Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

结构化提示词

Answer

结构化提示词是一种像写文章一样编写提示词的方法。其思想较为普遍,日常写作的文章和书籍都常使用标题、子标题、段落、句子等语法结构。

在文生图方面,调整好参数生成图片后,若质感欠佳,可添加标准化提示词,如“(杰作:1.2),最好的质量,杰作,高分辨率,原创,非常详细的壁纸,完美,照明,(非常详细的 CG:1.2),绘图,画笔”等,让画面更趋近于固定标准。

对于新手,有一套极简基础的结构化编写 Prompt 框架,例如:

Role:[请填写你想定义的角色名称]

Profile:

  • author:作者
  • version:版本
  • language:中文
  • description:[请简短描述该角色的主要功能,50 字以内]

Goals:

1.[请列出该角色的主要目标 1] 2.[请列出该角色的主要目标 2]

Constrains:

[请列出该角色在互动中必须遵循的限制条件 1] [请列出该角色在互动中必须遵循的限制条件 2]

Skills:

[为了在限制条件下实现目标,该角色需要拥有的技能 1] [为了在限制条件下实现目标,该角色需要拥有的技能 2]

Workflows:

1.[请描述该角色的工作流程的第一步] 2.[请描述该角色的工作流程的第二步]

在提高模型响应精确度方面,改进提示词格式很重要。如在问答和文本分类中,提示词可以通过指令、上下文、输入和输出指示来改进响应结果。越明确的指示,响应越好。包含相关语境和其他要素,提供更多信息和具体指令,能使响应更符合需求。

Content generated by AI large model, please carefully verify (powered by aily)

References

【SD】文生图怎么写提示词

调整好参数后,我们就可以生成一幅图片了。可以看到画面内容基本和我们的描述相同,但是在质感方面还少了一些味道。这时就需要用到我们的第二类关键词:标准化提示词。它能让画面更趋近于某个固定的标准。比如我们添加如下关键词:(杰作:1.2),最好的质量,杰作,高分辨率,原创,非常详细的壁纸,完美,照明,(非常详细的CG:1.2),绘图,画笔。

小七姐:Prompt 喂饭级系列教程小白学习指南(四)

作者:小七姐可以在以下地址关注她,主页内容更丰富:[小七姐的](https://t.zsxq.com/15KhQ0RE7)[Prompt](https://t.zsxq.com/15KhQ0RE7)[学习社群](https://t.zsxq.com/15KhQ0RE7)在今天的(四)中,我们主要分享:Prompt的结构化什么是结构化Prompt?结构化的思想很普遍,结构化内容也很普遍,我们⽇常写作的⽂章,看到的书籍都在使⽤标题、⼦标题、段落、句⼦等语法结构。结构化Prompt的思想通俗点来说就是像写⽂章⼀样写Prompt。结构化编写Prompt本身算是提示词编写的进阶学习内容,基于我们是面向新手的喂饭级教程,这里只列举一套(极简)基础的结构化编写Prompt的框架,我们可以看到它通过一些特定的标准,将提示词结构为一些固定范式,例如:# Role:[请填写你想定义的角色名称]# Profile:- author:作者- version:版本- language:中文- description:[请简短描述该角色的主要功能,50字以内]## Goals:1.[请列出该角色的主要目标1]2.[请列出该角色的主要目标2]## Constrains:[请列出该角色在互动中必须遵循的限制条件1][请列出该角色在互动中必须遵循的限制条件2]## Skills:[为了在限制条件下实现目标,该角色需要拥有的技能1][为了在限制条件下实现目标,该角色需要拥有的技能2]## Workflows:1.[请描述该角色的工作流程的第一步]2.[请描述该角色的工作流程的第二步]我们看到上述范例中有一些特殊写法和标识:

