直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

结构化提示词

回答

结构化提示词是一种像写文章一样编写提示词的方法。其思想较为普遍,日常写作的文章和书籍都常使用标题、子标题、段落、句子等语法结构。

在文生图方面,调整好参数生成图片后,若质感欠佳,可添加标准化提示词,如“(杰作:1.2),最好的质量,杰作,高分辨率,原创,非常详细的壁纸,完美,照明,(非常详细的 CG:1.2),绘图,画笔”等,让画面更趋近于固定标准。

对于新手,有一套极简基础的结构化编写 Prompt 框架,例如:

Role:[请填写你想定义的角色名称]

Profile:

  • author:作者
  • version:版本
  • language:中文
  • description:[请简短描述该角色的主要功能,50 字以内]

Goals:

1.[请列出该角色的主要目标 1] 2.[请列出该角色的主要目标 2]

Constrains:

[请列出该角色在互动中必须遵循的限制条件 1] [请列出该角色在互动中必须遵循的限制条件 2]

Skills:

[为了在限制条件下实现目标,该角色需要拥有的技能 1] [为了在限制条件下实现目标,该角色需要拥有的技能 2]

Workflows:

1.[请描述该角色的工作流程的第一步] 2.[请描述该角色的工作流程的第二步]

在提高模型响应精确度方面,改进提示词格式很重要。如在问答和文本分类中,提示词可以通过指令、上下文、输入和输出指示来改进响应结果。越明确的指示,响应越好。包含相关语境和其他要素,提供更多信息和具体指令,能使响应更符合需求。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【SD】文生图怎么写提示词

调整好参数后,我们就可以生成一幅图片了。可以看到画面内容基本和我们的描述相同,但是在质感方面还少了一些味道。这时就需要用到我们的第二类关键词:标准化提示词。它能让画面更趋近于某个固定的标准。比如我们添加如下关键词:(杰作:1.2),最好的质量,杰作,高分辨率,原创,非常详细的壁纸,完美,照明,(非常详细的CG:1.2),绘图,画笔。

小七姐:Prompt 喂饭级系列教程小白学习指南(四)

作者:小七姐可以在以下地址关注她,主页内容更丰富:[小七姐的](https://t.zsxq.com/15KhQ0RE7)[Prompt](https://t.zsxq.com/15KhQ0RE7)[学习社群](https://t.zsxq.com/15KhQ0RE7)在今天的(四)中,我们主要分享:Prompt的结构化什么是结构化Prompt?结构化的思想很普遍,结构化内容也很普遍,我们⽇常写作的⽂章,看到的书籍都在使⽤标题、⼦标题、段落、句⼦等语法结构。结构化Prompt的思想通俗点来说就是像写⽂章⼀样写Prompt。结构化编写Prompt本身算是提示词编写的进阶学习内容,基于我们是面向新手的喂饭级教程,这里只列举一套(极简)基础的结构化编写Prompt的框架,我们可以看到它通过一些特定的标准,将提示词结构为一些固定范式,例如:# Role:[请填写你想定义的角色名称]# Profile:- author:作者- version:版本- language:中文- description:[请简短描述该角色的主要功能,50字以内]## Goals:1.[请列出该角色的主要目标1]2.[请列出该角色的主要目标2]## Constrains:[请列出该角色在互动中必须遵循的限制条件1][请列出该角色在互动中必须遵循的限制条件2]## Skills:[为了在限制条件下实现目标,该角色需要拥有的技能1][为了在限制条件下实现目标,该角色需要拥有的技能2]## Workflows:1.[请描述该角色的工作流程的第一步]2.[请描述该角色的工作流程的第二步]我们看到上述范例中有一些特殊写法和标识:

提示词示例

提高模型响应精确度的最佳方法之一是改进提示词的格式。如前所述,提示词可以通过指令、上下文、输入和输出指示以改进响应结果。虽然这些要素不是必需的,但如果您的指示越明确,响应的结果就会越好。以下示例可以说明结构化提示词的重要性。提示词输出结果语境参考至[Nature(opens in a new tab)](https://www.nature.com/articles/d41586-023-00400-x)。[heading2]文本分类[content]目前,我们已经会使用简单的指令来执行任务。作为提示工程师,您需要提供更好的指令。此外,您也会发现,对于更复杂的使用场景,仅提供指令是远远不够的。所以,您需要思考如何在提示词中包含相关语境和其他不同要素。同样,你还可以提供其他的信息,如输入数据和示例。可以通过以下示例体验文本分类:提示词输出结果我们给出了对文本进行分类的指令,语言模型做出了正确响应,判断文本类型为'Neutral'。如果我们想要语言模型以指定格式做出响应,比如,我们想要它返回neutral而不是Neutral,那我们要如何做呢?我们有多种方法可以实现这一点。此例中,我们主要是关注绝对特性,因此,我们提示词中包含的信息越多,响应结果就会越好。我们可以使用以下示例来校正响应结果:提示词输出结果完美!这次模型返回了neutral,这正是我们想要的特定标签。提示词中的示例使得模型可以给出更具体的响应。有时给出具体的指令十分重要,可以通过以下示例感受这一点:提示词输出结果这时候你知道给出具体指令的重要性了吧?

