。
  • 对于 ControlNet 中线条约束类的预处理器和模型,作者已整理好,如需获取可添加公众号【白马与少年】回复【SD】。同时作者还附上一张图帮助理解 ControlNet 模型的命名规则。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【SD】来了来了!属于SDXL的ControlNet模型它终于来了!(测评)

首先是canny,它有几个不同的型号,体积越大,速度越慢。我使用的是4080ti的笔记本进行的测试,12G显存。模型sdxl base+refiner提示词:masterpiece,best quality,1girl采样方法:euler a尺寸1024*1024使用diffusers的2.5Gfull模型绘制的图片,一张图花了2分57秒,从这个效率上来看,这个大尺寸基本可以弃了。使用diffusers的320Mb的small模型,用时34s,质量上差距不大,主要是时间优势很明显。我们可以再看看其他作者的,这张是kohya的,用时33秒,更接近真实质感。sai的canny分为128lora和256lora,分别用时39秒和1分08秒,这个模型比较偏绘画的感觉。最后还有一个t2i的canny模型,用时34s,也是偏插画一点。你们觉得哪个效果更好呢?时间上基本都在30秒以上,如果关掉refiner的话,能节省一半左右的时间,平均在17秒左右。#Depth深度接下来测试一些depth模型,图形尺寸664*1024。使用diffusers的full模型,用时2分48秒,sdxl给我随机到了一个拼贴画的风格。使用diffusers的small模型,用时23s。使用kohya模型,用时42秒。这……好像和我的图片没什么关系。使用sai模型,用时1分12秒,画质还可以,稍微有点慢。使用sargezt模型,奇奇怪怪,没什么关系,用时1分52秒。

教程:超详细的Stable Diffusion教程

用stable diffusion可以把自己想象成一个画家在起笔画画之前,我们要先确定我们画的是什么风格的画,是二次元动漫、三次元的现实照片、还是盲盒模型。因此,在我们确定了我们照片风格之后我们就要去切换大模型,不同的模型就代表着不同的照片风格。也就是SD界面左上角的“Stable Diffusion模型”假如现在我想生成一个真人AI小姐姐,就选用chilloutmix的大模型那么问题来了,我们这些模型从哪来呢?下载的模型放在哪里呢?在我分享给大家的链接里面,有部分比较常用的大模型(后续还有比较好的模型也会分享给大家)大家可以根据文件夹名称找到需要的模型。另外,这篇文章的第三部分会跟大家详细介绍去哪里下载模型,模型存放的位置,所以一定要看到最后!

【SD】最强控制插件ControlNet(1)附模型下载

可以看到,这个预处理器提炼出了这个室内的结构线。我们输入关键词:木制、简约、无印良品。点击生成4张图,得到了与原图结构一致的设计图。好了,今天我们介绍了ControlNet中关于线条约束类的预处理器和模型。这些模型文件我也整理好了,如果想要这些模型的话,可以添加我的公众号【白马与少年】,回复【SD】即可。最后附上一张图,可以帮助大家理解ControlNet模型的命名规则,以便能够正确地使用模型。-END-白马与少年Stable Diffusion、Blender等学习心得分享139篇原创内容(持续更新中)公众号微信扫一扫关注该公众号

其他人在问
flux和sdXL出图的区别
Flux 和 SDXL 出图主要有以下区别: 1. 生成人物外观:Flux 存在女生脸油光满面、下巴等相同外观问题,而 SDXL 相对在这方面有改进。 2. 模型构成:SDXL 由 base 基础模型和 refiner 优化模型两个模型构成,能更有针对性地优化出图质量;Flux 中 Dev/Schnell 是从专业版中提取出来,导致多样性丧失。 3. 处理方式:在低显存运行时,可采用先使用 Flux 模型进行初始生成,再用 SDXL 放大的分阶段处理方式,有效控制显存使用。 4. 模型参数和分辨率:SDXL 的 base 模型参数数量为 35 亿,refiner 模型参数数量为 66 亿,总容量达 13G 之多,基于 10241024 的图片进行训练,可直接生成 1000 分辨率以上的图片,拥有更清晰的图像和更丰富的细节;而 Flux 在这方面相对较弱。
2024-12-20
flux和sd3.5出图的区别
Flux 和 SD3.5 出图存在以下区别: 1. 模型性质:Flux.1 有多种版本,如开源不可商用的 FLUX.1等。而 SD3.5 未提及相关性质。 2. 训练参数:Flux.1 的训练参数高达 120 亿,远超 SD3 Medium 的 20 亿。 3. 图像质量和提示词遵循能力:Flux.1 在图像质量、提示词跟随、尺寸适应、排版和输出多样性等方面超越了一些流行模型,如 Midjourney v6.0、DALL·E 3和 SD3Ultra 等。 4. 应用场景:Flux.1 可以在 Replicate 或 fal.ai 等平台上试用,支持在 Replicate、fal.ai 和 Comfy UI 等平台上使用,并且支持用户根据自己的数据集进行微调以生成特定风格或主题的图像。而 SD3.5 未提及相关应用场景。 5. 