Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

关于workflow有什么著名的论文

Answer

以下是一些关于 workflow 的著名论文或相关内容:

  1. 5 月 9 日艾木分享的《Workflow》,其中包含关于 workflow 的理论探讨、对 AGI 的正确理解与思考、如何客观看待大语言模型的基础表现、人工智能在编程领域的应用及挑战、从提示词工程到 flow 工程:AI 在代码生成领域的研究与应用、人工智能在开源项目测试集中的表现与工作流的重要性、关于 workflow 的介绍与案例演示等内容。
  2. 艾木的《如何用 Coze 制作一个信息检索 Bot(含 Workflow 的基础用法)》,提到 Coze 的 Workflow 为制作 Agents/Bots 提供很大的灵活性和便捷性,对 Workflow 中的函数进行了分类,并提出了超函数(Hyperfuction)的概念。
  3. 2024 年 8 月 20 日的更新中,有《[AI Agent 产品经理血泪史(二)-欲知方圆,则必规矩【Workflow 篇】》,聚焦于工作流(Workflow)在 AI 智能体中的重要性,回顾了集成平台的演变,探讨了工作流在自动化和手动编排中的应用以及如何提升灵活性以应对不断变化的需求。
  4. 还有《[张梦飞:【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程》和《[ComfyUI 工作流:黑猴子-悟空换脸-报错解决大法》等相关内容。
Content generated by AI large model, please carefully verify (powered by aily)

References

5月9日 艾木分享《Workflow》

[heading1]概览[heading2]智能章节[41:36](https://waytoagi.feishu.cn/minutes/obcn8e8mrz9u721s1j13hxva?t=2496000)关于workflow的理论探讨[43:17](https://waytoagi.feishu.cn/minutes/obcn8e8mrz9u721s1j13hxva?t=2597000)关于AGI的正确理解与思考[49:11](https://waytoagi.feishu.cn/minutes/obcn8e8mrz9u721s1j13hxva?t=2951000)如何客观看待大语言模型的基础表现?[52:03](https://waytoagi.feishu.cn/minutes/obcn8e8mrz9u721s1j13hxva?t=3123000)人工智能在编程领域的应用及挑战[56:42](https://waytoagi.feishu.cn/minutes/obcn8e8mrz9u721s1j13hxva?t=3402000)从提示词工程到flow工程:AI在代码生成领域的研究与应用[01:00:31](https://waytoagi.feishu.cn/minutes/obcn8e8mrz9u721s1j13hxva?t=3631000)人工智能在开源项目测试集中的表现与工作流的重要性[01:02:24](https://waytoagi.feishu.cn/minutes/obcn8e8mrz9u721s1j13hxva?t=3744000)关于workflow的介绍与案例演示[01:04:22](https://waytoagi.feishu.cn/minutes/obcn8e8mrz9u721s1j13hxva?t=3862000)Doc No与Open i GTS对比,聚焦基于大人模型的Agent文案

艾木: 如何用Coze制作一个信息检索Bot(含Workflow的基础用法)

Coze的Workflow为我们制作Agents/Bots提供很大的灵活性和便捷性。理论上,很多研究论文里面的提示词工程技术都可以通过Workflow实现,然后嵌入到Bot里,快速设计出一个产品。Dr.Know就是一个很好的例子。Workflow是什么?我们再回看一下Dr.Know使用的这个Workflow。这个Workflow里每个组块都可以看成是一个函数,这里面混杂了三类函数:一类是传统函数,像FormatRetrievedResults和GetUserLanguage都可以归为这一类;第二类是调用第三方服务的函数,如SearchWebWithGoogle;第三类程序是基于LLM的函数,如GenerateQueryResponse。我们可以把前一类叫作原生函数(Native Function),第二类叫作远端函数(Remote Function),第三类叫作语义函数(Semantic Function)。原生函数和远端函数是传统程序的基本组块,语义函数则是在LLM诞生之后才有的。这里我们使用了“函数”这个概念对LLM-based的程序做了概括,但是我们应该都清楚语义函数与传统函数在形式和功能上都有根本差异:形式上,它是用自然语言编写的程序;功能上,它可以模拟人的高阶思维,而不仅仅是做一些流程性的操作。既然如此,那么由这三类函数组合而成的Workflow也完全不同于传统函数,我把它们称作超函数(Hyperfuction)。

