直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

常用的结构化提示词框架有哪些?

回答

以下是一些常用的结构化提示词框架:

  1. 基础的结构化编写 Prompt 框架:
    • Role:[请填写你想定义的角色名称]

    • Profile:

      • author:作者
      • version:版本
      • language:中文
      • description:[请简短描述该角色的主要功能,50 字以内]
    • Goals:

      • 1.[请列出该角色的主要目标 1]
      • 2.[请列出该角色的主要目标 2]
    • Constrains:

      • [请列出该角色在互动中必须遵循的限制条件 1]
      • [请列出该角色在互动中必须遵循的限制条件 2]
    • Skills:

      • [为了在限制条件下实现目标,该角色需要拥有的技能 1]
      • [为了在限制条件下实现目标,该角色需要拥有的技能 2]
    • Workflows:

      • 1.[请描述该角色的工作流程的第一步]
      • 2.[请描述该角色的工作流程的第二步]
  2. CRISPE 框架(Capacity and Role,Insight,Statement,Personality,Experiment)
  3. BROKE 框架(Background,Role,Objectives,Key Results,Evolve)
  4. ICIO 框架:
    • Instruction(指令):明确定义 AI 需要执行的任务,遵循简洁明了、具体详细、行动导向、单一任务等原则。
    • Context(背景信息):提供任务的相关背景,包括任务目的、目标受众、相关背景、限制条件、角色扮演等。
    • Input Data(输入数据):为 AI 提供执行任务所需的具体信息或数据。
    • Output Indicator(输出引导):指导 AI 如何构建和呈现输出结果,包括格式要求、语气和风格、长度限制、结构指引、特殊要求、评估标准等。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

小七姐:Prompt 喂饭级系列教程小白学习指南(四)

作者:小七姐可以在以下地址关注她,主页内容更丰富:[小七姐的](https://t.zsxq.com/15KhQ0RE7)[Prompt](https://t.zsxq.com/15KhQ0RE7)[学习社群](https://t.zsxq.com/15KhQ0RE7)在今天的(四)中,我们主要分享:Prompt的结构化什么是结构化Prompt?结构化的思想很普遍,结构化内容也很普遍,我们⽇常写作的⽂章,看到的书籍都在使⽤标题、⼦标题、段落、句⼦等语法结构。结构化Prompt的思想通俗点来说就是像写⽂章⼀样写Prompt。结构化编写Prompt本身算是提示词编写的进阶学习内容,基于我们是面向新手的喂饭级教程,这里只列举一套(极简)基础的结构化编写Prompt的框架,我们可以看到它通过一些特定的标准,将提示词结构为一些固定范式,例如:# Role:[请填写你想定义的角色名称]# Profile:- author:作者- version:版本- language:中文- description:[请简短描述该角色的主要功能,50字以内]## Goals:1.[请列出该角色的主要目标1]2.[请列出该角色的主要目标2]## Constrains:[请列出该角色在互动中必须遵循的限制条件1][请列出该角色在互动中必须遵循的限制条件2]## Skills:[为了在限制条件下实现目标,该角色需要拥有的技能1][为了在限制条件下实现目标,该角色需要拥有的技能2]## Workflows:1.[请描述该角色的工作流程的第一步]2.[请描述该角色的工作流程的第二步]我们看到上述范例中有一些特殊写法和标识:

小七姐:Prompt is not enough

在过去的一年半时间里,我一直在深度探索和使用如何更好的引导大模型生成我们需要的内容,也一直在进行提示词(prompt)系统化教学。这段经历让我对提示词的发展和应用有了深的认识,我的认知也产生了一个重要的转变:[heading3]“从单纯的提示词优化到更加关注人的底层能力的提升。”[heading2](一)提示词探索路径[content]1.OpenAI官方的六项最佳实践最初,我们主要依赖OpenAI官方给出的指导,包括写清晰具体的指令、给模型时间思考、使用分隔符等基本技巧——这些实践为我们使用大模型开了个好头。1.提示词框架随后,各种提示词框架开始出现,如CRISPE(Capacity and Role,Insight,Statement,Personality,Experiment)和BROKE(Background,Role,Objectives,Key Results,Evolve)等。我们是这用这些框架为提示词编写提供一个系统化的方法。1.明确任务目标清晰地定义我们希望大模型完成的任务是至关重要的。这个阶段强调了任务描述的精确性和完整性。1.角色扮演方法探索让大模型扮演特定角色来完成任务的方法。这种方法能够让模型更好地理解上下文并生成更相关的回答。1.结构化提示词使用基于Markdown语法和角色法框架的结构化提示词。这种方法提高了提示词的可读性和组织性,使复杂任务的分解变得更加直观。1.提示词测试和迭代随着实践的深入,开发了一些提示词测试和迭代的方法。这个过程帮助我们不断优化提示词,提高其效果。1.提示词封装为智能体将提示词封装为智能体,这使得复杂任务的处理变得更加模块化和可复用。