本地运行:文中尝试了在没有 N 卡,不使用复杂工作流搭建工具的 Mac Mini M1 上运行 FLUX.1,以及在边缘设备 Raspberry PI5B 上运行的情况,未提及 SD3.5 的相关内容。 6. 模型安装部署:对于 Flux.1,不同版本的模型下载后放置的位置不同,如 FLUX.1应放在 ComfyUI/models/unet/文件夹中。而 SD3.5 未提及相关安装部署内容。 7. 显存处理:对于 Flux.1,如果爆显存,“UNET 加载器”节点中的 weight_dtype 可以控制模型中权重使用的数据类型,设置为 fp8 可降低显存使用量,但可能会稍微降低质量。而 SD3.5 未提及相关显存处理内容。 8. 提示词使用:在训练 Flux 时,应尽量使用长提示词或自然语言,避免使用短提示词,因为 T5 自带 50%的删标。而 SD3.5 未提及相关提示词使用内容。
2024-12-20
sd的提示词有哪些语法
以下是关于 SD 提示词的语法: 1. 多个提示词之间使用英文半角符号“,”分隔,例如:masterpiece,best quality,ultradetailed,illustration,closeup,straight on,face focus,1girl,white hair,golden eyes,long hair,halo,angel wings,serene expression,looking at viewer。 2. 一般而言,概念性、大范围、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。大致顺序为:。 3. 每个词语本身自带的权重可能不同,模型训练集中较多出现的关键词,输入一个词就能极大影响画面;较少出现的关键词,输入多个相关词汇对画面影响效果可能有限。提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,措辞越具体越好,避免抽象和有解释空间的措辞。 4. 可以使用括号人工修改提示词的权重,例如: 将权重减少为原先的 25%。 5. 可以通过 Prompt Editing 使得 AI 在不同的步数生成不一样的内容,语法为:例如:a,100 步采样,一开始。提示词为:fantasy landscape with a mountain and an oak in foreground shoddy 在第 25 步后,提示词为:fantasy landscape with a lake and an oak in foreground in background shoddy 在第 50 步后,提示词为:fantasy landscape with a lake and an oak in foreground in background masterful 在第 60 步后,提示词为:fantasy landscape with a lake and an oak in background masterful 在第 75 步后,提示词为:fantasy landscape with a lake and a christmas tree in background masterful。 6. 提示词还可以轮转,比如:在第一步时,提示词为“cow in a field”;在第二步时,提示词为"horse in a field.";在第三步时,提示词为"cow in a field",以此类推。 7. 交替词:in a field 可以支持多个词交替。 8. 可组合扩散(AND 语法):a cat AND a dog 比如想画一个猫和狗的混合物种,每一个要混合的东西支持加权重,比如 a cat:1.2 AND dog AND a benguin:2.2。通过继续向总数添加更多提示,这可以方便地生成微调的递归变化,比如 log AND frog:0.13 AND yellow eyes:0.08 。 请注意,权重值最好不要超过 1.5。
2024-12-19
SD 怎么赚钱
Stable Diffusion(SD)赚钱的方式有多种可能性: 1. 利用 SD 生成真人 AI 美女相关内容,创建账号吸引流量并实现变现。 2. 为用户生成个性化的头像、壁纸并收取费用。 3. 借助 SD 辅助完成动漫图画、插画等创作,并通过相关渠道获取收益。 4. 后续可能会有更多关于 SD 实际变现方式和案例的详细介绍。 需要注意的是,SD 完全免费开源,所有代码均在 GitHub 上公开,大家可以拷贝使用。Stable Diffusion 模型第一个版本训练耗资 60 万美元,而提供资金支持正是 Stability AI 公司,其成立于 2020 年,最初资金都来自创始人兼 CEO Emad Mostaque。目前市面上主流的 AI 绘图软件除了 SD 还有 Midjourney,Midjourney 操作简单方便但需付费和科学上网,而 SD 开源免费但需要较好的电脑配置。
2024-12-19
sd最新的模式是什么
