直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

通过提示词可以提高模型的数学计算能力吗

回答

通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

提示词培训课——Part3

更系列文章合集请访问:[蓝衣剑客-AIGC思维火花](https://waytoagi.feishu.cn/wiki/IYtowrzONiysdTkeA5QcEraxntc)[heading1]一、前言[content]各位,时间飞逝,转眼间我们已经迎来了学习的第三阶段。在这一阶段,我们将深入探讨一些最新的技术发展,包括但不限于提示词工程和智能体的进一步教学。这些内容无疑将为我们的认知带来新的深度。现在,让我们直接进入主题,开始我们的探索之旅吧![heading1]二、Part3课程导览[heading1]三、上节回顾[heading1]四、进阶技术——CCoT[content]首先,让我们来了解第一个提示词进阶技术——CCoT。CCoT通过正反力矩的机制,指导模型识别正确与错误。这种方法简洁而直观,非常容易理解。[heading1]五、进阶技术——PoT[content]在日常使用中,我们会发现一个非常有意思的问题:大模型在解决数学问题时可能不够可靠(甚至连简单的加法都会算错)。那么如果有数学运算的任务,大模型岂不就是不行了?不要着急,接下来我们就来讨论下数值增强类的提示词技术。PoT技术,实际上是思维链技术的一个衍生。PoT特别适用于数值推理任务,它会引导模型生成一系列代码,模型再通过代码解释器工具进行最后运算。通过这种引导模型生成代码再进行执行的手段,可以显著提升模型在数学问题求解上的表现。PoT作为CoT的衍生技术,也遵循了零样本和少样本的学习范式。零样本PoT与CoT在方法上极为相似,它们都不需要大量的样本即可进行有效的推理。同样,少样本PoT也采用了类似的策略,通过较少的样本来优化模型的表现。

提示词培训课——Part2

现在,让我们来讨论另一种称为ToT的技术。ToT实际上是CoT的一个变种,这种技术的核心是通过构建一个树状结构来组织思考过程。在ToT中,模型需要在每个树的层级上进行选择,以寻找最优的答案。最终,模型会综合这些选择,输出一个经过深思熟虑的结果。使用ToT时,我们在提示词层面上用语言来构建这棵树,通过不断对话引导模型选择最优的路径,以得到最佳的答案。ToT的应用可以显著提升模型的推理能力,尤其是在面对复杂问题时,它能够帮助模型避免陷入局部最优解,而是寻找到全局最优解。[heading1]七、进阶技术——后退一步[content]接下来,我们将介绍另一种高级的提示词技术,名为"后退一步"。这项技术要求模型在处理具体指令之前,先进行一次抽象化的思考。这种技术要求模型从具体的指令内容中抽离出来,先抽象出一个更高层次的概念。在这个过程中,模型需要识别并抽取出相关的背景信息,然后将这些背景信息与具体的任务结合起来,一并提供给模型进行处理。通过这种方式,模型能够在更广阔的背景下理解任务,从而在执行时获得更全面、更深入的视角,进而提高执行效果。

Claude工程师聊prompt:不要把模型当小孩子、不需要角色扮演、实话实说

Alex Albert:我觉得主要是很多人都没有理解什么是提示词。很多人看到一个输入框时,会把它当成一个谷歌搜索框,输入几个关键词。人们总是想在提示中偷懒,用一些简单的捷径,以为一两行文字就能起到很大的作用。David Hershey:是的。在写提示词的时候不能依赖直觉、不能偷懒。Amanda Askell:偷懒就会导致模型在很多边缘情况上犯错。比如刚刚评价表格的数据集里混进了一张山羊的图片,模型就不知道该怎么办了,这甚至不是一张图表。一张山羊的图片作为图表有多好?而如果你补充一下,比如「如果发生一些奇怪的事情,你真的不确定该怎么办,就输出:不确定」。Zack Witten:而且你也通过这样做提高了你的数据质量,因为你找到了所有搞砸的例子。