安迪:写给职场人的 AI 办公手册——如何与 AI 高效对话

ICIO框架是一种结构化的提示词设计方法,旨在优化与AI模型的交互。该框架由四个关键组成部分构成:Instruction(指令)、Context(背景信息)、Input Data(输入数据)和Output Indicator(输出引导)。Instruction(指令):这是ICIO框架的核心要素,用于明确定义AI需要执行的任务。编写指令时应遵循以下原则:•简洁明了:使用清晰、直接的语言•具体详细:提供足够的细节以避免歧义•行动导向:使用动词开头,如”分析”、“创建”、“评估”等•单一任务:每个指令专注于一个主要任务,避免多任务混淆Context(背景信息):提供任务的相关背景,帮助AI更好地理解和执行任务。背景信息可包括:•任务目的:说明为什么需要执行这个任务•目标受众:指明结果将被谁使用或阅读•相关背景:提供任何有助于理解任务的历史或当前情况•限制条件:说明任何需要考虑的限制或约束•角色扮演:如果需要,指定AI应该扮演的角色Input Data(输入数据):这部分为AI提供执行任务所需的具体信息或数据。可以包括:•事实和统计数据•相关文本或文档•链接或参考资源•图片、音频或视频(如果AI模型支持)注意:并非所有任务都需要输入数据,如果任务不需要特定数据,可以省略此部分。Output Indicator(输出引导):指导AI如何构建和呈现输出结果。这可以包括:•格式要求:如报告、列表、对话、诗歌等•语气和风格:如正式、随意、幽默、专业等•长度限制:指定字数或段落数•结构指引:如需要的章节或部分•特殊要求:如需要包含的具体元素(图表、引用等)•评估标准:说明如何判断输出质量的标准