4.4 历史更新

《[AI Agent产品经理血泪史(二)-欲知方圆,则必规矩【Workflow篇】](https://waytoagi.feishu.cn/wiki/ZpVHwMN6fi8sNrkkCqqcau5nnsk)》这是我们知识库新的专栏作者ElliotBai投递的文章,本文聚焦于工作流(Workflow)在AI智能体中的重要性,回顾了集成平台的演变,如Zapier和飞书连接器等。文章探讨了工作流在自动化和手动编排中的应用,以及如何提升灵活性,以应对不断变化的需求。《[张梦飞:【全网最细】从LLM大语言模型、知识库到微信机器人的全本地部署教程](https://waytoagi.feishu.cn/wiki/LjcLwLM5hihSOukoPBzcqOlon7f?fromScene=spaceOverview)》《[ComfyUI工作流:黑猴子-悟空换脸-报错解决大法](https://waytoagi.feishu.cn/wiki/CIlqwheSXiYyjEktlFCcC7d2nKg)》该文档介绍了ComfyUI的工作流,特别是“黑猴子-悟空换脸”项目。内容包括工作流下载链接、底图及模型的网盘地址,以及针对报错的解决方法。

Others are asking
comfyui workflow
ComfyUI 的工作流主要包括以下内容: 低显存运行工作流:目的是让 FLUX 模型能在较低显存情况下运行。分阶段处理思路为,先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存使用,最后使用 SD 放大提升图片质量。工作流流程包括初始图像生成(Flux)阶段的 UNETLoader 加载 flux1dev.sft 模型、DualCLIPLoader 加载 t5xxl 和 clip_l 模型、VAELoader 加载 fluxae.sft 等步骤,以及图像放大和细化(SDXL)阶段的 CheckpointLoaderSimple 加载 SDXL 模型、UpscaleModelLoader 加载 RealESRGAN_x4.pth 用于放大等步骤。 工作流相关网站: Openart.ai:流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元套餐后每月有 5000 积分。 ComfyWorkflows 网站:支持在线运行工作流,实际下载量和访问量略少于 openart。 Flowt.ai:https://flowt.ai/community 提示词自动生成 ComfyUI 工作流:英伟达整了个花活,通过画图提示词自动生成匹配的 ComfyUI 工作流,命名为 ComfyGen(comfy 生成器),目前仅支持文生图模型。英伟达称其可以生成高质量的图并泛化到其他领域,做了对比测试,效果基本一致甚至更符合人类对提示词的判断和理解,与 C 站上人类写的提示词对比效果略胜一筹,但项目未开源。
2025-01-09
workflow使用指南
使用工作流的指南如下: 1. 创建工作流。 2. 配置工作流: 通过拖拽的方式将节点添加到画布内,并按照任务执行顺序连接节点。 工作流提供了基础节点供使用,还可以添加插件节点来执行特定任务。具体操作如下: 在左侧面板中选择要使用的节点。 将节点拖拽到画布中,并与其他节点相连接。 配置节点的输入输出参数。 3. 测试并发布工作流。 4. 在 Bot 内使用工作流: 前往当前团队的 Bots 页面,选择进入指定 Bot。 在 Bots 编排页面的工作流区域,单击右侧的加号图标。 在添加工作流对话框,在“我创建的”页面选择自建的工作流。 在 Bot 的人设与回复逻辑区域,引用工作流的名称来调用工作流。
2024-09-23
How Al Agentic workflows could drive more Al progress than even the next generation of foundation models
