Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

sd最新的模式是什么

Answer

Stable Diffusion(SD)最新的模式包括:

  1. 隐藏在光里的秘密,AI造字光与影的艺术中,将 lightingBasedPicture 模型的终止时机由 0.6 提高到 0.7 能使文字更好识别,但再提高字会显得太突兀,需把握平衡。
  2. Stability AI 正式发布了期待已久的 SDXL 1.0。SDXL 1.0 由两个模型组成,第二个模型能生成更鲜艳、更准确的颜色,且比前身具有更好的对比度、光照和阴影。SDXL 1.0 是所有开放获取图像模型中参数数量最多的模型之一,拥有 3.5B 参数基础模型和 6.6B 参数模型集成管道。

如果您想要最新的 controlnet 模型,可以添加公众号【白马与少年】,回复【SD】获取。

Content generated by AI large model, please carefully verify (powered by aily)

References

【SD】隐藏在光里的秘密,AI造字光与影的艺术~

所以我锁定随机种子之后,将lightingBasedPicture模型的终止时机由0.6提高到了0.7,这样文字就比较好识别的,当然再提高的话呢,字又会显得太突兀,我们要把握好一个平衡。好了,光影字体就讲到这里。如果想要最新的controlnet模型的话,可以添加我的公众号【白马与少年】,回复【SD】即可。-END-白马与少年Stable Diffusion、Blender等学习心得分享139篇原创内容(持续更新中)公众号微信扫一扫关注该公众号

AIGC 周刊 by 歸藏

|标题|概要|图片|链接|日期||-|-|-|-|-||2023年8月第一周|Stability AI正式发布了我们期待已久的SDXL 1.0。下面是模型的介绍、使用方式和相关的资源链接:<br>SDXL的特点:<br>SDXL有两个模型组成第二个模型可以生成更鲜艳、更准确的颜色,并且比其前身具有更好的对比<br>度、光照和阴影。<br>SDXL 1.0是所有开放获取图像模型中参数数量最多的模型之一,拥有3.5B参数基础模型和6.6B参数模型集成管道。||[AIGC Weekly#32](https://waytoagi.feishu.cn/wiki/XQllwGObJiEn4Hki16FcWSp5n0b)|2023/08/01||2023年7月第四周|上周三Meta正式发布了和开源了Llama 2大语言模型,估计接下来的两个月开源语言模型和国产的一些模型都回迎来性能上的飞跃。<br>模型规模方面Llama2有三个大小的版本分别是7B 13B和70B,Llama 2的训练数据比Llama 1多40%,上下文长度是Llama 1的两倍。预训练的Token为2万亿,上下文长度为4096。||[AIGC Weekly#31](https://waytoagi.feishu.cn/wiki/Bv5sw3cyHiLotoksuwVcYp0hn8d)|2023/07/24||2023年7月第三周|上周Anthropic发布了他们最新的模型Claude 2,Claude2相较于之前的版本有了非常大的提升,同时你现在可以在他们的官网上跟Claude 2对话了(免费)。<br>他们开放了一个官方的聊天机器人程序,你现在可以访问[https://claude.ai](https://claude.ai/)||[AIGC Weekly#30](https://waytoagi.feishu.cn/wiki/IUghwBUdyiiwF7kzYhZc5SX7nah)|2023/07/18|

AIGC常见名词解释(字典篇)

AIGC:AI generated content,又称为生成式AI,意为人工智能生成内容。例如AI文本续写,文字转图像的AI图、AI主持人等,都属于AIGC的应用。类似的名词缩写还有UGC(普通用户生产),PGC(专业用户生产)等。能进行AIGC的产品项目也很多,能进行AIGC的媒介也很多包括且不限于语言文字类:OpenAI的GPT,Google的Bard,百度的文心一言,还有一种国内大佬下场要做的的LLM都是语言类的。语音声音类:Google的WaveNet,微软的Deep Nerual Network,百度的DeepSpeech等,还有合成AI孙燕姿大火的开源模型Sovits。图片美术类:早期有GEN等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的Midjourney,先驱者谷歌的Disco Diffusion,一直在排队测试的OpenAI的Dalle·2,以及stability ai和runaway共同推出的Stable Diffusion...[heading1]SD是什么?[content]SD是Stable Diffusion的简称。是它是由初创公司StabilityAI、CompVis与Runway合作开发,2022年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。SD的代码模型权重已公开发布,可以在大多数配备有适度GPU的电脑硬件上运行。当前版本为2.1稳定版(2022.12.7)。源代码库:github.com/Stability-AI/stablediffusion我们可以通过一系列的工具搭建准备,使用SD进行想要的图片aigc(心想事成的魔法施与)。