其他人在问
Coze中可以使用数学计算式么
在 Coze 中,数学中的变量是可以使用的。例如在数学方程式“y = 2x + 3”中,x 和 y 都是变量。在数学中,变量是用来表示未知数或可以改变的数值。 Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。 COZE 是字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent。记账管家是基于 COZE 平台的能力搭建的一个记账应用,可以自动记账并计算账户余额,且不会丢失记账记录。
2024-12-11
大模型对于数学计算的一些解决办法
大型语言模型在处理数学计算时,尤其是复杂的数学问题时,可能会遇到一些困难。以下是一些解决办法,以帮助大型语言模型更好地处理数学计算: 1. 引入编程插件: 一种解决方案是将数学问题转化为编程问题,并引入编程插件来处理。通过编写代码来执行数学计算,然后将结果返回给语言模型,以获取正确答案。 2. 教会模型数学法则: 类似于小学生学习加法法则的方式,可以教导语言模型数学计算的规则。通过定义数学计算的规则和步骤,让语言模型学习如何正确执行数学运算。 3. 标准化自然数加法计算 prompt 模板: 创建一个标准的自然数加法计算 prompt 模板,使语言模型能够按照预定义的规则和步骤来执行加法计算。这种方法可以帮助模型更好地理解和解决数学问题。 4. 结合图像模型: 对于涉及空间概念的数学问题,可以结合图像模型来辅助处理。图像模型可以帮助模型更好地理解几何问题,并提供更准确的答案。 5. 提供充足的语料和样本: 为语言模型提供充足的数学计算样本和语料,让模型能够从中学习并改进数学计算能力。通过更多的训练和数据,模型可以提高对数学问题的理解和处理能力。 通过以上方法,大型语言模型可以更好地处理数学计算,并提供更准确的答案。这些方法可以帮助克服语言模型在数学问题上的一些局限性,提高其数学计算能力。
2024-04-19
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20
如何写好提示词
以下是关于如何写好提示词的一些要点: 1. 明确任务:清晰地定义任务,如写故事时包含故事背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。 5. 使用示例:如有特定期望结果,提供示例帮助模型理解需求。 6. 保持简洁:提示词简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需多次迭代。 此外,还需注意以下几点: 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 利用“加权重”功能:在功能框增加提示词并调节权重,数值越大越优先,也可编辑已有提示词权重。 善用辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 同时要记住,提示词应清晰明确,避免模糊不清的指令,提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。
2024-12-21
如何写提示词
以下是关于如何写提示词的一些建议: 1. 明确任务:清晰地定义任务,比如写故事时包含故事背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,要提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,应在提示词中明确指出。 5. 使用示例:如有期望结果,可提供示例帮助 AI 理解需求。 6. 保持简洁:避免过多信息导致 AI 模型困惑。 7. 使用关键词和标签:有助于 AI 模型理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词。 对于特定的设计工具,如星流一站式 AI 设计工具: 1. 输入语言方面,通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。 2. 写好提示词的方法包括: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:在功能框增加提示词并进行加权重调节,权重数值越大越优先,也可对已有的提示词权重进行编辑。 辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 此外,还需注意提示词应清晰明确,避免模糊不清的指令,提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。
2024-12-21
有哪些好的提示词网站