以下是关于您提出的“ How Al Agentic workflows could drive more Al progress than even the next generation of foundation models ”问题的相关信息: 吴恩达认为人工智能代理工作流程将在今年推动人工智能的巨大进步,甚至可能超过下一代基础模型。构建代理的设计模式框架包括反思、工具使用、规划和多代理协作。反思是指 LLMs 审视自身工作并提出改进方法;工具使用是指赋予 LLMs 如网络搜索、代码执行等工具以帮助其收集信息、采取行动或处理数据;规划是指 LLMs 制定并执行多步骤计划以实现目标;多代理协作则涉及多个 AI 代理共同工作,通过分工、讨论和辩论来提出比单个代理更好的解决方案。这些设计模式为构建高效的 AI 代理提供了指导,并将在下周进一步详细阐述并提供相关阅读建议。 此外,在医疗保健领域,为了产生真正的改变,AI 需要像我们一样学习。必须让这些专家 AI 接触到顶级从业人员的多样化视角,以避免复制危险的偏见。鉴于人工智能依赖的神经网络基础,这些专家 AI 可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。 在 AI 进化方面,CNN 的结构基于两类细胞的级联模型,主要用于模式识别任务,在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步。
2024-09-02
agentic workflow 是什么?
Agentic Workflow 是指通过学会调用外部不同类型的 API 来获取模型中缺少的额外信息、代码执行能力、访问专有信息源等。它将一个复杂的任务分解成较小的步骤,融入更多人类参与到流程中的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,在不同模式下,人与 AI 的协作流程有所差异。 Agentic Workflow 可以使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如,作为产品经理,可通过 Agents 将任务拆解为多个独立任务,遵循不同工作流生成大体符合期望的输出结果,再进行修改。 吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色相互协作开发应用或复杂程序。AI Agent 基本框架包括“Agent = LLM + 规划 + 记忆 + 工具使用”,其中 LLM 扮演“大脑”,规划包括子目标分解、反思与改进,记忆分为短期记忆和长期记忆,工具用于处理各种任务。
2024-08-30
Agentic Workflow是什么意思
Agentic Workflow 指的是一种在生成式 AI 的人机协同中,通过不同模式(如 Embedding、Copilot、Agent)下的角色协作流程来完成任务的方式。 在 Agent 模式中,AI 完成大多数工作。它使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作。例如,作为产品经理,可将产品功能设计任务拆解为多个独立任务,遵循不同工作流,生成初步结果后再修改。 Agentic Workflow 还通过学会调用外部不同类型 API 来获取模型缺少的额外信息等。其动作的决策需要根据大模型结合问句、上下文规划、各类工具来确定。 从提升效率、提高质量、节省时间的角度思考,Agentic Workflow 可以将复杂任务分解成较小步骤,融入更多人类参与的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。AI Agent 的基本框架包括“LLM +规划+记忆+工具使用”,其中 LLM 扮演“大脑”,规划包括子目标分解、反思与改进,记忆分为短期和长期,工具用于辅助完成任务。
2024-08-30
Agentic Workflow是什么
Agentic Workflow 是一种基于 AI 的工作流管理方式,它可以帮助人们更高效地完成各种任务。以下是关于 Agentic Workflow 的一些介绍: 1. 专家代理:Agentic Workflow 中的专家代理是指具有特定领域和工具专长的 AI 模型,它们能够以步骤化、理性的方式帮助用户达成目标。 2. 工作流程:Agentic Workflow 的工作流程通常包括收集信息、初始化专家代理、持续支持用户直到目标完成等步骤。 3. Tool Use:Tool Use 是指 Agent 通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。 4. Planning:Agent 通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。 5. Multiagent Collaboration:通过学会调用外部不同类型 API 来获取模型(通常在预训练后很难修改)中缺少的额外信息,代码执行能力,访问专有信息源等(例如获取此时此刻的天气、联网网搜索等)。 6. Action(动作):根据上述大模型结合问句(Query)、上下文的规划(Context)、各类工具,最终大模型才能决策出最终需要执行的动作是什么。 7. Productivity(效率):Agentic Workflow 通过将一个复杂的任务分解成较小的步骤,在整个过程中中融入了更多人类参与到流程中的规划与定义。它减少了对 Prompt Engineering 和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,更丰富、更精确。 总的来说,Agentic Workflow 是一种将 AI 技术应用于工作流管理的方式,它可以帮助人们更高效地完成各种任务。