提示词示例

提高模型响应精确度的最佳方法之一是改进提示词的格式。如前所述,提示词可以通过指令、上下文、输入和输出指示以改进响应结果。虽然这些要素不是必需的,但如果您的指示越明确,响应的结果就会越好。以下示例可以说明结构化提示词的重要性。提示词输出结果语境参考至[Nature(opens in a new tab)](https://www.nature.com/articles/d41586-023-00400-x)。[heading2]文本分类[content]目前,我们已经会使用简单的指令来执行任务。作为提示工程师,您需要提供更好的指令。此外,您也会发现,对于更复杂的使用场景,仅提供指令是远远不够的。所以,您需要思考如何在提示词中包含相关语境和其他不同要素。同样,你还可以提供其他的信息,如输入数据和示例。可以通过以下示例体验文本分类:提示词输出结果我们给出了对文本进行分类的指令,语言模型做出了正确响应,判断文本类型为'Neutral'。如果我们想要语言模型以指定格式做出响应,比如,我们想要它返回neutral而不是Neutral,那我们要如何做呢?我们有多种方法可以实现这一点。此例中,我们主要是关注绝对特性,因此,我们提示词中包含的信息越多,响应结果就会越好。我们可以使用以下示例来校正响应结果:提示词输出结果完美!这次模型返回了neutral,这正是我们想要的特定标签。提示词中的示例使得模型可以给出更具体的响应。有时给出具体的指令十分重要,可以通过以下示例感受这一点:提示词输出结果这时候你知道给出具体指令的重要性了吧?