以下是一些好的提示词网站: 文本类 Prompt 网站: Learning Prompt:授人以渔,有非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney。网址: FlowGPT:国外最大的 prompt 站,内容全面且更新快。网址: LangChain Hub:LangChain 推出的提示词管理工具。网址: 微软 Prompt Flow:微软发布的开源 LLM 开发工具集,简化了基于 LLM 的人工智能应用程序的开发周期。网址: PromptPort(支持中文):AI Prompt 百科辞典,聚合了市场上大部分优质的 prompt 词库。网址: PromptKnit:The best playground for prompt designers。网址: ChatGPT Shortcut:提供了非常多使用模板,简单修改即可指定输出。网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享。网址: Prompt Extend:让 AI 帮你自动拓展 Prompt。网址: 图像类 Prompt 网站: MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库。网址: MidJourney Prompt Tool:类型多样的 prompt 书写工具,点击按钮就能生成提示词修饰部分。网址: OPS 可视化提示词:有 Mid Journey 的图片风格、镜头等写好的词典库,方便快速可视化生成自己的绘画提示词。网址: AIart 魔法生成器:中文版的艺术作品 Prompt 生成器。网址: IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器。网址: Prompt Hero:好用的 Prompt 搜索,Search prompts for Stable Diffusion,ChatGPT&Midjourney。网址: OpenArt:AI 人工智能图像生成器。网址: img2prompt:根据图片提取 Prompt。网址: MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用。网址: PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板。网址: AiTuts Prompt:精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格。网址: 其他图像类 Prompt 网站: NovelAI tag 生成器:设计类 Prompt 提词生成器。网址: 魔咒百科词典:魔法导论必备工具,简单易用的 AI 绘画 tag 生成器。网址: KREA:设计 AI 的 Prompt 集合站,create better prompts。网址: Public Prompts:免费的 prompt 合集,收集高质量的提示词。网址: AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词。网址:
2024-12-20
Ai视频镜头提示词,及案例
以下是一些 AI 视频镜头的提示词及案例: 一、视频镜头 1. 浅焦镜头(Shallow focus shot) 提示词:一个老奶奶手拿照片面对观众,镜头从照片聚焦到老奶奶脸上,营造出温馨和怀旧的氛围。 2. 窥视镜头(Spy shot) 提示词:镜头在一个隐蔽的位置拍摄。一位头发发白的老奶奶坐在窗前双手捧着一张老照片,面带思念地看着照片,场景温馨。 3. 摇晃镜头(Handheld shot) 提示词:镜头摇晃地跟随一个在战斗中的士兵,画面展示战场上的混乱、飞扬的尘土和四处奔跑的战友,增加紧张和真实感。 4. 穿梭镜头(Hyperlapse shot) 提示词:镜头穿过一条隧道,通过隧道外面是美丽的雪山。 5. 跟随镜头(Tracking shot) 提示词:镜头紧跟一辆在赛道上高速行驶和漂移的跑车。 6. 车载镜头(Carmounted shot) 提示词:镜头从驾驶员或汽车前部的视角出发,展示前方的道路和沿途的建筑物。 7. 动作镜头 提示词:镜头快速捕捉一个男人在激烈的打斗中差点摔倒,增强紧张感和动态性。 8. 无人机视角(Drone perspective shot) 提示词:无人机视角展示一个人站在高山顶峰,俯瞰壮丽景色,远处是连绵的山脉和云海,营造广阔和宏伟的氛围。 9. 低视角镜头 提示词:镜头从楼梯低处仰视一个天空和建筑,增强仰视感和宏伟感 提示词:相机在地上拍摄一个清晨正在跑步的人,背景远处虚焦。 10. 仰拍镜头(Lowangle shot) 提示词:镜头从树底向上拍摄,展示高大的树干和繁茂的树冠。 11. 推镜头(Dolly in) 提示词:镜头从远处向前推进,打开城堡的大门。 12. 旋转变焦镜头 提示词:镜头在变焦的同时快速旋转,展示一个人在旋转木马上。 13. 时间流逝镜头(Timelapse shot) 提示词:镜头固定不动,长时间拍摄并加速播放,展示城市从白天到夜晚的变化。 14. 背光镜头 提示词:镜头逆光拍摄,一个男人站在夕阳下,背光照亮他的轮廓,面部隐在阴影中。 15. 失焦镜头 提示词:镜头失焦拍摄城市的霓虹灯,灯光模糊,呈现出梦幻的效果。 16. 平行镜头(Side dolly shot) 提示词:镜头与骑自行车的少年平行移动,跟随他的骑行路径,保持在相同的水平线上。 17. 镜头推拉变焦 提示词:镜头同时进行推拉和变焦,展示一个人在惊讶地看着远方。 