2024-05-29
few shot 和 one shot等最初是由什么论文提出的?
Few shot 和 One shot 等概念的相关研究在自然语言处理领域有较多的文献提及。 Zero Shot Prompting(零样本提示):是一种让模型在没有额外训练数据的情况下对之前未见过的数据进行预测的技术。传统机器学习通常需大量标记训练数据来准确预测,而在提示工程中,零样本学习可用于生成自然语言文本,无需显式编程或预定义模板,创造更多样化和动态的文本生成模型,使机器能在训练中没见过某些对象时仍能识别和分类。 One Shot Prompting(一样本提示):通过有限的输入数据(如单个示例或模板)来生成自然语言文本,可与对话管理和上下文建模等自然语言处理技术结合,创造更复杂、有效的文本生成系统。在提示工程中,只需提供有限输入数据,如单个示例或模板,有助于从大型语言模型中创建可预测的输出。 Few Shot Prompting(少样本提示):将少量示例(通常为两到五个)提供给模型,以便快速适应新对象的例子。在提示工程中,少样本学习可用于创建自然语言文本,只需提供有限的输入数据,能创造更灵活和适应性强的文本生成模型。 零样本、一样本和少样本提示的区别在于:零样本提示是模型在没有额外训练的情况下进行预测;一样本提示需要提供一个示例或模板;而少样本提示则需要提供更少的数据,通常是两到五个示例。 这些提示工程技术能提供更灵活和可控的方式从自然语言生成模型中输出文本,充分利用模型强大能力,创造更准确、多样和吸引人的输出,满足应用程序需求。
2025-02-04
RAG相关的 论文
以下是关于 RAG 的相关论文内容: 《大模型 RAG 问答行业最佳案例及微调、推理双阶段实现模式:基于模块化RAG 自定义 RAG Flow》:介绍了从 RAG Flow 的角度的几个行业最佳的 RAG 实践,如 OpenAI 团队在提升 RAG 准确率方面的尝试,包括多种方法的试验,最终通过提示工程、查询扩展等方法达到了 98%的准确率,并强调了模型精调和 RAG 结合使用的潜力。 《开发:产品视角的大模型 RAG 应用》:对 RAG 的技术原理、历史发展、应用方法、应用场景和未来的发展方向进行了完整解读,文本内容源自论文《RetrievalAugmented Generation for Large Language Models:A Survey》。 《RAG 系统开发中的 12 大痛点及解决方案》:受到 Barnett 等人论文《工程化检索增强生成系统时的七大挑战》的启发,探讨了论文中的七个挑战及开发 RAG 系统时遇到的五个常见难题,并深入讨论了这些难题的解决策略。
2025-02-04
想让ai帮助写一篇论文
在论文写作方面,AI 技术的应用能提供多方面的辅助。以下为您介绍一些相关的 AI 工具和利用 AI 写论文、课题的方法: 常用的论文写作 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写论文的方法: 目前大多数人零碎使用 AI 工具,未系统应用到工作场景,可能导致整体效率不高。要形成适合自己的 AI 工作方法论和流程,比如在挑选和切换工具时避免浪费时间。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 请注意,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时要保持批判性思维,确保研究质量和学术诚信。
2025-01-30
如何让ai写一篇很好的文学理论 论文