其他人在问
结构化提示词
结构化提示词是一种像写文章一样编写提示词的方法。其思想较为普遍,日常写作的文章和书籍都常使用标题、子标题、段落、句子等语法结构。 在文生图方面,调整好参数生成图片后,若质感欠佳,可添加标准化提示词,如“,绘图,画笔”等,让画面更趋近于固定标准。 对于新手,有一套极简基础的结构化编写 Prompt 框架,例如: Role: Profile: author:作者 version:版本 language:中文 description: Goals: 1. 2. Constrains: Skills: Workflows: 1. 2. 在提高模型响应精确度方面,改进提示词格式很重要。如在问答和文本分类中,提示词可以通过指令、上下文、输入和输出指示来改进响应结果。越明确的指示,响应越好。包含相关语境和其他要素,提供更多信息和具体指令,能使响应更符合需求。
2024-11-11
GPTs 结构化提示词模板
以下是为您整理的关于 GPTs 结构化提示词模板的相关内容: 简单的提示词模板:最终目标是把需求说清楚。例如,“Act like a ”。 GPTs 教程及案例拆解 开源:一些 GPTs 的 prompt 中,如超强 LOGO 生成器,其使用方法为设计一个 logo 生成工具,允许用户上传多张 logo 图片作为参考,通过提示询问用户是否使用这些图片来创建新的 logo 设计,可自定义提示词风格和设定图片参考权重,利用 GPT4 Vision 的识图能力生成新 logo 设计,若用户不满意则重新生成,创作完后提示用户是否满意,满意则提供转 LOGO 矢量图的链接。 GPTs 教程及案例拆解 精选:GPTs 项目包括 Reviewer2Pal,可帮用户将直白的英文论文回应转换为专业回复;方法论专家 Methodology Expert,辅助用户使用方法论解决相关问题;灵感专家 Brainstorming Expert,辅助用户进行灵感思考和提出发散性角度;自动结构化框架,由小七姐编写,欢迎关注其公众号“AI 中文百科”领取更多好玩的 GPT 工具。
2024-11-07
什么是结构化提示词
结构化提示词是一种提示词构建的方法,由云中江树提出并开源发布。其思想类似于日常写作中使用的文章结构,通俗来说就是像写文章一样写提示词。 例如,小七姐提供了一套极简的基础结构化编写 Prompt 的框架,包括定义角色、描述角色信息(如作者、版本、语言、主要功能)、列出主要目标、限制条件、所需技能以及工作流程等。 在一些领域如舞曲提示词中,也存在特定的结构提示词,如上行进行、预示性歌词、气氛转变等。 LangGPT 提出的结构化提示词已被国内主流大模型智能体平台使用,并发展成为有影响力的学习交流社群。
2024-10-21
如何利用飞书多维表格识别pdf文件中的内容,自动生成结构化数据
飞书多维表格是一款功能强大的在线数据库工具,它能够存储和管理数据,并且通过智能伙伴实现自动化管理选题、任务管理等多种应用场景。要利用飞书多维表格识别PDF文件中的内容并自动生成结构化数据,你可以按照以下步骤操作: 1. 准备PDF文件:确保你有一个包含所需信息的PDF文件。 2. 使用OCR技术:首先,你需要使用光学字符识别(OCR)技术来识别PDF文件中的文字内容。OCR技术可以将PDF中的图像文字转换为可编辑的文本数据。 3. 飞书智能伙伴:飞书提供了智能伙伴功能,可以通过对话的方式帮助用户创建多维表格或解析数据。你可以通过智能伙伴发送指令,让它根据你的要求自动完成一系列的多维表格操作。 4. 解析文本并填入多维表格:在飞书多维表格中,你可以使用智能伙伴的“录入一行记录并拆解到对应字段”的功能,将OCR识别后的文本数据解析并填入到多维表格的对应字段中。 5. 创建和调整多维表格结构:根据解析后的数据,你可以使用智能伙伴的“增加一些字段”或“推荐相关字段”的功能来调整多维表格的结构,确保表格能够准确地反映PDF文件中的信息。 6. 数据整理和验证:在数据被录入多维表格后,你可能需要进行一些手动的整理和验证,以确保数据的准确性和完整性。 7. 利用飞书开放平台:如果需要更高级的自动化和集成,你可以利用飞书开放平台,结合其他工具或服务,例如ChatGPT,来进一步优化数据的识别和处理流程。 请注意,这个过程可能需要一些技术知识和对飞书多维表格功能的熟悉。如果你需要进一步的帮助或定制化的解决方案,可以考虑参与飞书举办的“多维表格开发者日 | AI 专场”活动,以获取更多的信息和支持。
2024-07-05
结构化思维是?
结构化思维是一种将问题或任务分解为多个部分,并按照一定的逻辑顺序进行组织和分析的思维方式。它强调对问题进行系统性的思考,通过拆解问题,找出各个环节之间的关系,从而更深入地理解问题,并找到解决方案。 在使用 AI 工具时,结构化思维也非常重要。例如,在使用 ChatGPT 时,可以通过追问法来提高对话能力。具体来说,可以先问主题、面向和希望的细节,然后针对回复追问差别、步骤、条件或资源,提供可行的做法与选择,并加入风格或其他限制,最后再提供更多元素让它改写。这样可以帮助我们更好地利用 AI 工具,获得更准确、详细的答案。 此外,在使用 AI 工具时,还需要注意一些问题。例如,上下文 token 长度可能会有限制,需要参考分治法来解决。同时,在让 AI 学习现有数据时,需要描述清楚如何总结规律才能总结得好。 总之,结构化思维是一种非常重要的思维方式,可以帮助我们更好地理解问题、解决问题,并提高使用 AI 工具的效果。
2024-07-05
知识库中有哪些关于结构化提示词的文章,请列表显示
以下是知识库中关于结构化提示词的一些文章: 1. 《LangGPT 相关视频 & 活动分享》:介绍了 LangGPT 项目的相关视频和活动,包括结构化 prompt。 2. 《系统论述文章构建高性能 Prompt 之路—结构化 Prompt》:探讨了如何构建高性能的 Prompt,包括结构化 Prompt 的使用。 3. 《提示链 Prompt Chain 和多提示词协同》:介绍了 Prompt Chain 和多提示词协同的概念,以及如何使用它们来提高模型的性能。 4. 《如何构建生产级鲁棒高性能 Prompt》:提供了一些关于如何构建生产级鲁棒高性能 Prompt 的建议。 5. 《提升大模型可靠性的 prompt 方法汇总》:总结了一些提升大模型可靠性的 prompt 方法,包括结构化 Prompt。 6. 《为什么结构化 Prompt 如此有效?》:解释了结构化 Prompt 之所以有效的原因。 7. 《DALLE3 的紧箍咒》:讨论了 DALLE3 模型的限制,以及如何使用结构化 Prompt 来克服这些限制。 这些文章提供了关于结构化提示词的不同方面的信息,包括如何使用它们来提高模型的性能和可靠性,以及如何构建生产级的高性能 Prompt。