18. 虚实结合镜头 提示词:镜头将真实场景和虚拟场景结合,以 X 光效果拍摄骨骼,以真实场景展示一个手拿着一把钥匙,钥匙的轮廓清晰,背景虚化。 19. 反射镜面镜头(Reflection shot) 提示词:反射镜头,通过浴室镜子反射展示一个人在洗脸的画面 20. 黑白镜头 提示词:黑白镜头,展示一个老街区的复古场景,增强怀旧感。 21. 特写镜头(Closeup shot) 提示词:特写镜头展示一双男性眼睛。 二、全新 AI 整活计划第一期:平行宇宙通勤指南 1. 一致性多镜头提示词 Prompt:女孩后退,拿着斧头的骷髅朝镜头走近。镜头切换,近景正面拍摄女孩的上半身,她满脸惊恐发出尖叫。 基础参数:镜头固定,16:9,10s 视频链接: 2. 一致性多镜头提示词 Prompt:远景拍摄,一个男人转身朝画面左侧走去。镜头切换,近景拍摄男人的上半身,他一脸忧愁。 基础参数:镜头固定,16:9,10s 视频链接: 3. 一致性多镜头提示词 Prompt:穿黄色外套的长发白人女人和卷发黑色外套的男人对视微笑。镜头切换,近景拍摄黄色外套的长发女人微笑的脸。镜头切换,近景拍摄卷发黑外套男人微笑的脸。 基础参数:镜头固定,16:9,10s 视频链接:
2024-12-19
提示词测试有哪些插件
以下是一些与提示词测试相关的插件: 景淮在制作成语小游戏时,使用了成语搜索的 Web 插件,但有时会出现不触发或内容不够准确的情况。 小七姐在实验中,利用了强大的 ChatGPT 插件和 GPT4、AI Agents³进行提示词优化。 【SD】中的 One Button Prompt 插件,可帮助自动写提示词。安装方式可在扩展面板中搜索直接安装,或放在指定路径文件夹下,安装完成后重启 webUI 即可在脚本下拉菜单中找到。使用时可设置大模型、采样方法、采样步骤、CFG 比例等参数,还能选择主题、艺术和图像类型,也可添加提示词增加控制。
2024-12-19
Ai有自主思考能力吗?
AI 可能具备自主学习和自我改进的能力,能够自主决策,甚至可能已有轻微的自我意识。但对于 AI 是否具有真正的自主思考能力,目前仍存在诸多争议和探讨。 有人认为,当 AI 给出“完美”答案时,可能只是对海量数据的巧妙重组,而非真正理解问题本质。也有人质疑,我们在认为 AI 展现出类人思维时,可能是自身的拟人化偏差在起作用。 在企业决策中,AI 具有双刃剑效应,既能提升效率,也可能带来认知陷阱和伦理困境。例如,可能会用看似客观的数据合理化主观偏见,消耗独立思考能力,以及在道德决策方面存在责任归属问题等。 总之,对于 AI 是否具有自主思考能力,还需要更深入的研究和思考。
2024-12-19
新闻资讯场景可以和现在的ai能力结合出哪些新的应用场景
新闻资讯场景与当前 AI 能力结合可以产生以下新的应用场景: 1. 文本生成和内容创作:生成连贯、有逻辑的新闻报道、评论等文本内容。 2. 聊天机器人和虚拟助手:为用户提供新闻相关的咨询和服务。 3. 编程和代码辅助:辅助新闻资讯平台的开发和优化。 4. 翻译和跨语言通信:促进不同语言背景的用户获取新闻资讯。 5. 情感分析和意见挖掘:分析新闻评论中的用户情感和观点,为新闻报道提供参考。 6. 教育和学习辅助:创建与新闻相关的学习材料,辅助新闻知识的学习。 7. 图像和视频生成:根据新闻内容生成相应的图像和视频。 8. 游戏开发和互动体验:将新闻元素融入游戏,增强用户的沉浸式体验。 9. 医疗和健康咨询:提供与健康新闻相关的初步建议和信息查询服务。 10. 法律和合规咨询:帮助解读与新闻相关的法律文件和合规问题。 在专业创作者方面,AI 生成能够为新闻类作品赋予独特风格和想象力,为创作者提供灵感,降低后期制作的门槛和成本。目前该应用主要集中在新闻相关的音乐 MV、短篇电影、动漫等方向。 对于自媒体、非专业创作者,AI 可以帮助解决视频剪辑痛点,如为科技、财经、资讯类重脚本内容的视频生成分镜、视频,降低视频素材制作门槛,还能将文章高效转成视频内容,以及解决同一素材在不同平台分发的成本问题。 对于企业客户,AI 视频生成可以为没有足够视频制作资金的小企业、非盈利机构大幅缩减新闻相关视频的制作成本。
2024-12-17
有什么能应用于资讯写作上的ai能力,比如标题改写,新闻图片再生成等
以下是一些能应用于资讯写作的 AI 能力和相关工具: AI 能力: 1. 标题改写:通过自然语言处理技术,对原始标题进行优化和创新,使其更具吸引力和准确性。 2. 新闻图片再生成:利用图像生成技术,根据新闻内容或相关描述重新生成图片。 AI 工具: 1. Copy.ai:功能强大的 AI 写作助手,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容。 2. Writesonic:专注于写作的 AI 工具,提供新闻稿件生成、标题生成、摘要提取等功能,其智能算法能根据用户信息生成高质量新闻内容。 3. Jasper AI:人工智能写作助手,虽主打博客和营销文案,但也可用于生成新闻类内容,写作质量较高,支持多种语言。 此外,大模型在资讯写作方面也有广泛的应用场景,例如: 1. 