Others are asking
SD如何操作
以下是关于 SD 操作的相关内容: Stable Diffusion 中,Checkpoint 是最重要的模型,也是主模型,几乎所有操作都依托于它。主模型基于 Stable Diffusion 模型训练而来,有时被称为 Stable Diffusion 模型。主模型后缀一般为.ckpt 或者.safetensors,体积较大,一般在 2G 7G 之间。要管理模型,需进入 WebUl 目录下的 models/Stable diffusion 目录。 画出商用级别的高清大图操作简单,调整好放大倍率即可直接放大。其原理和其他图片放大原理相同,并非重绘,只是变清晰,缺失细节不会补全。 制作中文文字的思路: 将中文字做成白底黑字,存成图片样式。 使用文生图的方式,使用大模型真实系,输入关键词和反关键词,反复刷机得到满意效果。 可输出 C4D 模型,自由贴图材质效果。 若希望有景深效果,可打开 depth。 打开高清修复,分辨率 1024 以上,步数 29 60。
2025-01-09
sd 学习教程
以下是关于系统学习 Stable Diffusion 提示词的教程: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,为您推荐以下学习资源: 1. SD 从入门到大佬: Nenly 同学的视频合集(点我看合集):https://space.bilibili.com/1 。 想入门 SD 的同学可以在安装完 SD 后,参考 0.SD 的安装:https://qa3dhma45mc.feishu.cn/wiki/Ouiyw6v04iTJlmklDCcc50Jenzh 。 可选的一些图片版教程: 。 2. 第一期:上班的你: 。 。 。 。 。 。 。 。 。
2025-01-06
Midjourney+sd可以生成服装模特视频么
Midjourney 和 SD 可以用于生成服装模特视频。以下是一些常见的方法: 1. 方法 1【MJ 出图 + AI 视频软件】:使用 Midjourney 垫图➕描述出图,再去视频工具中转成视频。下载项里的深度图,打开 Midjourney 官网(https://www.midjourney.com/)上传深度图。局部重绘有难度,最终方式可以是分开画,比如先画个被关着的红衣服女孩,再画个二战德国士兵的背影,再合成后交给 MJ。 2. 方法 3【SD 出图 + AI 视频软件】:在 SD 的 controlnet 中上传原图,选择深度,文生图生成图片,再把生成好的图放在 AI 视频工具中进行视频生成。 同时,您还可以参考以下视频工具建议: 。另外,使用 Dreamina 图片生成功能(https://dreamina.jianying.com/aitool/image/generate)上传深度图,选择适应画布比例并填写描述,也可以实现深度图出图和出视频。
2025-01-06
SD怎么学习简单
学习 Stable Diffusion(SD)可以从以下方面入手: 学习 SD 提示词: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 学习 SD 的 Web UI: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录。 运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。 等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开。 即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。 尝试生成图像,观察不同参数对结果的影响。 学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。 学习如何导入自定义模型、VAE、embedding 等文件。 掌握图像管理、任务管理等技巧,提高工作效率。 总之,学习 SD 需要多方面的知识和经验积累。初学者可从官方资料入手,掌握基本概念;中级阶段需大量实践,培养敏锐度;高级阶段则要追求创新性、挖掘新维度。持续的学习、实践和总结反馈,是成为高手的必由之路。
2025-01-04
怎么看sd的插件不兼容