2024-05-15
利用 AI 生成培训框架
以下是为您生成的培训框架相关内容: 一、AI 在教育培训中的应用 1. 数字教师 借助大型语言模型,人工智能生成的角色可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。 数字教师可以实现一对一辅导,不受情绪左右,提高学生参与感。 能够根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,提高学习效率和成果,缓解教育资源不平等问题。 2. 数字陪伴 人工智能生成的虚拟角色可以作为孩子的玩伴,来自他人的赞美等社会奖励,促进儿童成长,提高学习成绩。 二、AI 相关技术原理与概念 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词 AI:人工智能。 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习:参照人脑有神经网络和神经元,因有很多层所以叫深度,神经网络可用于多种学习方式。 生成式 AI:可以生成文本、图片、音频、视频等内容形式。 LLM:大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-10-29
我计划编写一本关于生成式人工智能的书籍,但是在开始前,我需要确定一个合适的大纲框架来组织我的思路。这个框架应该包括那些部分,以及如何将各个部分连接起来,以便读者能够理解掌握AIGC的概念和应用
以下是为您编写关于生成式人工智能书籍提供的大纲框架建议: 一、引言 介绍编写本书的目的和背景,引导读者进入生成式人工智能的世界。 二、基础概念 1. 什么是生成式人工智能(AIGC) 定义和特点 与传统人工智能的区别 2. 相关技术名词 AI(人工智能) 机器学习(包括监督学习、无监督学习、强化学习) 深度学习(神经网络、神经元) 生成式 AI(可生成文本、图片、音频、视频等内容形式) LLM(大语言模型) 三、AIGC 的应用领域 1. 文字生成(如使用大型语言模型生成文章、故事、对话等) 2. 图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等) 3. 视频生成(如使用 Runway、KLING 等模型生成动画、短视频等) 四、AIGC 与其他内容生成方式的关系 1. AIGC 与 UGC(用户生成内容) 区别与联系 各自的优势和适用场景 2. AIGC 与 PGC(专业生成内容) 区别与联系 相互的影响和融合 五、技术原理 1. Transformer 模型 自注意力机制 处理序列数据的优势 2. 技术里程碑(如谷歌团队发表的《Attention is All You Need》论文) 六、实际案例分析 展示不同领域中成功的 AIGC 应用案例,分析其实现过程和效果。 七、挑战与展望 1. 面临的挑战(如数据隐私、伦理问题等) 2. 未来发展趋势和前景 八、结论 总结全书重点内容,对 AIGC 的未来发展进行展望。 各个部分之间可以通过逻辑递进、案例引用、对比分析等方式进行连接,使读者能够逐步深入理解掌握 AIGC 的概念和应用。
2024-10-23
什么是LangGPT框架
LangGPT 是由云中江树开发的一款开源提示词框架。它旨在解决传统提示词在系统性、灵活性和用户友好性方面的不足,更好地挖掘和利用大模型的潜力。 随着 GPT4 等新一代模型的发布,提示词的重要性日益凸显,其编写过程逐渐成为 AI 时代的一种编程语言,而 LangGPT 提示词框架就是为了应对高效编写高质量提示词这一需求而研发的。 云中江树早在 2023 年 3 月就提出了结构化构建提示词的方法,并于 5.4 青年节开源发布,很快收藏破千,成为 GitHub 开源社区全球趋势热榜前十项目,还撰写了学术论文开源发表。 LangGPT 提出的结构化提示词已被百度、智谱、字节、华为等国内主流大模型智能体平台使用,当前已发展成为国内最具影响力的高质量提示词工程师学习交流社群。其愿景是让人人都能写出高质量提示词,为大众提供一套可操作、可复现的提示词方法论、工具和交流社群。 使用框架时,可以换着不同的预设角度去描述同样一个物体。例如,去年有人用 LangGPT 的框架,模拟一个能以善解人意的方式讲解任何学科概念的老师进行输出。
2024-10-21
12种Prompt框架
以下是 12 种 Prompt 框架: 1. Key Result(关键结果):说明想要的具体效果,试验并调整。包括改进输入(从答案不足之处着手改进背景、目标与关键结果)、改进答案(在后续对话中指正 ChatGPT 答案缺点)、重新生成(在 Prompt 不变情况下多次生成结果,优中选优)。 2. Evolve(试验并改进):三种改进方法自由组合。 3. APE 框架:未提供具体说明。 4. COAST 框架:未提供具体说明。 5. CONTEXT(上下文背景):为对话设定舞台。 6. OBJECTIVE(目的):描述目标。 7. ACTION(行动):解释所需的动作。 8. SCENARIO(方案):描述场景。 9. TASK(任务):描述任务。 10. ICIO 框架:相关链接 。 11. CRISPE 框架:相关链接 。 12. BROKE 框架:作者陈财猫,相关链接 。 此外还有: 1. 框架集合:右侧附件做成了海报。 2. Instruction(指令):即希望 AI 执行的具体任务,比如翻译或者写一段文字。 3. Context(背景信息):给 AI 更多背景信息引导模型做出更贴合需求的回复。 4. Input Data(输入数据):告知模型需要处理的数据。 5. Output Indicator(输出引导):告知模型要输出的类型或风格。 6. Capacity and Role(能力和角色):ChatGPT 应扮演的角色。 