Others are asking
请给我一份李继刚的结构化的prompt方法论
李继刚的结构化的 prompt 方法论如下: 如何写好 Prompt:结构化 结构化:对信息进行组织,使其遵循特定的模式和规则,从而方便有效理解信息。 语法:支持 Markdown 语法、YAML 语法,甚至纯文本手动敲空格和回车都可以。 结构:结构中的信息可根据自己需要进行增减,常用模块包括: Role:<name>,指定角色会让 GPT 聚焦在对应领域进行信息输出。 Profile author/version/description:Credit 和迭代版本记录。 Goals:一句话描述 Prompt 目标,让 GPT Attention 聚焦起来。 Constrains:描述限制条件,帮 GPT 进行剪枝,减少不必要分支的计算。 Skills:描述技能项,强化对应领域的信息权重。 Workflow:重点中的重点,希望 Prompt 按什么方式来对话和输出。 Initialization:冷启动时的对白,强调需注意重点。 示例 贡献者:李继刚,Sailor,田彬玏,Kyle😜,小七姐等群友。 李继刚的。 每个角色都有版本迭代,标注版本号,争取每个都更新到最新的版本。 李继刚写了上百个这种 Prompt,有具体场景需求可评论留言,作者可帮忙写定制的,也可自己用这种结构化的方式写。 使用方法:开一个 new chat,点代码块右上角的复制,发送到 chat 聊天框即可,里面的描述可按自己需求修改。 思路来源:云中江树的框架: 方法论总结: 建议用文心一言/讯飞星火等国内大模型试试,有这些 prompt 的加持,效果不错。
2024-12-17
将活动主题拆解为大量结构化提示词,用于文生视频
以下是将活动主题拆解为大量结构化提示词用于文生视频的相关内容: 技巧 1:提示词的结构 当提示词有清晰的结构时,提示效果最有效。可使用简单公式:。 例如:无结构提示词“小男孩喝咖啡”,有结构的提示词“摄影机平移(镜头移动),一个小男孩坐在公园的长椅上(主体描述),手里拿着一杯热气腾腾的咖啡(主体动作)。他穿着一件蓝色的衬衫,看起来很愉快(主体细节描述),背景是绿树成荫的公园,阳光透过树叶洒在男孩身上(所处环境描述)”。 技巧 2:提示词的优化 有三个原则: 1. 强调关键信息:在提示的不同部分重复或强化关键词有助于提高输出的一致性。 2. 聚焦出现内容:尽量让提示集中在场景中应该出现的内容上。 3. 规避负面效果:在提示词中写明不需要的效果。 写提示词时,首先要明确场景中的人物和冲突,其次是对场景进行详细描述,包括地点、人物形象、任务动作等细节,使用生动的动词营造动态和戏剧化氛围,第三要加强镜头语言,如推、拉、摇、移、升、降等,每种镜头运动都有其特定作用和效果。 PixelDance V1.4 提示词指南 图生视频的基础提示词结构为:主体+运动。当主体有突出特征时可加上,需基于输入图片内容写,明确写出主体及想做的动作或运镜,提示词不要与图片内容/基础参数存在事实矛盾。
2024-12-09
常用的结构化提示词框架有哪些?
以下是一些常用的结构化提示词框架: 1. 基础的结构化编写 Prompt 框架: Role: Profile: author:作者 version:版本 language:中文 description: Goals: 1. 2. Constrains: Skills: Workflows: 1. 2. 2. CRISPE 框架(Capacity and Role,Insight,Statement,Personality,Experiment) 3. BROKE 框架(Background,Role,Objectives,Key Results,Evolve) 4. ICIO 框架: Instruction(指令):明确定义 AI 需要执行的任务,遵循简洁明了、具体详细、行动导向、单一任务等原则。 Context(背景信息):提供任务的相关背景,包括任务目的、目标受众、相关背景、限制条件、角色扮演等。 Input Data(输入数据):为 AI 提供执行任务所需的具体信息或数据。 Output Indicator(输出引导):指导 AI 如何构建和呈现输出结果,包括格式要求、语气和风格、长度限制、结构指引、特殊要求、评估标准等。
2024-11-14
GPTs 结构化提示词模板
以下是为您整理的关于 GPTs 结构化提示词模板的相关内容: 简单的提示词模板:最终目标是把需求说清楚。例如,“Act like a ”。 GPTs 教程及案例拆解 开源:一些 GPTs 的 prompt 中,如超强 LOGO 生成器,其使用方法为设计一个 logo 生成工具,允许用户上传多张 logo 图片作为参考,通过提示询问用户是否使用这些图片来创建新的 logo 设计,可自定义提示词风格和设定图片参考权重,利用 GPT4 Vision 的识图能力生成新 logo 设计,若用户不满意则重新生成,创作完后提示用户是否满意,满意则提供转 LOGO 矢量图的链接。 GPTs 教程及案例拆解 精选:GPTs 项目包括 Reviewer2Pal,可帮用户将直白的英文论文回应转换为专业回复;方法论专家 Methodology Expert,辅助用户使用方法论解决相关问题;灵感专家 Brainstorming Expert,辅助用户进行灵感思考和提出发散性角度;自动结构化框架,由小七姐编写,欢迎关注其公众号“AI 中文百科”领取更多好玩的 GPT 工具。
2024-11-07
什么是结构化提示词
结构化提示词是一种提示词构建的方法,由云中江树提出并开源发布。其思想类似于日常写作中使用的文章结构,通俗来说就是像写文章一样写提示词。 例如,小七姐提供了一套极简的基础结构化编写 Prompt 的框架,包括定义角色、描述角色信息(如作者、版本、语言、主要功能)、列出主要目标、限制条件、所需技能以及工作流程等。 在一些领域如舞曲提示词中,也存在特定的结构提示词,如上行进行、预示性歌词、气氛转变等。 LangGPT 提出的结构化提示词已被国内主流大模型智能体平台使用,并发展成为有影响力的学习交流社群。
2024-10-21
