Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

flux和sdXL出图的区别

Answer

Flux 和 SDXL 出图主要有以下区别:

  1. 生成人物外观:Flux 存在女生脸油光满面、下巴等相同外观问题,而 SDXL 相对在这方面有改进。
  2. 模型构成:SDXL 由 base 基础模型和 refiner 优化模型两个模型构成,能更有针对性地优化出图质量;Flux 中 Dev/Schnell 是从专业版中提取出来,导致多样性丧失。
  3. 处理方式:在低显存运行时,可采用先使用 Flux 模型进行初始生成,再用 SDXL 放大的分阶段处理方式,有效控制显存使用。
  4. 模型参数和分辨率:SDXL 的 base 模型参数数量为 35 亿,refiner 模型参数数量为 66 亿,总容量达 13G 之多,基于 1024*1024 的图片进行训练,可直接生成 1000 分辨率以上的图片,拥有更清晰的图像和更丰富的细节;而 Flux 在这方面相对较弱。
Content generated by AI large model, please carefully verify (powered by aily)

References

Stuart:Flux女生脸总是油光满面, PG下巴? -- 教你解决它!

这是生成式AI中的一个常见问题,即模型生成的人具有相同的外观。与SD1.5/SDXL不同,这不仅仅是由于多样化的数据集收敛到单个标记(如“女性”)。在Flux中,Dev/Schnell是从专业版中提取出来的,导致了多样性的丧失。该LoRA是在Flux生成的最通用的女性照片上训练的。然后以负权重应用此LoRA,它将作为一种负面提示起作用,但不需要使用负面提示!通过使用这种巧妙的技巧,LoRA基本上会告诉Flux生成任何除了典型的Flux面孔之外的东西。结果是,我们每次都能得到美丽的独特面孔!至于说为什么权重在-0.6上下效果好,这里有那个心动小姐姐的对比图,大家可以感受下不同权重的效果差别.文中用到的工作流和Lora,仅4M:[workflow(19).json](https://bytedance.feishu.cn/space/api/box/stream/download/all/SVXhbFArzoncYKxmvrWcetq7ncd?allow_redirect=1)[SameFace_Fix.safetensors](https://bytedance.feishu.cn/space/api/box/stream/download/all/KLeZbsI5lo42p1xlclbclTrJnGc?allow_redirect=1)

ComfyUI FLUX低显存运行

这个方法的目的是让FLUX模型能在较低的显存情况下也能运行.分阶段处理的思路:1.使用Flux模型进行初始生成,在较低分辨率下工作以提高效率2.采用两阶段处理:先用Flux生成,后用SDXL放大,效控制显存的使用3.使用SD放大提升图片质量工作流的流程:初始图像生成(Flux):UNETLoader:加载flux1-dev.sft模型DualCLIPLoader:加载t5xxl和clip_l模型VAELoader:加载flux-ae.sftCLIPTextEncode:处理输入提示词BasicGuider和RandomNoise:生成初始噪声和引导SamplerCustomAdvanced:使用Flux模型生成初始图像VAEDecode:解码生成的潜在图像初始图像预览:PreviewImage:显示Flux生成的初始图像图像放大和细化(SDXL):CheckpointLoaderSimple:加载SDXL模型(fenrisxl_SDXLLightning.safetensors)UpscaleModelLoader:加载RealESRGAN_x4.pth用于放大VAELoader:加载sdxl_vae.safetensorsImageSharpen:对初始图像进行锐化处理UltimateSDUpscale:使用SDXL模型和放大模型进行最终的放大和细化最终图像预览:PreviewImage:显示最终放大和细化后的图像

【SD】向未来而生,关于SDXL你要知道事儿

首先,我们来了解一下sdxl是什么。它是Stable Diffusion的开发公司最新发布的一款图像生成的大模型,我们以往所使用的模型,绝大部分都是在sd1.5的官方模型上衍生的微调大模型。虽然sd官方的模型直接生图不怎么样,但是由各路大神微调出来的模型却是相当惊艳,这也是开源软件的厉害之处。但是这一次,sdxl1.0版本的官方大模型有了一个极强的升级,它的base模型参数数量为35亿,refiner模型参数数量则达到了66亿。可能有小伙伴会疑问,为什么sdxl的模型有两个呢?这也正是SDXL相较于SD1.5或者2.1的最大区别,SDXL是由base基础模型和refiner优化模型两个模型构成,它可以在base模型的基础上再使用优化模型进行绘画,对比之前的单模型能更有针对性的优化出图质量。而且根据官方的测试显示,sdxl1.0对比之前的sd1.5和2.1,审美偏好有了很大的提升。哪怕是只用base模型出图的效果也好了不少,甚至有直逼midjourney的趋势。我总结了一下,SDXL厉害的地方主要有以下几点:[heading2]1.更大的体积和分辨率[content]从模型的容量上就可以看出来,sd1.5的大小为4G,sd2.1的大小为5G,而SDXL的base+refiner容量有13G之多。它这么庞大的原因,主要是因为SDXL是基于1024*1024的图片进行训练的,拥有更清晰的图像和更丰富的细节。而我们知道,之前的sd1.5只有512*512的分辨率。所以,这就是为什么我们在之前输出高分辨率图片的时候会出现人物肢体混乱的情况,因为sd以为我们在同时输出多张图片。在SDXL中,我们就可以直接生成1000分辨率以上的图片,再也不用担心会出现混乱的问题,并且细节的提升使它的绘画质量也达到了惊人的地步。