7. Insight(见解):提供请求的背后见解、背景和上下文。 8. Statement(声明):要求 ChatGPT 做什么。 9. Personality(个性):希望 ChatGPT 以何种风格、个性或方式回应。 10. Experiment(实验):请求 ChatGPT 为您回复多个示例。 其他框架: 1. ACTION(行动):描述想做什么。 2. RESULT(结果):描述所需的结果。 3. EXAMPLE(示例):举一个例子来说明观点。 4. ROSES 框架:未提供具体说明。 5. ROLE(角色):指定 ChatGPT 的角色。 6. OBJECTIVE(目的):陈述目标或目标。 7. SCENARIO(方案):描述情况。 8. EXPECTED SOLUTION(解决方案):定义所需的结果。 9. STEPS(步骤):要求达到解决方案所需的措施。 10. RACE 框架:未提供具体说明。 11. PATFU 泡芙提示词框架:作者口袋君。 12. Problem(问题):清晰地表述需要解决的问题。 13. Aera(领域):问题所在领域以及需要扮演的角色。 14. Task(任务):解决问题需要执行的具体任务。
2024-10-21
知识库都有哪些提示词框架
以下是一些常见的提示词框架: ICIO 框架:包括 Instruction(指令)、Context(背景信息)、Input Data(输入数据)、Output Indicator(输出引导)。 CRISPE 框架:涵盖 Capacity and Role(能力和角色)、Insight(见解)、Statement(声明)、Personality(个性)、Experiment(实验)。 BROKE 框架:包含 Background(背景)、Role(角色)、Objectives(目标)、Key Result(关键结果)。 TRACE 框架:有 TASK(任务)、REQUEST(请求)、ACTION(行动)、CONTEXT(上下文)、EXAMPLE(示例)。 ERA 框架:包括 EXPECTATION(期望)、ROLE(角色)、ACTION(行动)。 CARE 框架:由 CONTEXT(上下文)、ACTION(行动)、RESULT(结果)、EXAMPLE(示例)组成。 ROSES 框架:包含 ROLE(角色)、OBJECTIVE(目的)、SCENARIO(方案)。 Evolve 框架:包括试验并改进,通过改进输入、改进答案、重新生成等方法。 APE 框架。 COAST 框架:包含 CONTEXT(上下文背景)、OBJECTIVE(目的)、ACTION(行动)、SCENARIO(方案)、TASK(任务)。 TAG 框架:包括 TASK(任务)、ACTION(行动)、GOAL(目标)。 RISE 框架。
2024-10-17
BORE框架
BORE 框架是由自动驾驶行业的产品经理陈财猫提出的一套 ChatGPT 方法论。 BORE 框架的产生过程如下:陈财猫是 ChatGPT 的第一批用户,最初与 ChatGPT 的交互主要是找乐子,后来发现其在工作中能发挥重要作用,从而形成了这套可操作、可重复的方法论。 BORE 框架中,四个字母分别代表四个单词的首字母: 1. B 代表 Background(背景):阐述任务的宏观背景和微观场景,让 ChatGPT 获得充分信息。 2. O 代表 Objectives(目标):明确任务目标,告知 ChatGPT 需生成的内容。 3. R 代表 key Results(关键结果):列出完成任务所需达成的关键结果,包括具体要求和指标,可根据实际需求定制。 4. E 代表 Evolve(改进):通过试验并调整,灵活组合以下三种改进方法以获得满意答案: 从答案的不足之处着手,更新并迭代 prompt。 在后续对话中指正 ChatGPT 答案缺点。 在 prompt 不变的情况下多次生成结果。 此外,作为产品经理,还可以将 ChatGPT 的能力与外部工具结合,放大其能力,例如为业务画时序图、流程图,用生动的图像和数据分析支撑需求改动,以增加需求通过产品评审会的可能性。 相关文章原文链接:https://mp.weixin.qq.com/s/AGdTBGn9vQrApZwPrAmxtQ
2024-10-16
提示词学习
以下是关于提示词学习的相关内容: 提示词的知识体系: 可分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。 学习 Stable Diffusion 提示词的步骤: 1. 学习基本概念:了解其工作原理、模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 2. 研究官方文档和教程:通读官方文档,研究开发团队和专家的教程与技巧分享。 3. 学习常见术语和范例:熟悉相关领域术语和概念,研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧:学会组合词条精确描述效果,掌握控制生成权重的符号技巧,处理抽象概念等无形事物的描述。 5. 实践和反馈:尝试生成不同风格和主题的图像,对比结果并总结经验,在社区分享请教获取反馈。 6. 创建提示词库:按主题、风格等维度建立,记录成功案例方便复用。 7. 持续跟进前沿:关注最新更新和社区分享,掌握新技术、新范式、新趋势。 学习提示词运用的建议: 1. 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 2. 学习构建技巧:明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例:在领域社区、Github 等资源中研究学习。 4. 实践、迭代、优化:与语言模型互动,根据输出提高提示词质量,尝试变体并分析差异。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究:持续关注最新研究成果和方法论。
2024-11-13
我现在正在使用mid journey生成图片,做漫画,我想知道怎么样写提示词,才能更好的让mid journey生成我需要的图片