如何利用飞书多维表格识别pdf文件中的内容,自动生成结构化数据
飞书多维表格是一款功能强大的在线数据库工具,它能够存储和管理数据,并且通过智能伙伴实现自动化管理选题、任务管理等多种应用场景。要利用飞书多维表格识别PDF文件中的内容并自动生成结构化数据,你可以按照以下步骤操作: 1. 准备PDF文件:确保你有一个包含所需信息的PDF文件。 2. 使用OCR技术:首先,你需要使用光学字符识别(OCR)技术来识别PDF文件中的文字内容。OCR技术可以将PDF中的图像文字转换为可编辑的文本数据。 3. 飞书智能伙伴:飞书提供了智能伙伴功能,可以通过对话的方式帮助用户创建多维表格或解析数据。你可以通过智能伙伴发送指令,让它根据你的要求自动完成一系列的多维表格操作。 4. 解析文本并填入多维表格:在飞书多维表格中,你可以使用智能伙伴的“录入一行记录并拆解到对应字段”的功能,将OCR识别后的文本数据解析并填入到多维表格的对应字段中。 5. 创建和调整多维表格结构:根据解析后的数据,你可以使用智能伙伴的“增加一些字段”或“推荐相关字段”的功能来调整多维表格的结构,确保表格能够准确地反映PDF文件中的信息。 6. 数据整理和验证:在数据被录入多维表格后,你可能需要进行一些手动的整理和验证,以确保数据的准确性和完整性。 7. 利用飞书开放平台:如果需要更高级的自动化和集成,你可以利用飞书开放平台,结合其他工具或服务,例如ChatGPT,来进一步优化数据的识别和处理流程。 请注意,这个过程可能需要一些技术知识和对飞书多维表格功能的熟悉。如果你需要进一步的帮助或定制化的解决方案,可以考虑参与飞书举办的“多维表格开发者日 | AI 专场”活动,以获取更多的信息和支持。
2024-07-05
绘画提示词中的“P”是什么意思?
在绘画提示词中,“P”通常不是一个具有特定普遍含义的独立符号或缩写。但“POV”是“Point of View”的缩写,意为“视角”。在美术创作中,尤其是绘画和摄影领域,视角指的是观察者或摄像机所在的位置和角度。选择不同的视角可以极大地影响作品的视觉效果和观众对作品的感受。 视角在绘画中的作用包括: 1. 视觉引导:可以用来引导观众的视线,通过选择特定的角度,艺术家可以强调作品中的某些元素,使它们更加突出。 2. 情感表达:不同的视角可以传达不同的情感和氛围。例如,从高处看的视角可能会让物体显得更小、更脆弱,而从低处看的视角可能会让物体显得更强大、更有威严。 3. 空间感:通过精确的透视技巧,视角可以帮助艺术家在二维平面上创造出深度和空间感,使画面更加立体和真实。 4. 故事叙述:视角可以用来讲述故事,通过选择与故事内容相匹配的视角,艺术家可以增强叙事的力度和清晰度。 在创作提示词时,有一些技巧: 1. 透视:了解和运用透视原理是掌握不同视角的关键。透视可以创造出深度感和空间感,使画面更加逼真。 2. 构图:选择合适的视角可以帮助艺术家更好地构图,通过角度和视点的选择来平衡画面,创造出和谐的画面效果。 3. 光影:不同的视角会影响光线的方向和强度,艺术家需要根据所选的视角来调整光影效果,以增强画面的真实感和表现力。 在提示词的语法方面,根据自己想画的内容写出提示词,多个提示词之间使用英文半角符号。一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。还可以使用括号人工修改提示词的权重。
2024-12-26
提示词编写技巧
以下是关于提示词编写技巧及如何学习提示词运用的相关内容: 编写提示词的技巧: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。 5. 使用示例:如有特定期望结果,提供示例帮助理解需求。 6. 保持简洁:简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整提示词。 在 SD3 中的提示词相关内容: 提示词长度:可以传递非常长且描述性的提示,不再受限于 CLIP 文本编码器的 77 个 token 限制,可长达 10,000 个字符或超过 1,500 个单词。 不要使用负面提示:SD3 未针对负面提示词训练,使用可能引入随机变化,使图像结果不稳定。 提示词的技巧:可以使用更长的提示短语,用逗号分割关键词,详细明确描述具体东西有助于理解。 学习提示词运用的建议: 1. 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 2. 学习构建技巧:明确任务目标,用简洁准确语言描述,给予背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例:在领域社区、Github 等资源中研究学习。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量,尝试变体并比较分析。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究:持续关注最新研究成果和方法论。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
精准的提示词如何找到
要找到精准的提示词,可以参考以下方法: 1. 描述逻辑:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 2. 功能型辅助网站: http://www.atoolbox.net/,通过选项卡的方式快速填写关键词信息。 https://ai.dawnmark.cn/,每种参数都有缩略图参考,方便直观选择提示词。 C 站(https://civitai.com/),每一张图都有详细参数,可点击复制数据按钮,粘贴到正向提示词栏,注意图像作者使用的大模型和 LORA。 也可只取其中较好的描述词,如人物描写、背景描述、小元素或画面质感等。 3. 星流一站式 AI 设计工具: prompt 输入框中可输入提示词、使用图生图功能辅助创作。 输入语言:星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 提示词优化:启用提示词优化后,可扩展提示词,更生动描述画面内容。 