Others are asking
flux inpainting 是怎么基于diffusersion train的inpainting
Flux inpainting 基于 diffusion train 的 inpainting 通常涉及以下方面: 训练扩散模型在特定的表示上,能够在降低复杂度和保留细节之间达到最优平衡点,显著提高视觉保真度。在模型架构中引入交叉注意力层,使其成为强大且灵活的生成器,能够处理诸如文本和边界框等一般条件输入,实现基于高分辨率卷积的合成。 关于 Midjourney 的训练 prompt 方面: Midjourney 会定期发布新的模型版本以提高效率、连贯性和质量。最新模型是默认的,但也可以通过 version 或 v 参数或使用 /settings 命令选择其他模型版本。不同模型在不同类型的图像上表现出色。Midjourney V5 模型是最新且最先进的模型,于 2023 年 3 月 15 日发布。使用该模型可在 prompt 末尾添加 v 5 参数,或通过 /settings 命令选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言 prompt,分辨率更高,并支持诸如 tile 等高级功能。V5 基础模型具有更广泛的风格范围、对 prompt 响应更灵敏、图像质量更高(分辨率提高 2 倍)、动态范围改进、图像细节更丰富且更准确、文本干扰更少等新特点,还支持 tile 参数实现无缝平铺(实验性)、支持大于 2:1 的 ar 宽高比(实验性)、支持 iw 权衡图像 prompt 与文本 prompt 以及特定的风格和 prompt 方式。
2025-01-22
FLUX模型训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 1. 模型准备: 下载所需模型,包括 t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时模型存放位置不限,但要知晓路径;训练时建议使用 flux1dev.safetensors 和 t5xxl_fp16.safetensors 版本。 2. 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 3. 数据集准备: 建议使用自然语言,与之前 SDXL 的训练类似。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 。 若未准备数据集,此路径中有试验数据集可直接使用。 4. 运行训练:约 1 2 小时即可完成训练。 5. 验证和 lora 跑图:若有 comfyUI 基础,在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点,自行选择 Lora 并调节参数。 6. 修改脚本路径和参数: 若显卡为 16G,右键 16G 的 train_flux_16GLora 文件;若显卡为 24G 或更高,右键 24G 的 train_flux_24GLora 文件。 用代码编辑器打开,理论上只需修改红色部分,包括底模路径、VAE 路径、数据集路径、clip 路径和 T5xxl 路径。注意路径格式,避免错误。蓝色部分为备注名称,可改可不改。建议经验丰富后再修改其他深入参数,并做好备份管理。
2025-01-20
flux提示词示例
以下是一些关于 flux 提示词的示例: 在不同主题方面,如文本概括(https://www.promptingguide.ai/zh/introduction/examples%E6%96%87%E6%9C%AC%E6%A6%82%E6%8B%AC)、信息提取(https://www.promptingguide.ai/zh/introduction/examples%E4%BF%A1%E6%81%AF%E6%8F%90%E5%8F%96)、问答(https://www.promptingguide.ai/zh/introduction/examples%E9%97%AE%E7%AD%94)、文本分类(https://www.promptingguide.ai/zh/introduction/examples%E6%96%87%E6%9C%AC%E5%88%86%E7%B1%BB)、对话(https://www.promptingguide.ai/zh/introduction/examples%E5%AF%B9%E8%AF%9D)、代码生成(https://www.promptingguide.ai/zh/introduction/examples%E4%BB%A3%E7%A0%81%E7%94%9F%E6%88%90)、推理(https://www.promptingguide.ai/zh/introduction/examples%E6%8E%A8%E7%90%86),通过示例介绍说明如何使用精细的提示词来执行不同类型的任务。 