SD 插件不兼容可能有多种情况和解决方法: 对于提示词服从度增强插件,当生成图与提示词不太相符时,可以通过多刷图来找到符合需求的绘图。若条件太多始终达不到效果,可提高 cfg 值并启用修复插件。但开启插件并提高 CFG 值后,画面可能会发黄,颜色偏差可利用 PS 做后续调整。安装方式可以在扩展列表中搜索插件名字,或放在特定路径文件夹下,安装完成后重启 webUI 即可启用。 对于无需 Lora 的一键换脸插件 Roop,安装时间较长,需耐心等待。安装过程包括在特定文件夹地址栏输入“cmd”回车,在打开的 dos 界面粘贴代码安装 insightface。若出现错误,可下载最新秋叶 4.2 整合包。安装完成后重新打开启动器,后台会继续下载模型,需全程科学上网。使用时要注意参数设置,人脸像素可能偏低,可发送到“图生图”并使用 controlnet 中的 tile 模型重绘。此插件谨慎使用,切勿触犯法律。获取插件可添加公众号【白马与少年】回复【SD】。
2025-01-02
SD如何人物换脸
以下是关于 SD 人物换脸的详细步骤: 1. 安装 Roop 插件:安装时间较长,需耐心等待。安装好后打开 SD 文件目录下的特定文件夹,在地址栏输入“cmd”并回车,在打开的 dos 界面粘贴“python m pip install insightface==0.7.3 user”自动安装 insightface。若此阶段出错,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),在云盘后台回复【SD】可下载。 2. 后续操作:安装完成后重新打开启动器,后台会继续下载模型,全程要保证科学上网。Roop 插件主要适用于真实人脸替换,对二次元人物作用不大。选用真实系模型“realisticVisionV20”,关键词描述人物。启用 Roop 插件,选择要替换的人物照片,面部修复选“GFPGAN”,右边参数数值越低人物越像但图像模糊,数值越高人物越不像但图像清晰,可根据需求设置,如 0.5。设置好后点击生成,若人脸像素偏低模糊,可将图发送到“图生图”,开较小重绘幅度,使用 controlnet 中的 tile 模型重绘。 3. 多人物脸部替换:先正常生成图片,如两个古风人物形象。发送到图生图中调整重绘幅度。在 roop 插件中,从左往右编号,载入相应人物照片形象进行脸部替换。 4. 获取插件:想要 Roop 插件,可添加公众号【白马与少年】,回复【SD】。 另外,还有关于 SD 中更精确蒙版的操作,如使用 GroundingDINO 模型分割:启用 GroundingDINO 时 AI 会自动下载模型,也可在云盘下载放到特定文件目录。在检测提示词中输入如“eye”,可自动检测出相应部分并设置蒙版,还能通过预览箱体得到编号选择调整单一部分。选择要修改的蒙版上传到重绘蒙版,添加提示词生成。给人物换背景时,加载生成的背景蒙版,选择大模型和正向提示词,蒙版模式选“重绘非蒙版内容”,生成后可再次放入图生图中细化,还可在 PS 中修复。 特别提醒,使用相关插件需谨慎,切勿触犯法律。
2024-12-31
总结一下大模型数据发展的最新趋势,基于历史的事实和数据总结23年以来发生了什么,25年可能发生什么
以下是关于大模型数据发展趋势的总结: 2023 年以来: 大量创新大模型架构涌现,尝试在保留 Transformer 优势的同时解决其算力开销太高的问题,对 Transformer 的绝对统治地位形成有力挑战。 多种有代表性的技术路径出现,如类循环神经网络模型(以 RWKV 为代表)、状态空间模型(以 Mamba 为代表)、层次化卷积模型(以 UniRepLKNet 为代表)、多尺度保持机制模型(以 RetNet 为代表)、液体神经网络模型(以 LFM 为代表)等。这些模型在不同程度保留 Transformer 架构优势的基础上,结合 RNN、CNN 等思想做出创新发展,使得大模型架构呈现出日益明显的混合趋势,更多创新架构具备“博采众家之长”的特点。 对于 2025 年的预测,由于目前的信息有限,难以给出确切的预测。但可能会在现有创新架构的基础上进一步优化和融合,出现更高效、更强大且更具通用性的大模型架构,同时可能在技术应用和行业落地方面取得更显著的成果。
2025-01-16
最新的AI资讯
以下是为您整理的最新的 AI 资讯: 1. 12 月 25 日 AI 资讯汇总: AI 资讯公众号:超时空视角。 小红书/抖音:EverAI。 B 站:Ever AI 酱(这里会有教程及 AI 工具界面操作)。 公众号地址(辛苦点赞):https://mp.weixin.qq.com/s/TBHiM_0w_bwUc20_KVQQ AI 绘画:Recraft AI 更新了 60 种新的图像风格。Recraft AI 是 AI 平面设计工具,用户可以使用其生成和编辑插画、海报、产品周边等,提供多种样式的可选风格,对所有用户每日都有免费的试用点数,并允许对生成的图像进行商业使用。地址:https://www.recraft.ai/ AI 公文智能体:学习强国 x 百度 AI。AI 公文智能体“学习强国公文助手”在文小言 APP 正式上线,可以帮助用户进行文汇检索、AI 公文书写、AI 公文润色等。使用方式:下载文小言 APP,找寻学习强国公文助手。 2. 