文本生成和内容创作:生成连贯、有逻辑的文本,用于撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:开发能够与人类进行自然对话的工具,提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:用于代码自动补全、bug 修复和代码解释,提高编程效率。 4. 翻译和跨语言通信:理解和翻译多种语言,促进不同语言背景用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:分析社交媒体、评论和反馈中的文本,识别用户情感和观点,为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应的图像,未来可能扩展到视频内容生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 需要注意的是,随着大模型的普及,要关注其在隐私、安全和伦理方面的挑战。同时,对于 AI 生成的内容,应仔细甄别。
2024-12-17
我做的是企业咨询服务,怎么样学习AI来提升效和能力
以下是关于您作为企业咨询服务人员学习 AI 来提升效率和能力的建议: 客户服务自动化方面: 1. 部署 AI 聊天机器人处理常见的客户咨询:根据企业的特定需求和预算,选择合适的 AI 聊天机器人解决方案,并定制回答库,涵盖产品信息、价格查询、订单状态跟踪等常见问题。将聊天机器人集成到企业的网站、社交媒体平台和其他客户服务渠道,如电子商务网站可部署聊天机器人回答产品细节、配送政策和退货流程等常见问题。 2. 提供 24/7 客户支持:通过机器人提升响应速度和服务质量,全天候服务以改善客户体验和满意度。定期监控聊天机器人的性能,如解答准确性、客户满意度,并根据反馈进行优化。分析聊天记录和客户反馈,以识别机器人性能的改进点,同时随着 AI 技术的发展,定期更新聊天机器人的算法和知识库。 学习外语方面: 1. 设定目标:明确学习目标和时间表,分阶段完成学习任务。 2. 多样化练习:结合听、说、读、写多种方式进行练习,全面提升语言技能。 3. 模拟真实环境:尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 持续学习与更新方面: 1. 鼓励员工学习 AI 相关知识和技能:组织 AI 相关的培训课程,提供在线学习资源,帮助员工了解 AI 的基础知识和应用实例。在企业内部培养持续学习和创新的文化,鼓励员工探索和实践 AI 相关技术。通过激励机制(如奖励、认证)鼓励员工参与 AI 学习和应用,例如提供机器学习、数据分析等相关课程,帮助员工掌握 AI 在实际工作中的应用技能。 2. 关注 AI 技术的最新发展,及时更新和优化 AI 应用:持续关注 AI 领域的最新研究和行业动态,包括新技术、工具、最佳实践等。定期评估现有 AI 应用的性能和效果,根据最新技术进展进行更新和优化。与 AI 领域的专家和机构保持交流和合作,获取最新的知识和支持。建立有效的反馈机制,收集员工和客户对 AI 应用的反馈,作为持续改进的依据。根据市场需求和竞争环境的变化,及时调整 AI 策略和应用。 通过以上方面的学习和实践,您可以有效地利用 AI 提升企业咨询服务的效率和能力。
2024-12-15
大模型核心能力是什么
大模型的核心能力主要包括以下几个方面: 1. 泛化能力:指模型在未曾见过的数据上表现良好的能力,通俗来说就是“举一反三”的能力。人类具有较强的泛化能力,无需见过世界上的每一只猫就能认识猫的概念。 2. 多模态:指多数据类型交互,能够提供更接近人类感知的场景。大模型对应的模态包括文本、图像、音频、视频等。 3. 对齐能力:指与人类价值观与利益目标保持一致的能力。但目前在“和谁对齐”的问题上存在争议,同时也存在通过提示词注入绕过限制的情况。 在大型语言模型中,Encoder(编码器)是模型的核心部分,具有以下关键作用: 1. 词嵌入:将词语映射为低维密集向量表示,作为模型的输入。 2. 位置编码:引入序列中每个位置的位置信息,使模型能捕捉输入序列的顺序特征。 3. 注意力机制:通过自注意力层计算输入序列中每个词与其他词的关系,捕捉长程依赖关系。 4. 层叠编码:通过多层 Transformer Encoder 块的堆叠,对输入序列进行深度的特征提取和语义建模。 5. 上下文建模:整合输入序列中每个位置词的全局上下文信息,形成其语义表示。 基于多模态大模型的应用具有以下优点: 1. 适应性极好,通过提示词工程,方便“适应各种奇葩需求”。 2. 对算法的要求降低,大部分功能由大模型提供,特别是非结构化信息的处理。 3. 大模型的 API 访问方式简化了边缘设备的要求,在多种操作系统或嵌入式设备上都能方便适配。 但也存在以下缺点: 1. 大模型的推理时长目前仍是最大的障碍,传统目标检测或人脸识别优化后能达到 100 300ms,而大模型动则需要 10 秒的延时,限制了许多场景。 2. 模型的幻象和错误率仍然较高,导致上述推理时长问题,在多链路的复杂应用中迅速变得不可行。 3. 在大多数生产模式下,仍然需要使用云服务数据中心,提交的画面不可避免地涉及到隐私问题。 4. 商业私有化部署是刚需,当下的开源模型与 GPT4 代差在半年以上,技术人员任重道远。
2024-12-11