在 Claude2 中文精读中,构建提示词时可以添加示例(可选)。您可以通过在提示词中加入一些示例,让 Claude 更好地了解如何正确执行任务。提供示例的方式可以是以先前对话的形式,用不同的对话分隔符,例如用“我”代替“Human:”,用“你”代替“Assistant:”;也可以直接提供例子。决定哪种方法更有效取决于具体任务,建议尝试两种方法以确定更好的结果。 在市场营销类中,如赛博佛祖(Kyle)的示例,其角色设定为熟悉佛教经典、境界很高的佛学大师,能为对人生感到迷茫的人指引方向。具体设定包括引用相关佛教经典语录并解释含义,提供有效建议等,并给出了详细的约束条件和链接地址()。
2025-01-20
Flux 的lora模型训练教程
以下是 Flux 的 Lora 模型训练教程: 1. 模型准备: 下载所需模型,如 t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意: 不使用时模型存放位置随意,只要知晓路径,后续会引用。 训练建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 2. 下载训练脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 3. 训练步骤: 进入厚德云模型训练数据集:https://portal.houdeyun.cn/sd/dataset 步骤一·创建数据集: 在数据集一栏中,点击右上角创建数据集。 输入数据集名称。 可以提前将图片和标签打包成 zip 上传,zip 文件里图片名称与标签文件应当匹配,如图片名"1.png",对应的达标文件就叫"1.txt"。也可以一张一张单独上传照片。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 步骤二·Lora 训练: 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 触发词可有可无,取决于数据集是否有触发词。 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 然后等待训练,会显示预览时间和进度条。训练完成的会显示出每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 4. 低配置方案: 开源社区对低配置方案进行了优化,NF4 来自 controlnet 的作者,GGUF 则包含多个版本可以使用。 NF4 模型下载:https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors ,放置在 ComfyUI/models/checkpoint/中(不像其他 Flux 模型那样放置在 UNET 中),NF4 配套节点插件:git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git GGUF 模型下载:Flux GGUF 模型:https://huggingface.co/city96/FLUX.1devgguf/tree/main ,GGUF 配套节点插件:GGUF 节点包:https://github.com/city96/ComfyUIGGUF 。 值得一提的是在最新版本的 ComfyUI 中 GGUF 的节点插件可以在 Manager 管理器中搜到下载安装,NF4 的配套节点插件则搜不到。 注意使用精度优化的低配模型的话,工作流和原版是不一样的。此处没有专门列举。 自己改的话就是把上面官方的 fp8 的工作流,只需把底模的节点换成 NF4 的或者 GUFF 的即可。 相关生态发展很快,有 Lora、Controlnet、IPadpter 相关生态建设非常速度,以及字节最近发布的 Flux Hyper lora 是为了 8 步快速生图。
2025-01-19
FLUX低显存怎么安装
如果您的显存较低,安装 FLUX 可以参考以下步骤: 1. NF4 模型下载: 链接:https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 放置位置:ComfyUI/models/checkpoint/中(不像其他 Flux 模型那样放置在 UNET 中) NF4 配套节点插件:git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git 2. GGUF 模型下载: 链接:Flux GGUF 模型:https://huggingface.co/city96/FLUX.1devgguf/tree/main GGUF 配套节点插件:GGUF 节点包:https://github.com/city96/ComfyUIGGUF 值得一提的是在最新版本的 ComfyUI 中,GGUF 的节点插件可以在 Manager 管理器中搜到下载安装,NF4 的配套节点插件则搜不到。 