新手学习 AI 的方法:持续学习和跟进,AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 3. AIGC Weekly32 上周精选: Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位:https://jobs.netflix.com/jobs/278437235 Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作提取相关数据、操作新功能或创建报告:https://techcrunch.com/2023/07/26/shopifysidekickislikechatgptbutforecommercemerchants/ Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能:https://twitter.com/Artifact_News/status/1684631632374902784?s=20 OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展:https://openai.com/blog/frontiermodelforum Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器:https://techcrunch.com/2023/07/25/openaiscuttlesaiwrittentextdetectoroverlowrateofaccuracy/
2025-01-15
ChatGPT最新技术
ChatGPT 是由 OpenAI 开发的基于 GPT(生成式预训练变换器)架构的人工智能模型,是目前最先进的人工智能模型之一,是一种自然语言处理(NLP)工具,能够理解和生成接近人类水平的文本。 目前 ChatGPT 官网有两个版本,分别是 GPT3.5 和 GPT4。GPT3.5 为免费版本,拥有 GPT 账号即可使用,但智能程度不如 GPT4,且无法使用 DALL.E3(AI 画图功能)和 GPTs 商店、高级数据分析等插件。若想使用更多功能更智能的 GPT4,需升级到 PLUS 套餐,收费标准为 20 美金一个月。此外,GPT4 还有团队版和企业版,功能更多、限制更少,但费用更贵,一般推荐使用 PLUS 套餐。 在注册 ChatGPT 账号之前,建议先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录,可省去很多日后的注册流程。目前注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。 ChatGPT 基于 OpenAI 最先进的语言模型 gpt3.5turbo,使用 OpenAI 的 API 可以用 gpt3.5turbo 构建应用,例如起草邮件、写 Python 代码、回答关于一组文档的问题、创建会话代理、给软件提供自然语言接口、辅导各种学科、语言翻译、假扮游戏或其他内容的角色。 ChatGPT 作为国际 AI 领域的明星产品,其成功具有开创性,是首批向公众开放的大规模商用 AI 对话系统之一,在全球掀起 AI 革命。它的用户体验精心设计,界面简洁直观,交互流畅自然,降低了普通人接触和使用 AI 的门槛。从技术角度看,其背后的 GPT 系列模型性能和能力领先,在语言理解深度和生成内容质量上表现出色。但也要认识到其局限性,随着 AI 技术发展,它已不是市场上唯一顶级选择,其他产品在特定领域可能超越它。对于国内用户,可能因网络连接问题遇到连接不稳定、响应延迟等困扰,影响使用体验。若身在海外或有稳定国际网络连接,ChatGPT 是极佳选择,否则国内用户可能需考虑本地化替代方案。
2025-01-12
有什么关于最新AI网站学习的
以下是关于最新 AI 网站学习的相关内容: 对于设计 AI 网站的 logo,如果您不确定如何操作,可以使用 AI logo 生成器。网上有许多不同的此类工具,例如 Logomaster.ai、Free Logo Design、Logo AI、Looka logo maker(原名 Logojoy)、Brandmark、DesignEvo、Tailor Brands、Designhill 等。同时,为您提供一份 AI 网站新 logo 的设计概要: 项目名称:AI 网站新 Logo 客户: 日期:20230830 目的:创建一个强大且令人难忘的视觉标识,要现代、专业、有吸引力,能用于多种营销材料。 目标受众:对使用 AI 解决问题感兴趣的企业和个人,应传达创新、创造力和智慧。 品牌属性: 新手学习 AI 可以参考以下步骤: 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,例如掌握提示词技巧。 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品并分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。 此外,AI 是快速发展的领域,新手需要持续学习和跟进,关注新闻、博客、论坛和社交媒体,了解最新发展,考虑加入相关社群和组织,参加研讨会、工作坊和会议,与他人交流。