Stable Diffusion(SD)最新的模式包括: 1. 隐藏在光里的秘密,AI造字光与影的艺术中,将 lightingBasedPicture 模型的终止时机由 0.6 提高到 0.7 能使文字更好识别,但再提高字会显得太突兀,需把握平衡。 2. Stability AI 正式发布了期待已久的 SDXL 1.0。SDXL 1.0 由两个模型组成,第二个模型能生成更鲜艳、更准确的颜色,且比前身具有更好的对比度、光照和阴影。SDXL 1.0 是所有开放获取图像模型中参数数量最多的模型之一,拥有 3.5B 参数基础模型和 6.6B 参数模型集成管道。 如果您想要最新的 controlnet 模型,可以添加公众号【白马与少年】,回复【SD】获取。
2024-12-17
Sd文生图的专业术语有哪些
以下是一些关于 SD 文生图的专业术语: 1. 内容型提示词:主要用于描述想要的画面,如“1 个女孩,黑发,长发,校服,向上看,短袖,粉红色的花,户外,白天,蓝色的天空,云,阳光,上身,侧面”。 2. 标准化提示词:例如“,drawing,paintbrush”。 3. 权重:通过括号和特定数值来增加提示词的权重,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。 4. 反向提示词:告诉 AI 不要的内容,如“NSFw,”。 5. 采样迭代步数:指 AI 绘画去噪的次数,步数越高绘画越清晰,但绘画速度越慢,通常数值控制在 20 40 之间较好。 6. 采样方法:AI 生成图像时的特定算法,常用的有“Euler a;DPM++2S a Karras;DPM++2M Karras;DPM++SDE Karras;DDIM”。 7. 比例:尺寸并非越大越好,模型练图通常按 512x512 的框架绘制,高宽比尽量在这个数值附近。高清修复可放大图像倍率,高宽比主要控制画面比例。
2024-12-16
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
火山AI创造者大赛特等奖的分享
以下是为您整理的火山 AI 创造者大赛相关的特等奖分享: 1. ray 的《领克音乐精灵》创作分享: 作者阿金获得二等奖。 设计灵感来源于行驶路上的孤独感,旨在让车机根据看到的风景进行音乐推荐。 三大亮点包括多模态结合(融合语音、视觉和嗅觉交互)、丰富音乐互动选择(个性化推荐音乐和 freestyle 创作)、个性化座舱调整(音乐播放联动氛围灯等)。 2. 「Agent 共学」coze 比赛大奖作品分享核心创作理念: 9 月 26 日 20:00 开始的分享包括《舆情管理大师》工作流思路等,第一名是汽车 bot 小队的《舆情管理大师》。 9 月 27 日 20:00 开始的分享包括野生菌的一等奖作品分享文稿等,一等奖有《汽车栏目主持人(零壹老师)》《车行营销智多星(手把手蹭热点)》等。 3. 扣子案例合集 社区内容分享: 扣子 X 火山引擎开发者社区夏季 Bot Hackathon 线上赛道获奖作品包括多个创新奖,如等。
2024-12-06
分享一些详细学习coze工作流的实操课程?
以下是一些学习 Coze 工作流的实操课程资源: 扣子案例合集社区内容分享: 【Agent 共学第二期】艾木分享|这也许是你一生中第一个 Bot:https://www.bilibili.com/video/BV1XT421i7jH/ 一步一步带你手搓一个 Coze Bot——Dr.Know(极简版 Perplexity):https://www.bilibili.com/video/av1005221752 扣子工作流实战案例教程,手把手教你搭建一个图书管理工作流:https://mp.weixin.qq.com/s/Fh3Vm3EDSzoYVxf91GcMMA 使用扣子 Coze 创建 AI 绘画工作流:https://mp.weixin.qq.com/s/d_6yST8JXKf1Tr6JgBPFg 奶奶也学得会的 AI 工作流,省时省力下班早!:https://mp.weixin.qq.com/s/bXC8DHzs5_OgPh3FtKhJZA 中文 GPTS 使用秘籍,字节扣子 Coze 工作流使用全教程:https://zhuanlan.zhihu.com/p/682108709 Workflow 实践|使用 coze 复现一个 AIGC 信息检索 Bot:https://mp.weixin.qq.com/s/PFgjRq7XcTcqog1gLyFqA AI 自动获取 B 站视频摘要信息:https://mp.weixin.qq.com/s/x8lwvlomhFNLZl__qYuDww 如何用 Coze 制作一个信息检索 Bot(含 Workflow 的基础用法):https://mp.weixin.qq.com/s/Ory8iVXXjjN3zSTcupPm6Q 蓝衣剑客:四万字长文带你通学扣子,其中在三、Coze 简介的 3.4 工作流部分提到,在典型应用场景中,入门级场景可能仅添加一个节点来构建简单工作流,例如使用获取新闻插件构建获取新闻列表的工作流、使用大模型节点接收并处理用户问题等。更进阶的场景则通过多个节点组合构建逻辑较复杂的工作流,例如在搜索并获取指定信息详情的场景中,先通过插件能力进行关键词搜索、然后通过代码节点过滤指定信息、最后通过插件能力获取信息详情;或者在通过条件判断识别用户意图的场景中,通过大模型节点处理用户消息,并将消息分类后通过条件节点分别处理不同类型的消息。这些详细配置教程提供了实际操作指南以帮助理解和应用各种功能。 