以下是关于在 Midjourney 中写提示词以生成所需图片的一些指导: 1. 常规操作: 登录 Discord 网站,打开 MJ 服务器出图。 通过 /imagine 命令,在对话框输入“/imagine”激活指令,然后把提示词粘贴到“prompt”后面,点击发送即可。 想要多少张图片,就要输入多少次提示词,且输入下一次提示词之前,要等待上一张图片生成完毕。 2. 使用插件提效: Autojourney 是电脑浏览器的一个插件,可在浏览器拓展程序中下载安装。 它功能强大,支持批量发送提示词、自动下载图片、自动放大图片、生成提示词等功能,能够提高使用 Midjourney 的效率。 点击浏览器右上角的插件,选择 Autojourney 插件将其激活,将提示词复制到插件中点击发送,提示词会排队进入 MJ 发送程序,自动批量出图。 Autojourney 插件支持一次输入 10 组提示词。 3. Midjourney V6 更新风格参考命令 2.0“sref”: 将“sref”和 URL添加到提示的末尾,以参考风格参考图像的视觉风格创建新图像。 新提示本身没有美学内容,有助于“sref”的执行。 4. Midjourney 最新编辑器更新: 常见问题:提出极其不合适的请求或要求修改非常小的区域,可能无法得到预期结果;在场景中放很小的头部并要求外绘,生成的身体可能会太大。 重纹理化:是一种通过使用另一张图像来引导图像结构或构图的方法,从构图引导图像开始,然后使用提示词和参数添加所需细节。 右侧显示的缩略图:显示器右侧的缩略图显示最近几次编辑会话的记录,左边稍大的缩略图是上传或链接的母图像,其他四张是子图像,展示根据提示生成的不同表达方式。 “View All /查看全部”按钮:每次在不改变选择区域的情况下对母图像进行编辑时,会生成新的缩略图行,更改提示词,新提示词对应的图像会显示在子图像中。
2024-11-13
如何学习提示词
学习提示词可以参考以下步骤和方法: 1. 基础概念学习 了解相关模型(如 Stable Diffusion)的工作原理和架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方资料 通读官方文档,了解提示词相关指南。 研究开发团队和专家的教程、技巧分享。 3. 学习常见术语和范例 熟悉相关领域(如 UI、艺术、摄影)的专业术语和概念。 研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧 学会组合多个词条精确描述想要的效果。 掌握使用特定符号(如“()”、“”)控制生成权重。 学会处理抽象概念、情感等无形事物的描述。 5. 实践与反馈 用不同提示词生成各种风格和主题的图像。 对比结果,分析原因,总结经验。 在社区分享,请教高手获取反馈建议。 6. 创建提示词库 按主题、风格等维度建立自己的词库。 记录成功案例和总结,方便复用。 7. 持续跟进前沿 关注模型的最新更新和社区动态。 掌握提示词的新技术、新范式、新趋势。 此外,还需注意: 1. 理解提示词的作用,它为模型提供上下文和指示,影响输出质量。 2. 学习构建技巧,明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例,可在领域社区、Github 等资源中寻找。 4. 多实践、迭代、优化,尝试变体并分析输出差异。 5. 活用提示工程工具,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究,提示工程是前沿领域,持续关注最新成果和方法论。 精心设计的提示词能最大程度发挥语言模型的潜力,多实践、多学习、多总结才能掌握窍门。
2024-11-13
如何学习提示词
学习提示词可以按照以下步骤和方法进行: 1. 基本概念的学习: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,提示词在现代大型语言模型中极其重要,掌握其运用技巧能最大限度发挥模型潜能。具体包括: 1. 理解提示词的作用:提示词向模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧:明确任务目标,用简洁准确的语言描述;给予足够背景信息和示例,帮助模型理解语境;使用清晰指令,如“解释”“总结”“创作”等;对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:目前已有一些提示工程工具可供使用。 6. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新研究成果和方法论。 提示词是给大语言模型的输入文本,用于指定模型执行任务和生成输出,发挥“提示”模型的作用。设计高质量提示词需根据目标任务和模型能力精心设计。学习提示词需要先了解大模型特性,具备清晰表述需求和任务的能力。
2024-11-13
suno提示词怎么写
以下是关于 Suno 提示词的写法: 在创作“离谱村”时,先收到台词素材和配音,构思出“童趣”“欢乐”等词,让 AJ 提出活泼、离谱搞笑的方向。然后把台词和想到的形容词投喂给 GPT4 生成音乐脚本,再将脚本输入给 SunoBeats 生成提示词。但最初生成的提示词太长,之后参考论坛网友分享的格式,即通过调式变化加上情节描述,使用和弦进展推动故事情节发展,让 SunoBeats 模仿这种格式生成提示词,测试发现这种格式的提示词质量更好、利用率更高。 推荐的写法可参考详细教程,如。 Suno 创作音乐的小技巧:如果想参考现有歌曲的节奏,可以在(引子)来更好地告诉 AI 这段歌词应该怎么唱。
2024-11-13
给图片写提示词