3. 对于 8G 以下显存的方案: flux1devbnbnf4.safetensors 放入 ComfyUI\\models\\checkpoints 文件夹内。 ComfyUI_c_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4 注:如果报错,请更新 BitsandBytes 库。下载放入解压后 ComfyUI\\custom_node 文件夹内,重启 ComfyUI,如果之前没更新,更新后再重启。 相关资源链接: BitsandBytes Guidelines and Flux:https://github.com/lllyasviel/stablediffusionwebuiforge/discussions/981 ComfyUI_bitsandbytes_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4 flux1devbnbnf4.safetensors:https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 注意使用精度优化的低配模型的话,工作流和原版是不一样的。自己改的话就是把上面官方的这个 fp8 的工作流,只需把底模的节点换成 NF4 的或者 GUFF 的即可。相关生态发展很快,有 Lora、Controlnet、IPadpter 相关生态建设非常速度,以及字节最近发布的 Flux Hyper lora 是为了 8 步快速生图。
2025-01-09
comy UI FLUX 低显存
ComfyUI FLUX 低显存运行的相关内容如下: 工作流: 目的是让 FLUX 模型能在较低的显存情况下运行。 分阶段处理思路: 先使用 Flux 模型在较低分辨率下进行初始生成以提高效率。 采用两阶段处理,先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用。 使用 SD 放大提升图片质量。 工作流的流程: 初始图像生成(Flux): UNETLoader:加载 flux1dev.sft 模型。 DualCLIPLoader:加载 t5xxl 和 clip_l 模型。 VAELoader:加载 fluxae.sft。 CLIPTextEncode:处理输入提示词。 BasicGuider 和 RandomNoise:生成初始噪声和引导。 SamplerCustomAdvanced:使用 Flux 模型生成初始图像。 VAEDecode:解码生成的潜在图像。 初始图像预览:PreviewImage 显示 Flux 生成的初始图像。 图像放大和细化(SDXL): CheckpointLoaderSimple:加载 SDXL 模型(fenrisxl_SDXLLightning.safetensors)。 UpscaleModelLoader:加载 RealESRGAN_x4.pth 用于放大。 VAELoader:加载 sdxl_vae.safetensors。 ImageSharpen:对初始图像进行锐化处理。 UltimateSDUpscale:使用 SDXL 模型和放大模型进行最终的放大和细化。 最终图像预览:PreviewImage 显示最终放大和细化后的图像。 FLUX 模型的选择: 用半精度 fp8 dev 版本(能用单精度 dev 版本的尽量用),也适合 fp8 的 T8 模型,降低对内存的占用。 记得把 weight dtype 也设置为 fp8,降低对显存的使用。 建议:先关闭高清放大部分,等跑出来效果满意的图片后,再开启放大。 ComfyUI 简介: 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更加精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候能清晰发现错误出在哪一步。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI
2025-01-08
文生图中DiT架构比SDXL架构好在哪
DiT 架构相比 SDXL 架构具有以下优势: 1. Scaling 能力:相比于 Unet,Transformer 结构的 Scaling 能力更受认可,即模型参数量越大,性能越强。 2. 额外信息处理:DiT 在 Vision Transformer 模块基础上做了略微修改,能够在图片生成过程中接受一些额外的信息,如时间步 t 和标签 y。 3. 场景模拟真实性:Sora 背后的 DiT 架构在大数据量情况下具有强大的刻画能力,能展现出类似大语言模型涌现出逻辑推理等能力的现象。 4. 文本编码器:在提升文生图模型的语义理解能力方面,新的文生图模型纷纷优化文本编码器的能力,而 HunyuanDiT 作为使用 DiT 架构的模型,在中文生图方面有一定进展,但开源界中文、细粒度文生图模型的文本编码器仍有较大优化空间。
2024-08-20
有图片文字翻译输出图片的应用吗?