2025-01-10
视觉理解技术最新动态和趋势
以下是视觉理解技术的最新动态和趋势: 一、视觉分析技术 1. Transformer 视觉模型优点 2. Transformer 视觉模型的局限 二、图像语言模型 三、视频语言模型 四、LLM 多模态 Agent 五、应用场景 1. 多模态内容理解与处理 2. 智能交互与自动化 3. 具身智能 4. 未来发展趋势(2024 ?) 5. 视频生成模型 mapping 六、未来发展方向 1. 技术路径而言:利用预训练 LLMs 进行指令调整 最初,多模态融合方法常采用预训练的目标检测器,如 ViLBERT、VisualBERT 和 UnicoderVL,通过提取图像特征和执行交叉模态预训练任务,为后续的图像 文本任务奠定基础。 随着 ViT 的出现和普及,更多方法开始利用 ViT 作为图像编码器,强调大规模预训练,以提高模型的性能和泛化能力,例如 Flamingo。 近期,向多模态 LLMs 发展,从进行预训练到向指令调整(instruction tuning)转变,如 LLaVA 和 MiniGPT4,融合视觉和语言信息,能更有效地完成视觉理解相关任务,提升模型对于指令的理解能力和零样本性能,更好地泛化到未见过的任务和领域。 2. 应用场景而言:赋予机器理解多模态的能力 此外,李飞飞在 2015 年的 TED 演讲《我们怎么教计算机理解图片?》中提到了计算机视觉方面的研究进展,指出虽然在科技上取得了很多进步,但在计算机视觉方面仍存在一些问题,如自动驾驶车辆的视觉敏锐度、向盲人传递画面、无人机的视觉技术等。
2025-01-10
2025最新AI排名
以下是关于 2025 年 AI 的一些相关信息: 过去一年,头部 AI 应用的品类变化不显著。对比美国 2023 年与 2024 年的 AI 应用 Top50 榜单,整体类别基本稳定。创意工具(如图像和视频内容创作)占最大比重,大语言模型助手、AI 陪伴和模型中心等类别为主流。新上榜的有美食、约会和音乐创意工具等小品类。 2024 年 9 月,OpenAI 发布新一代语言模型 o1,业界推测其采用全新训练与推理方案,结合强化学习技术,增强了推理能力,可能通过生成内部“思维链”模拟人类系统 2 思维方式。 2025 年 AI 发展趋势包括:AI 原生应用融资激增,更多公司实现 5000 万美元 ARR;并购活动增加,IPO 低迷;基础模型在多方面持续改进,尤其是多模态和推理模型;国防部加大 AI 投入;生成内容激增,视频成新焦点;AI 安全威胁与对抗加剧;监管进展缓慢。整体来看,生成式 AI 将持续主导市场。
2025-01-10
rag分几种模式
RAG 主要分为以下几种模式: 1. 基础 RAG(Naive RAG) 2. 高级 RAG(Advanced RAG) 3. 模块化 RAG(Modular RAG) 其工作流程包括: 1. 上传文档:用户上传包含知识的文档,支持 txt、pdf、docx 等格式,LangChain Chatchat 会将文档转换为 Markdown 格式。 2. 文本切割:为了便于分析和处理,将长文本切割为小块(chunk)。 3. 文本向量化:将切割的 chunk 通过 embedding 技术,转换为算法可以处理的向量,存入向量数据库。 4. 问句向量化:用户提问后,同样将用户的问句向量化。 5. 语义检索匹配:将用户的问句与向量数据库中的 chunk 匹配,匹配出与问句向量最相似的 top k 个。 6. 提交 Prompt 至 LLM:将匹配出的文本和问句,一起添加到配置好的 prompt 模板中,提交给 LLM。 7. 生成回答:LLM 生成回答,返回给用户。 在典型的 RAG Flow 模式方面,包括以下微调阶段模式和推理阶段模式。 此外,RAG 就像是一个超级智能的图书馆员,具有检索、增强和生成三个步骤。其优点包括成本效益、灵活性和可扩展性;缺点是回答准确性相对专有模型的方案不够。
2025-01-16
请写一份基于人工智能的智能家居安防系统建设方案,包括项目介绍、商业模式、、竞品分析、行业分析、经营规划、风险评估、融资规划等。