写好提示词: 预设词组:小白用户可点击提示词上方官方预设词组生图,提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,帮助 AI 理解不想生成的内容。 利用“加权重”功能:在功能框增加提示词并调节权重,权重数值越大越优先。 辅助功能:翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 4. SD 新手入门: 提示词工作是缩小模型出图的解空间,效果受模型影响,不同模型对提示词语言风格反应不同。 提示词内容:自然语言可使用描述物体的句子,大多数情况下英文有效,也可用中文,避免复杂语法;单词标签可用逗号隔开的单词,使用普通常见单词,风格要和图像整体搭配,避免拼写错误,可参考;Emoji、颜文字 Emoji表情符号准确,对构图有影响,对于使用 Danbooru 数据的模型,西式颜文字可一定程度控制出图表情。
2024-12-25
AI提示词的意思是指训练自己的AI智能体吗
AI 提示词并非仅仅指训练自己的 AI 智能体。 智能体大多建立在大模型之上,其发展从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。智能体的核心在于有效控制和利用大型模型以达到设定目标,这通常涉及精确的提示词设计,提示词的设计直接影响智能体的表现和输出结果。 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。与多数其他 NLP 服务不同,补全和聊天补全几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。 我们的模型通过将文本分解为标记来理解和处理文本,在给定的 API 请求中处理的标记数量取决于输入和输出长度。对于英文文本,1 个标记大约相当于 4 个字符或 0.75 个单词,文本提示词和生成的补全合起来不能超过模型的最大上下文长度。
2024-12-25
“GPT-4o”是什么软件,可以给ai生图提示词
GPT4o 是 OpenAI 新推出的产品。 其具有以下特点和功能: 1. 协作写作与编程新体验:提供写作方面的建议编辑、调整文章长度和阅读级别、添加表情符号、语法润色等功能;在编程方面,让用户轻松跟踪代码修改,支持代码审查、错误修复、添加注释、以及多语言代码移植。 2. ChatGPT Plus 和 Team 用户可立即使用,企业和教育版用户下周开放,计划后续向免费用户推出。 3. 在一些测试中展现出不同的能力,如文本理解能力更强、一次性出 10 个分镜速度极快等,但也存在一些不足,例如中文画图能力有限、某些任务的实际效果不太理想等。 关于 GPT4o 的提示词优化技巧: 1. 在 Playground 的 API 策略中,通过在输入前加上“Task,Goal,or Current Prompt:\\n”来避免误解为指令。 2. 翻译 GPT 案例中,在翻译提示词前加上“Now please translate the content below:”来避免混淆。 相关资源: 1. 相关博客汇总了提示词优化的完整策略,帮助避免指令与输入内容的冲突。 2. 相关测试链接: 。
2024-12-25
aipo 提示词课程链接
以下是关于 AIPO 提示词课程的相关链接: 10 月 13 日课程回放:https://www.bilibili.com/video/BV137mEYcEid/?spm_id_from=333.337.searchcard.all.click 上课请提前准备: 豆包网页端:https://www.doubao.com/chat/?channel=browser_landing_page 豆包桌面客户端: 相关资料: 作业:https://waytoagi.feishu.cn/share/base/form/shrcng2BGhOVyYXnr3AKP2pgCtg 10 月 14 日课程回放:https://www.bilibili.com/video/BV1msmEYxEZY/?buvid=YC4BD1CD531B1DE24BE79F1022B411E8311B&from_spmid=search.searchresult.0.0&is_story_h5=false&mid=E93ZXvPaf6qpZfVvaoksIA%3D%3D&p=1&plat_id=116&share_from=ugc&share_medium=iphone&share_plat=ios&share_session_id=FEFB63BF03154D5D842FEF7B6D7CA68D&share_source=WEIXIN&share_tag=s_i&spmid=united.playervideodetail.0.0&timestamp=1728927125&unique_k=TSPAHQW&up_id=259768893 上课请提前准备:吐司 https://tusiart.com/?utm_source=semsem&source_id=semsem 相关资料:https://kah8x5a2ycv.feishu.cn/docx/EknsdlsX1oxETExa5AjcDhfInWg 作业:https://waytoagi.feishu.cn/share/base/form/shrcn54GKluLZbcAuyd8GJzsX6g 10 月 15 日课程回放:https://www.bilibili.com/video/BV1G62fYCEc1/?spm_id_from=333.999.0.0 上课请提前准备:liblib https://www.liblib.art/ 推荐码:GUdRbBEP 相关资料:https://waytoagi.feishu.cn/wiki/TLmnwQgInimlP2k6zkAceDnCndf 作业:https://waytoagi.feishu.cn/share/base/form/shrcnndiUZ7FpF8IF4n9KNmvAWh
2024-12-25