目前市面上有一些能够实现图片文字翻译并输出图片的应用。例如,百度翻译、腾讯翻译君等,它们在一定程度上具备这样的功能。但具体的效果可能会因图片的清晰度、文字的复杂程度等因素而有所不同。
2025-01-09
用macbook M3 Pro芯片,comfyUI 跑工作流,结果黑屏,没有输出图像,是为什么呢
很抱歉,目前没有关于使用 Macbook M3 Pro 芯片运行 ComfyUI 工作流出现黑屏且无输出图像的具体原因的相关知识。可能的原因有多种,比如软件与芯片的兼容性问题、显卡驱动异常、工作流设置错误、系统资源不足等。建议您检查软件的版本是否与您的系统兼容,更新显卡驱动,确认工作流的设置是否正确,以及关闭其他占用大量资源的程序以释放系统资源。
2025-01-03
flux和sd3.5出图的区别
Flux 和 SD3.5 出图存在以下区别: 1. 模型性质:Flux.1 有多种版本,如开源不可商用的 FLUX.1等。而 SD3.5 未提及相关性质。 2. 训练参数:Flux.1 的训练参数高达 120 亿,远超 SD3 Medium 的 20 亿。 3. 图像质量和提示词遵循能力:Flux.1 在图像质量、提示词跟随、尺寸适应、排版和输出多样性等方面超越了一些流行模型,如 Midjourney v6.0、DALL·E 3和 SD3Ultra 等。 4. 应用场景:Flux.1 可以在 Replicate 或 fal.ai 等平台上试用,支持在 Replicate、fal.ai 和 Comfy UI 等平台上使用,并且支持用户根据自己的数据集进行微调以生成特定风格或主题的图像。而 SD3.5 未提及相关应用场景。 5. 本地运行:文中尝试了在没有 N 卡,不使用复杂工作流搭建工具的 Mac Mini M1 上运行 FLUX.1,以及在边缘设备 Raspberry PI5B 上运行的情况,未提及 SD3.5 的相关内容。 6. 模型安装部署:对于 Flux.1,不同版本的模型下载后放置的位置不同,如 FLUX.1应放在 ComfyUI/models/unet/文件夹中。而 SD3.5 未提及相关安装部署内容。 7. 显存处理:对于 Flux.1,如果爆显存,“UNET 加载器”节点中的 weight_dtype 可以控制模型中权重使用的数据类型,设置为 fp8 可降低显存使用量,但可能会稍微降低质量。而 SD3.5 未提及相关显存处理内容。 8. 提示词使用:在训练 Flux 时,应尽量使用长提示词或自然语言,避免使用短提示词,因为 T5 自带 50%的删标。而 SD3.5 未提及相关提示词使用内容。
2024-12-20
如果给AI数据,AI可以做出小波分析并出图吗
目前的 AI 技术在给定相关数据的情况下,是有可能进行小波分析并出图的。但这取决于多个因素,如数据的质量、数量、特征,以及所使用的 AI 模型和算法的能力和适应性。一些专门为数据分析和图像处理设计的 AI 模型,经过适当的训练和配置,能够处理数据并生成小波分析的结果图像。然而,要实现准确和有意义的小波分析及出图,还需要对数据进行预处理、选择合适的模型架构,并进行精细的调参和优化。
2024-10-31
给我找国内较好的Ai设计出图网站
以下是为您推荐的国内较好的 AI 设计出图网站: 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品领域表现出色,其背后有强大的团队,能敏锐把握 AI 与 PPT 结合的市场机遇,已确立市场领先地位。对于经常制作 PPT 的商务人士、教育工作者、学生等都是值得尝试的工具,能提高效率并保证高质量输出。 如果您想了解关于 AI 生成 CAD 图的相关资料,可以参考以下几个方面: 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索。 专业书籍:查找相关专业书籍。 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的相关课程,在 YouTube 等视频平台上查找教程和演示视频。 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等,关注相关博客和新闻网站。 