以下是为您生成的基于人工智能的智能家居安防系统建设方案: 项目介绍: 智能家居安防系统是利用人工智能技术,对家居环境进行实时监控和安全防护的系统。它融合了智能硬件、智能软件、智能网联和服务平台等技术,旨在提升家居安防的效率和可靠性。 商业模式: 可以采用设备销售与服务订阅相结合的模式。销售智能安防设备获取收入,同时提供定期的维护和升级服务,用户按需订阅。 竞品分析: 目前市场上的竞品主要包括传统安防企业的智能化产品和新兴科技公司的创新方案。传统企业可能在硬件制造和渠道方面有优势,新兴公司则在技术创新和用户体验上有所突破。 行业分析: 智能家居安防市场正处于快速发展阶段。随着人们对生活品质和安全的重视,需求不断增长。同时,技术的进步也为行业发展提供了有力支持。 经营规划: 1. 产品研发:不断优化智能安防设备的性能和功能。 2. 市场推广:通过线上线下多种渠道进行宣传和推广。 3. 客户服务:建立完善的售后服务体系,提高用户满意度。 风险评估: 1. 技术风险:如技术更新换代快,需要持续投入研发。 2. 市场风险:竞争激烈,市场份额可能受到挤压。 3. 法律风险:需符合相关法律法规和标准。 融资规划: 根据项目的发展阶段和资金需求,制定合理的融资计划。可以考虑天使投资、风险投资、银行贷款等多种融资渠道。 需要注意的是,以上方案仅为初步框架,具体内容还需要进一步深入调研和细化。
2024-12-11
AI是怎么获得学习能力,是谁发现了这种学习模式,发展历程是什么?
AI 的学习能力主要通过以下几种方式实现: 1. 机器学习:电脑通过找规律进行学习,包括监督学习、无监督学习和强化学习。 监督学习:使用有标签的训练数据,算法旨在学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 2. 深度学习:这是一种参照人脑的方法,具有神经网络和神经元,由于有很多层所以称为深度。神经网络可用于监督学习、无监督学习和强化学习。 3. 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 AI 学习模式的发现并非由单一的个人完成,而是众多研究者共同努力的成果。 AI 的发展历程中有重要的技术里程碑,如 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。Transformer 比 RNN 更适合处理文本的长距离依赖性。对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成。生成式 AI 生成的内容称为 AIGC。LLM 即大语言模型,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2024-12-04
markdown模式写提示词
以下是关于用 Markdown 模式写提示词的相关内容: 平时写提示词用的更多的是 Markdown 语法,它简单且大语言模型能很好“理解”标题、列表、加粗强调等语法。 例如专业书评人的提示词,要求以 Markdown 格式展示,每个要点单独一行,包括书名、ISBN、作者、出版社等。 用 Lisp 构建 prompt 让 Claude 输出情绪营销语句,也可用一直倡导的 Markdown 格式,效果一样。但 GPT 等模型在卡片生成这步需要调整,不稳定,最好自定义 html/css 样式进行强约束。 极简版输出(GPT o1 系列,需一步步思考推理)。 可直接打开 Claude 首页发送提示词进行初始化后使用。
2024-12-01
ai将颠覆很多模式,那有什么是未来十年二十年不变的部分?
以下是关于您所提出问题的相关分析: 在未来十年二十年,可能存在一些相对不变的部分: 1. 创造力和想象力的重要性:在游戏创作等领域,尽管技术门槛降低,但独特的创意和想象力仍将是珍贵的。 2. 行业竞争的本质:在初创企业和现有大公司的竞争中,各自的优势和挑战依然存在,关键在于如何利用自身特点吸引用户和应对变革。 3. 科技对经济的推动作用:如 AI 这样的新技术仍将对全行业的进步产生积极影响,为经济发展提供新动力。 然而,需要注意的是,由于科技发展的不确定性,对于哪些部分绝对不变难以给出确切的定论。
2024-11-05
qwen大语言模型有视觉模式吗?
Qwen 大语言模型具有视觉模式。以下是相关信息: 有博主称 QwenVL 已迁移到 ComfyUI 中,它支持本地图像、上下文窗口多轮对话,支持 PLUS 和 MAX 双视觉模型,支持百万像素、任意规格图像,具有超强细节和文字识别能力,在开源领域表现出色,中文能力突出,目前 API 免费开放。 关于部署 Qwen 大语言模型,如在 Windows 电脑上,可点击 win+R,输入 cmd 回车;在 Mac 电脑上,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”选择“终端”应用程序,然后复制相关命令行粘贴回车进行下载。
2024-10-11