「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人,其中搭建步骤详解的设计你的 AI 机器人部分,对工作流设计有详细说明: 开始节点和结束节点,coze 会自动生成。 开始节点配置:输入变量名写“Question”,描述写“用户输入的问题”,变量类型选“String”。 知识库配置:将【开始节点】和【知识库左侧节点】连接起来,这样知识库就可以调用开始节点的内容了;知识库输入:引用,开始节点的变量“Question”;将【知识库右侧节点】与【结束节点】的左侧连起来。 结束节点配置:结束节点用于输出 AI 机器人的最终结果,回答格式设置为:您的问题:{{question}} 问题的答案:{{answer}} 所以在输出变量那里,定义 2 个参数:question 引用“开始节点的 Question”,answer 引用“知识库节点的输出 output”,回答模式选择:使用设定的内容直接回答。 试运行测试:点击右上角“试运行”后,输入想问 AI 机器人的问题,比如:AIGC 课件,点击右下角“运行”,然后就可以看到工作流每一步的详细输入和输出。
2024-12-03
帮我生成一个小程序,功能涉及“个人多名片管理”“可以通过扫描纸质名片生成电子名片、手动填写信息生成电子名片、关键字词ai智能生成名片”“支持手动编辑名片信息”“每个信息都可以通过ai生成及润色”“支持添加案例”“支持客户名片管理”“分享客户后,客户打开名片,支持交换信息并生成自己的名片”
要开发您所描述的涉及“个人多名片管理”等功能的小程序,以下是一些参考步骤和相关信息: 微信小程序开发基础: 1. 注册小程序:登录微信公众号首页,选取小程序,用新邮箱绑定注册。 2. 小程序信息填写:注册验证通过后,填写小程序信息和类目,名称可根据功能设定,头像可网上获取或利用工具生成。 3. 开发者工具下载:回到发布流程页面,点击“普通小程序开发者工具”,选择“微信开发者工具”,下载 windows 64 位版本。 4. 创建小程序项目:打开下载好的微信开发者工具,选择创建小程序。注意获取账号信息中的 id,选择不使用云服务,并选择 javascript 基础模板。 相关案例: 1. 有“使用 GPT 的视觉功能和 TTS API 处理和讲述视频”的案例,演示了如何通过视频使用 GPT 的视觉功能。 2. “开发:GLM 等大模型外接数据库”的案例,可调整 prompt,匹配不同知识库,让 LLM 扮演不同角色,如财务分析师、智能客服等。 目前没有与您需求完全匹配的直接可用的开发案例,但您可以参考上述基础步骤和相关案例的思路,结合您的具体需求进行开发。
2024-11-25
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
生成分享图片工具
以下为一些生成分享图片的工具及相关方法: 1. Midjourney V6:可用于生成场景模型。 放大工具:Comfy Ui、Magnific Ai、Upscayl 深度图:Leia Pix 法线图:Shadermap 2. 辅助工具生成透明背景图像: 安装好插件后,在生成图片时勾选“layerdiffusion enabled”。 在“layerdiffusion method”中选择生成透明图像的模式,如“Only Generate Transparent Image”。 提示中输入透明物体的描述,如“玻璃杯”,点击生成可得到透明背景的玻璃杯图像。 也可上传背景图像,在“layerdiffusion method”中选择“From Background to Blending”,然后生成透明图像。 反之,也可以先生成透明的前景,然后选择“From Foreground to Blending”模式,生成背景。 特定模型: layer_xl_transparent_attn:用于将 Stable Diffusion XL 模型转化为透明图像生成器的模型。 layer_xl_transparent_conv:与 layer_xl_transparent_attn 类似,通过修改 conv 层的 offset 实现。 layer_xl_fg2ble:用于将 XL 模型转化为前景图像到混合图像的生成模型。 layer_xl_fgble2bg:用于基于前景和混合图像生成背景的模型。 layer_xl_bg2ble:将 XL 模型转化为根据背景图像生成混合图像的模型。 layer_xl_bgble2fg:将 XL 模型转化为根据背景和混合图像生成前景的模型。 vae_transparent_encoder:图像编码器,用于从像素空间中提取潜在偏移,帮助透明图像的生成。 vae_transparent_decoder:图像解码器,输出真实的 PNG 图像。 3. Aimwise WaytoAGI 百家号文旅分享中的方法: 开启 controlnet 边缘类模型,导入需要处理的 logo,调整合适的 cn 参数。 开启 controlnet IP adapter 功能性模型,导入风格参考图,调整合适的 cn 参数,可快速进行风格迁移和融合,提升出图效率。
2024-10-18
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20