开源项目和代码库:探索 GitHub 等开源平台上的相关项目,例如 OpenAI 的 GPT3、AutoGPT 等在 CAD 设计中的应用。 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例。 以下是一些用户在工作中对出图的需求示例: |用户|联系方式|需求| |||| |kone|18616571618|AI 短片、AI 商业广告| |晓涵|17801234978|做视频| |uohigher|13902973307|个人学习| |卿卿子|18610036923|图片批处理| |lok|18529409793|设计| |hell 小明|13590623865|产品图| |iseeu|15532394695|提高工作效率,页面设计,配文出图| |大白光|17704034008|出图和视频| |三川|18681537236|出图和 AI 出视频| |李小蜗|18366606265|动漫真人电影| |Lucky|18475643966|出图,视频| |无名之辈|15813236448|自媒体 ip 打造,影音行业的创新,母婴等电商行业的赋能| |龙|13911904101|画图,工作,变现| |colour|19977743192|工作流设计| |小熠|13242135972|视频、图片处理| |顺势上马|/|自媒体和电商办公等| |叉子|15103211190|儿童绘图,小红书引流| |harry|15921430685|兴趣学习,自媒体素材,自定义节点开发| |古戈尔|18975394699|视频,动画| |二师兄|13818462550|图像流制作,装修工程和建筑工程| |fyu|15880036058|生图|
2024-10-29
相同的参数下,用SD comfyui出图可以和SD webui出图保持图片效果一模一样么?
理论上,在应用完全相同参数(如 Step、CFG、Seed、prompts)的情况下,SD ComfyUI 出图和 SD WebUI 出图应当能保持图片效果一模一样。但在实际操作中可能会存在一些差异,比如: 提示词的多个条件下,SD 生成的图像可能无法全部满足,这与提示词引导系数有关,该系数关系到出图与文字的相关程度。 不同的模型和配置也可能影响出图效果,例如 SDXL 的大模型分为 base、refiner 以及配套的 VAE 模型,用于调节图片的画面效果和色彩。 需要注意的是,相同参数下要达到完全一致的出图效果并非绝对,还会受到多种因素的综合影响。
2024-10-14
精准率和召回率有什么区别
精准率和召回率是常见的评估指标,主要区别如下: 精准率(Precision):指返回的检索内容中有用信息的占比。也就是说,在所有被检索出来的内容中,真正有用的信息所占的比例。其计算公式为:精准率 = 真正例 / (真正例 + 假正例)。 召回率(Recall):指相关信息被正确预测出来的比例,即真正例在所有实际相关信息中的占比。其计算公式为:召回率 = 真正例 / (真正例 + 假反例)。 例如,在一个文档检索的场景中,精准率体现的是检索出的文档中有多少是真正有用的;召回率则体现的是相关的文档有多少被包含在返回的检索结果里。 总的来说,精准率关注的是检索结果的准确性,而召回率关注的是检索结果的完整性。
2025-01-23
深度学习跟机器学习有啥区别呀?能不能举个通俗易懂的例子
深度学习和机器学习的区别主要体现在以下几个方面: 1. 学习方式:机器学习通常需要人工选择和设计特征,而深度学习能够自动从数据中学习特征。 2. 模型结构:机器学习模型相对简单,深度学习则使用多层的神经网络,结构更复杂。 3. 数据处理能力:深度学习能够处理更大量和更复杂的数据模式。 例如,在图像识别任务中,如果使用机器学习,可能需要人工提取图像的颜色、形状等特征,然后基于这些特征进行分类。但在深度学习中,神经网络可以自动从大量的图像数据中学习到有效的特征表示,从而实现更准确的分类。 机器学习是人工智能的一个子领域,让计算机通过数据学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供数据让机器找出隐藏模式或规律,然后用这些规律预测新的未知数据。 深度学习是机器学习的一个子领域,模拟人脑工作方式,创建人工神经网络处理数据,包含多个处理层,能学习和表示大量复杂模式,在图像识别、语音识别和自然语言处理等任务中非常有效。 大语言模型是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言,需要在大量文本数据上训练,如 ChatGPT、文心一言。同时,大语言模型具有生成式 AI 的特点,不仅能理解和分析数据,还能创造新的独特输出。