以下是关于如何让 AI 写一篇好的文学理论论文的相关内容: 首先,过度追求模型的正面描述和对齐人类价值观可能会带来问题。比如在文学创作中,道德过度正确和大量正面描述实际上是一种“对齐税”,会让模型变得愚蠢。像生成的游戏中主人公全是幸福人生,这样的故事缺乏冲突,人物单薄,不好看。而且全乎正确的道德和完美的正面在现实世界中并不存在,纵观文学史,伟大的文学作品几乎没有全是正面描述的,因为人类的心灵与生活极为复杂,痛苦、绝望和悲伤也是生命体验的一部分,只有正面的故事很难获得共鸣。 其次,好的文字能引起人的生理共鸣与情绪。人们在感受到好文字时,往往有一种被击中、头皮发麻的感觉。共鸣是文学的基础,有共鸣才有读者,有读者才有文学。文学映照的是人类相同的渴望与恐惧,人类之间的共性大于差异。对于像 GPT 这样的大语言模型,其预训练数据量大且丰富,储存了人类几乎所有可能的生命经验,理应能够学会引发人类的共鸣与情绪。 最后,在实际操作中,对于处理文本特别是 PDF,Claude 2 表现出色。可以将整本书粘贴到 Claude 的前一版本中取得不错的结果,新模型更强大。但需要注意的是,这些系统仍会产生幻觉,若要确保准确性,需检查其结果。
2025-01-29
ai写论文
在论文写作方面,AI 技术的应用发展迅速,能提供多方面的辅助。以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题可参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选有价值和创新性的主题。 2. 收集背景资料:用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:借助 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,再修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 需注意,AI 工具是辅助,不能替代研究者的专业判断和创造性思维,应保持批判性思维,保证研究质量和学术诚信。 对于担心 AI 削弱孩子思考力的问题,如果用法不对,可能会有负面效果。比如提封闭性问题,孩子用 AI 搜索迅速得到答案结束任务,AI 就像好奇心的毒药;但改成开放性问题或让 AI 帮助提更多拓展思考的问题,好奇心会被激发。AI 辅助写作文也是同理,可让孩子提交与 AI 共同完成作文的聊天记录,要求孩子对 AI 作文点评批改、让其迭代出更好文章,重点关注孩子能否说清作文好坏及如何修改。
2025-01-25
ai写论文
在论文写作方面,AI 技术的应用发展迅速,能提供多方面的辅助,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题可参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选有价值和创新性的主题。 2. 收集背景资料:用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 需注意,AI 工具是辅助,不能替代研究者的专业判断和创造性思维,应保持批判性思维,保证研究质量和学术诚信。 对于担心 AI 削弱孩子思考力的问题,如果用法不对,可能会有负面效果。比如提封闭性问题,孩子用 AI 搜索迅速得到答案结束任务,AI 就像好奇心的毒药;但改成开放性问题或让 AI 帮助提更多拓展思考的问题,好奇心会被激发。AI 辅助写作文也是同理,可让孩子提交与 AI 共同完成作文的聊天记录,要求孩子对 AI 作文点评批改、让其迭代更好的文章,重点关注孩子能否说清作文好坏及如何修改。
2025-01-25
现在都有那些著名的类似CHATGPT的,请说出来10个。
以下是 10 个类似 ChatGPT 的著名产品: 1. CharacterAI:规模约为 ChatGPT 的 21%,在移动领域表现强劲,DAU 可与 ChatGPT 媲美,留存率更高。 2. Google 的 Bard:位列前 5 名。 3. Quora 的 Poe:位列前 5 名。 4. Midjourney:内容生成工具。 5. ElevenLabs:内容生成工具。 6. Civitai:模型中心,用于图像,排名前 10。 7. Hugging Face:模型中心,排名前 10。 8. GPT3:是 ChatGPT 背后模型的前身。 9. GPT3.5:在 2023 年 3 月升级为 GPT4 之前,驱动了 ChatGPT。 10. GPT4
2025-01-16
国外最著名的10个AI,可免费使用的