以下是关于给图片写提示词的相关内容: 在 SD 文生图中,提示词的一些规则如下: 括号和“:1.2”等用于增加权重,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。 反向提示词可以告诉 AI 不要的内容,例如:NSFw,等。 描述逻辑通常包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 可以利用一些辅助网站来写提示词,如 http://www.atoolbox.net/ ,通过选项卡方式快速填写关键词信息;https://ai.dawnmark.cn/ ,每种参数有缩略图参考;还可以在 C 站(https://civitai.com/)抄作业,复制图的参数粘贴到正向提示词栏。但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同。也可以选取部分好的描述词,如人物描写、背景描述、小元素或画面质感等。 给自己做卡通头像时的提示词操作: 在聊天窗口输入/imainge 找到/imagine prompt,放入链接,加提示词,以英文逗号分隔,再加上设置参数。 设置参数包括:“iw 1.5”设置参考图片的权重,数值越高与参考图片越接近,默认 0.5,最大 2;“s 500”设置风格强度,数字越大越有创造力和想象力,可设 0 1000 间任意整数;“v 5”指用 midjourney 的第 5 代版本,需订阅付费,不想付费可用“v 4”;“no glasses”指不戴眼镜。 例如完整提示词:simple avatar,Disney boy,3d rendering,iw 1.5 s 500 v 5 。若不满意可调整“s”和“iw”的值多次尝试。
2024-11-13
请根据提供的AI工具网址,搜索常用的AI工具,实际操作AI工具,记录使用过程中的感受和发现,提交一份体验报告,描述工具的使用过程和个人感受,并就AI相关的热点话题,AI伦理、AI与就业等简要发表自己的看法。
以下是一份关于常用 AI 工具的体验报告: 一、AI 工具使用过程和感受 1. 超级简历优化助手 使用过程:用户上传简历,工具分析内容并提供优化建议。 个人感受:对于求职者来说,能够针对性地提升简历质量,提高求职成功率,操作简单易懂。 2. 酷家乐等设计软件 使用过程:用户上传户型图,软件通过 AI 生成多种室内设计方案。 个人感受:为室内设计提供了便捷和丰富的创意,节省了设计时间和精力。 3. Amper Music 使用过程:用户提出需求,工具生成旋律和编曲。 个人感受:对音乐创作者有很大的辅助作用,激发创作灵感。 4. 松果倾诉智能助手 使用过程:通过文字或语音与用户交流,提供情感咨询。 个人感受:在情感支持方面提供了及时的帮助和建议。 5. 小佩宠物智能设备 使用过程:实时监测宠物的活动、饮食等状况,提供健康预警。 个人感受:让宠物主人能更方便地关注宠物健康。 6. 马蜂窝智能行程规划 使用过程:根据用户输入的目的地、时间等因素定制旅游路线。 个人感受:为旅行规划提供了个性化的方案,节省了规划时间。 7. 作业帮智能辅导 使用过程:根据学生的学习情况提供针对性的学习方案。 个人感受:有助于学生获得更贴合自身需求的学习辅导。 8. AI 游戏道具推荐系统 使用过程:在游戏中分析玩家风格和进度,推荐合适道具。 个人感受:提升了游戏体验,使玩家能更有效地获取所需道具。 9. AI 天气预报分时服务 使用过程:利用彩云天气提供每小时的天气预报。 个人感受:为出行和活动安排提供了更精准的参考。 10. AI 医疗病历分析平台 使用过程:分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 个人感受:有助于提高医疗诊断的准确性和效率。 11. AI 会议发言总结工具 使用过程:在会议中自动总结发言者的主要观点和重点内容。 个人感受:方便会议记录和回顾,提高工作效率。 12. AI 书法作品临摹辅助工具 使用过程:识别书法作品的笔画和结构,为用户提供临摹指导和评价。 个人感受:对书法爱好者的临摹学习有一定的帮助。 二、关于 AI 相关热点话题的看法 1. AI 伦理 随着 AI 技术的广泛应用,数据隐私、算法偏见等伦理问题日益凸显。需要建立健全的法律法规和伦理准则,确保 AI 的发展符合人类的价值观和利益。 2. AI 与就业 AI 的发展可能会导致一些传统岗位的减少,但同时也会创造新的就业机会,如 AI 开发、维护和管理等。重要的是通过教育和培训,提升劳动者的技能,以适应新的就业需求。 三、健身的 AI 产品 1. Keep:中国最大的健身平台,提供全面的健身解决方案,帮助用户实现健身目标。 2. Fiture:沸彻魔镜集硬件、丰富课程内容、明星教练和社区于一体。 3. Fitness AI:利用人工智能进行锻炼,增强力量和速度。 4. Planfit:健身房家庭训练与 AI 健身计划,AI 教练使用大量文本数据和 ChatGPT 实时提供指导。
2024-11-11
最常用的免费图片修改AI软件是哪些
以下是一些常用的免费图片修改 AI 软件: 1. AVAide Watermark Remover:在线工具,使用 AI 技术去除图片水印,支持多种图片格式,操作简单,还提供去除文本、对象等功能。 2. Vmake:可上传最多 10 张图片,AI 自动检测并移除水印,适合快速去除水印及社交媒体分享图片的用户。 3. AI 改图神器:提供 AI 智能图片修复去水印功能,支持粘贴或上传手机图像,操作简便。 在图像生成方面,以下是一些相关工具: 1. 最透明的选项:Adobe Firefly(https://www.adobe.com/sensei/generativeai/firefly.html) 2. 开源选项:Stable Diffusion(https://stablediffusionui.github.io/) 3. 最佳免费选项:Bing 或 Bing Image Creator(https://www.bing.com/images/create)(使用 DALLE),Playgound(https://playgroundai.com/)(允许使用多个模型) 4. 最佳质量图像:MidJourney(https://midjourney.com/) 以下是一些 AI 视频软件: 1. Runway:https://runwayml.com ,有网页和 app 方便。 2. haiper:https://app.haiper.ai/ ,免费。 3. SVD:https://stablevideo.com/ ,有免费额度,对景观效果较好。 4. Pika:https://pika.art/ ,收费,可控性强,可对嘴型、配音。 5. PixVerse:https://pixverse.ai/ ,免费,人少不排队,有换脸功能。 6. Dreamina:https://dreamina.jianying.com/ ,剪映旗下,生成 3 秒,动作幅度升级,有最新模型。 7. Morph Studio:https://app.morphstudio.com/ ,还在内测。 8. Heygen:https://www.heygen.com/ ,数字人/对口型。 9. Kaiber:https://kaiber.ai/ 10. Moonvalley:https://moonvalley.ai/ 11. Mootion:https://discord.gg/AapmuVJqxx ,3D 人物动作转视频。 12. 美图旗下:https://www.miraclevision.com/ 13. Neverends:https://neverends.life/create ,2 次免费体验,操作傻瓜。 14. SD:Animatediff SVD deforum ,免费,需自己部署。 15. Leiapix:https://www.leiapix.com/ ,免费,可把照片转动态。 16. Krea:https://www.krea.ai/ ,12 月 13 日免费公测。