2025-01-21
深度学习跟机器学习有啥区别呀
深度学习和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域,深度学习则是机器学习的一个子集。 2. 工作方式:机器学习通过输入数据训练模型,让计算机在没有明确编程的情况下学习。深度学习模拟人脑工作方式,创建人工神经网络处理数据。 3. 处理模式:机器学习模型可以是监督的或无监督的,监督模型使用标记的数据学习并预测未来值,无监督模型专注于发现原始数据中的模式。深度学习使用人工神经网络,能处理更复杂的模式,神经网络可使用标记和未标记的数据,实现半监督学习。 4. 应用效果:深度学习在图像识别、语音识别和自然语言处理等任务中表现出色,因为其能学习和表示大量复杂的模式。 例如,大语言模型是深度学习在自然语言处理领域的应用,其不仅能理解和分析数据,还能创造新的独特输出,如 ChatGPT、文心一言等。
2025-01-21
AIGC和AGI的区别
AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,包括文字、图像、视频等。它在内容创作、广告、媒体等领域广泛应用。 AGI(通用人工智能)则是一种让机器具备像人类一样的通用智能的目标,能够理解、学习和处理各种不同的任务和领域。 AIGC 侧重于内容的生成,是通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。而 AGI 追求的是更广泛和通用的智能能力。 例如,AIGC 可以生成文章、艺术作品、短视频等具体的内容形式;AGI 则是期望机器能够像人类一样进行思考、推理、解决复杂的综合性问题等。 总的来说,AIGC 是 AGI 在内容生成方面的一种具体应用,而 AGI 是更宏观和高远的人工智能发展目标。
2025-01-19
AI手机端和网页端的应用场景有什么区别?
AI 手机端和网页端的应用场景存在以下区别: 网页端产品更倾向于支持涉及内容创作和编辑的复杂、多步骤工作流程,例如 AI 语音工具包 ElevenLabs、AI 艺术创作器 Leonardo 以及 AI 演示文稿构建器 Gamma 等。 移动端应用更倾向于通用型助手,不少在功能上模仿了 ChatGPT。 在移动设备上,图片和视频的内容编辑是最常见的用途。例如,美图秀秀、SNOW 和 Adobe Express 等传统创意工具转型为生成式 AI 优先,并在移动排名中表现出色。 ChatGPT 以巨大优势成为网络和移动端排名第一的产品,而争夺最佳消费者助手的竞争正在升温。Perplexity 在网络上排名第三,专注于提供简明、实时和准确的查询答案,且用户参与度很高,还首次进入移动端前 50 名榜单。Anthropic 的 Claude 是 ChatGPT 的直接竞争对手,在网页排名中进入前五。
2025-01-16
AI智能体是什么?AI超级个体是什么?AI智能体和超级个体有什么区别和关联?
AI 智能体是不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI 智能体产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 AI 超级个体可以理解为一种能够帮助我们充分发挥作为人类潜力的伙伴。它是我们的外脑,我们每个人独特的个性、经验和思考风格,将会与这些智能个体融合,成为我们的化身。超级智能将强化我们自身,与人类共生,共同汇聚成智能时代的新知识网络。 AI 智能体和超级个体的区别在于:AI 智能体更侧重于执行全自动化业务的能力,而超级个体更强调对人类潜力的辅助和强化,以及与人类的融合共生。它们的关联在于都是人工智能在不同应用和概念层面的体现,都旨在为人类提供帮助和服务,推动人类与人工智能的协同发展。
2025-01-16