以下是国外 10 个可免费使用的著名 AI: 1. Langfuse:大模型应用的开源追踪和分析工具,提供开源可观测性和分析功能,可在可视化界面中探索和调试复杂的日志和追踪,使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。 2. Eden AI:将顶尖 AI API 融合为一,能为每项 AI 任务选择正确的 AI API 来提高准确性和降低成本,集中管理使用限制和成本监测,并不断探索市场上新兴的 AI 能力。 3. Langdock:能在几分钟内创建、部署、测试和监控 ChatGPT 插件,将 API 连接到 Langdock,并将其作为插件部署到所有大模型应用中,然后使用内置的测试功能来确保一切按预期工作,并在插件扩展时进行监控。 4. LLM Spark:用于构建生产就绪大模型应用的开发平台。 5. Civitai:开源生成式人工智能的家园,提供模型托管、图像/视频生成和模型训练服务,已发展成为一个拥有 650 万月活跃成员的社区。 6. KLING AI:下一代一站式人工智能创作平台,拥有强大的人工智能图像和视频生成能力,通过提示和图像激发创造力,制作出完美模拟现实世界的图像和视频,具有先进的文本理解能力、精细的细节处理和多种风格。 7. Viggle:允许用户通过 3D 视频基础模型 JST 指定角色的动作,创作者、品牌和电影制作人可以轻松地替换角色、复制动作并将他们的想法变为现实。 8. Hailuo Video by MiniMax:强大的人工智能驱动的视频生成引擎,能将简单文本转换为生动、专业品质的视频,将静态图像转换为动态视觉故事。 9. Hedra:开创性的视频基础模型公司,正在构建一个能够实现控制、情感和创造性智能的全栈创作工作室。 10. Bing:在写东西方面是最佳免费选项之一。 11. Claude 2:在写东西方面是免费选项之一。
2024-12-31
国外最著名的5个AI
国外著名的 AI 包括以下几个: 1. OpenAI 开发的 ChatGPT,具备强大的推理能力,能够根据上下文和文件提供详细分析和意见。 2. Stability AI 发布的 Stable Video Diffusion,是第一个能够从文本提示生成高质量、真实视频的模型之一,在定制化方面有显著进步。 3. OpenAI 的 Sora,能够生成长达一分钟的视频,同时保持三维一致性、物体持久性和高分辨率。 4. Google DeepMind 的 Veo,能将文本和可选图像提示与嘈杂压缩视频输入相结合,创建独特的压缩视频表示。 5. Rockset,刚被 OpenAI 收购,提供实时搜索和分析数据库服务。
2024-12-31
有哪些著名的AI咨询公司?提供方案解决的那种
以下是一些著名的提供方案解决的 AI 咨询公司及相关信息: 在 AI 心理咨询产品方面,有 Woebot、Replika、Talkspace、Wysa、Moodfit、Youper 等。Woebot 是基于聊天机器人的心理健康平台,使用认知行为疗法原理引导用户。Replika 是 AI 驱动的个人朋友,提供情感支持和指导。Talkspace 是在线心理咨询平台,使用 AI 技术匹配咨询师。Wysa 提供情绪管理和心理健康支持。Moodfit 分析用户情绪模式并提供建议。Youper 结合 AI 和虚拟现实改善心理健康。但对于严重心理问题仍需专业帮助,且应作为传统咨询的补充。 在其他 AI 应用方面,如 14 号的小红书穿搭推荐,是 AI 时尚穿搭建议平台,利用图像识别和数据分析,根据用户身材和风格提供穿搭建议。15 号的蚂蚁财富智能理财助手,通过数据分析和机器学习为用户提供专业投资建议。16 号的法信智能法律咨询,运用自然语言处理和知识图谱解答法律问题。17 号的慧植农当家等是 AI 农业病虫害识别系统,借助图像识别和机器学习帮助农民识别病虫害。18 号的小米智能家居系统,基于物联网技术和机器学习实现家居设备智能化控制。19 号的文案狗等是 AI 广告文案生成工具,通过自然语言处理快速生成吸引人的广告文案。 在生成式 AI 平台的基础设施供应商方面,英伟达是目前该领域最大的幕后赢家,其数据中心 GPU 收入可观,建立了坚固的护城河。同时也有其他供应商,如甲骨文等挑战者,以及一些提供针对大模型开发人员解决方案的初创公司,如 Coreweave 和 Lambda Labs 等。此外还有谷歌张量处理单元(TPU)、AMD Instinct GPU、AWS Inferentia 和 Trainium 芯片,以及来自 Cerebras、Sambanova 和 Graphcore 等初创公司的 AI 加速器,英特尔也带着高端芯片进入市场,但新芯片占据的市场份额有限。
2024-11-13
要生成Soul,Lyrical,Groovy风格的音乐,有哪些可参考的著名女歌手
生成 Soul、Lyrical、Groovy 风格的音乐,可以尝试从爵士名伶 Diana Krall、杰出爵士女歌手 Norah Jones、灵魂乐女歌手 Aretha Franklin 等著名女歌手的作品中获取灵感。 (以上答案可能无法准确回答问题,建议在引用内容里进一步确认)
2024-04-23