2024-11-04
常用的prompt的自动化词条组合有哪些?
以下是一些常用的 prompt 自动化词条组合: 1. 情境:这是一个基础的提示词框架,可作为入手选择。 2. 对于 Dynamic Prompts 插件,魔法提示词能自动生成补充,如勾选魔法提示词并设置相关参数,包括创意度、模型选择等。以 MagicPrompt 模型为例,能根据输入的关键词生成丰富的补充内容。 3. 在 Prompt 的基础篇中,每个单独的提示词叫 tag(关键词),支持英语及 emoji 。语法规则包括用英文半角逗号分隔 tag ,改变 tag 权重有两种写法,还能进行 tag 的步数控制。 如果您觉得这些例子过于复杂,可结合自身生活或工作场景,如自动给班级孩子起昵称、排版微信群运营文案、安排减脂餐、列学习计划、设计商务会议调研问卷等,来思考能帮助简单自动化的场景。
2024-10-18
你好,文字生图,常用格式有哪些
文字生图常用格式包括以下方面: 对于文字生成视频: Pika:擅长动画制作,支持视频编辑。 SVD:可作为 Stable Diffusion 的插件,在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:能将原视频转换成各种风格的视频。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看: 对于 Stable Diffusion 文生图的提示词: 分为内容型提示词和标准化提示词,内容型提示词主要描述想要的画面。例如:1 个女孩,黑发,长发,校服,向上看,短袖,粉红色的花,户外,白天,蓝色的天空,云,阳光,上身,侧面(使用翻译软件翻译成英文)。 采样迭代步数通常控制在 20 40 之间,步数越高绘画越清晰,但速度越慢。 采样方法常用的有:Euler a;DPM++2S a Karras;DPM++2M Karras;DPM++ SDE Karras;DDIM。有的模型会有指定算法,搭配效果更好。 比例设置为 800:400,注意尺寸并非越大越好,模型练图通常基于 512x512 的框架,高宽比尽量接近此数值。
2024-10-17
常用ai语音工具
以下为您推荐一些常用的 AI 语音工具: 在线 TTS 工具: Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质的音频,高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 Speechify:https://speechify.com/ ,人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供自定义的语音模型。 Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型。 适合 4 岁儿童练习英语口语的工具: LingoDeer:https://www.lingodeer.com/ ,通过游戏和互动活动教孩子英语,提供各种课程,还有家长仪表板可跟踪孩子进度。 Busuu:https://www.busuu.com/ ,提供英语等多种语言课程,使用多种教学方法,还有社区功能可与其他孩子练习口语。 Memrise:https://www.memrise.com/ ,使用抽认卡和游戏教孩子英语,提供多种课程,还有社交功能。 Rosetta Stone:https://www.rosettastone.com/ ,使用沉浸式方法教孩子英语,具有语音识别功能帮助练习发音。 Duolingo:https://www.duolingo.com/ ,免费的语言学习应用,使用游戏化方法让学习有趣。 对于想求职外企提升练习口语的工具,至少推荐三个: Speak:这是一款 AI 英语学习 APP,利用先进的 AI 语言学习技术,提供全面实时反馈,方便随时随地练习口语。 Duolingo:提供游戏化学习平台,通过 AI 辅助教学,帮助学习新词汇和短语,有口语练习功能。 Call Annie:可以通过视频或语音进行英语对话,在发音过程中能根据发言调整表情和动作,仿佛与真人对话。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-08
目前有几个常用的大语言模型产品
目前常用的大语言模型产品包括: OpenAI 的 GPT4,在多种任务上表现卓越,如文本生成、理解、翻译及专业和创意写作等。 Anthropic 公司的 Claude 3。 谷歌的 Gemini。 百度的文心一言。 阿里巴巴的通义大模型。 在大语言模型提供商方面: 最常用的提供商中,OpenAI 位居首位,AzureOpenAI 紧随其后。 其他提供专有模型的托管服务包括 Anthropic(第 3 名)、Vertex AI(第 4 名)和 Amazon Bedrock(第 8 名)。 在开源模型方面,常用的本地运行选项包括 Hugging Face、LlamaCpp、Ollama 和 GPT4All。提供开源模型 API 访问的提供商中,Fireworks AI 居首,其次是 Replicate、Together 和 Anyscale。 此外,Llama2 70B 模型是 Llama 系列语言模型的第二代产品,拥有 700 亿个参数,可能是目前最强大的开源权重模型。
2024-10-04