其他人在问
常用的结构化提示词框架有哪些?
以下是一些常用的结构化提示词框架: 1. 基础的结构化编写 Prompt 框架: Role: Profile: author:作者 version:版本 language:中文 description: Goals: 1. 2. Constrains: Skills: Workflows: 1. 2. 2. CRISPE 框架(Capacity and Role,Insight,Statement,Personality,Experiment) 3. BROKE 框架(Background,Role,Objectives,Key Results,Evolve) 4. ICIO 框架: Instruction(指令):明确定义 AI 需要执行的任务,遵循简洁明了、具体详细、行动导向、单一任务等原则。 Context(背景信息):提供任务的相关背景,包括任务目的、目标受众、相关背景、限制条件、角色扮演等。 Input Data(输入数据):为 AI 提供执行任务所需的具体信息或数据。 Output Indicator(输出引导):指导 AI 如何构建和呈现输出结果,包括格式要求、语气和风格、长度限制、结构指引、特殊要求、评估标准等。
2024-11-14
GPTs 结构化提示词模板
以下是为您整理的关于 GPTs 结构化提示词模板的相关内容: 简单的提示词模板:最终目标是把需求说清楚。例如,“Act like a ”。 GPTs 教程及案例拆解 开源:一些 GPTs 的 prompt 中,如超强 LOGO 生成器,其使用方法为设计一个 logo 生成工具,允许用户上传多张 logo 图片作为参考,通过提示询问用户是否使用这些图片来创建新的 logo 设计,可自定义提示词风格和设定图片参考权重,利用 GPT4 Vision 的识图能力生成新 logo 设计,若用户不满意则重新生成,创作完后提示用户是否满意,满意则提供转 LOGO 矢量图的链接。 GPTs 教程及案例拆解 精选:GPTs 项目包括 Reviewer2Pal,可帮用户将直白的英文论文回应转换为专业回复;方法论专家 Methodology Expert,辅助用户使用方法论解决相关问题;灵感专家 Brainstorming Expert,辅助用户进行灵感思考和提出发散性角度;自动结构化框架,由小七姐编写,欢迎关注其公众号“AI 中文百科”领取更多好玩的 GPT 工具。
2024-11-07
什么是结构化提示词
结构化提示词是一种提示词构建的方法,由云中江树提出并开源发布。其思想类似于日常写作中使用的文章结构,通俗来说就是像写文章一样写提示词。 例如,小七姐提供了一套极简的基础结构化编写 Prompt 的框架,包括定义角色、描述角色信息(如作者、版本、语言、主要功能)、列出主要目标、限制条件、所需技能以及工作流程等。 在一些领域如舞曲提示词中,也存在特定的结构提示词,如上行进行、预示性歌词、气氛转变等。 LangGPT 提出的结构化提示词已被国内主流大模型智能体平台使用,并发展成为有影响力的学习交流社群。
2024-10-21
如何利用飞书多维表格识别pdf文件中的内容,自动生成结构化数据
飞书多维表格是一款功能强大的在线数据库工具,它能够存储和管理数据,并且通过智能伙伴实现自动化管理选题、任务管理等多种应用场景。要利用飞书多维表格识别PDF文件中的内容并自动生成结构化数据,你可以按照以下步骤操作: 1. 准备PDF文件:确保你有一个包含所需信息的PDF文件。 2. 使用OCR技术:首先,你需要使用光学字符识别(OCR)技术来识别PDF文件中的文字内容。OCR技术可以将PDF中的图像文字转换为可编辑的文本数据。 3. 飞书智能伙伴:飞书提供了智能伙伴功能,可以通过对话的方式帮助用户创建多维表格或解析数据。你可以通过智能伙伴发送指令,让它根据你的要求自动完成一系列的多维表格操作。 4. 解析文本并填入多维表格:在飞书多维表格中,你可以使用智能伙伴的“录入一行记录并拆解到对应字段”的功能,将OCR识别后的文本数据解析并填入到多维表格的对应字段中。 5. 创建和调整多维表格结构:根据解析后的数据,你可以使用智能伙伴的“增加一些字段”或“推荐相关字段”的功能来调整多维表格的结构,确保表格能够准确地反映PDF文件中的信息。 6. 数据整理和验证:在数据被录入多维表格后,你可能需要进行一些手动的整理和验证,以确保数据的准确性和完整性。 7. 利用飞书开放平台:如果需要更高级的自动化和集成,你可以利用飞书开放平台,结合其他工具或服务,例如ChatGPT,来进一步优化数据的识别和处理流程。 请注意,这个过程可能需要一些技术知识和对飞书多维表格功能的熟悉。如果你需要进一步的帮助或定制化的解决方案,可以考虑参与飞书举办的“多维表格开发者日 | AI 专场”活动,以获取更多的信息和支持。
2024-07-05
结构化思维是?
结构化思维是一种将问题或任务分解为多个部分,并按照一定的逻辑顺序进行组织和分析的思维方式。它强调对问题进行系统性的思考,通过拆解问题,找出各个环节之间的关系,从而更深入地理解问题,并找到解决方案。 在使用 AI 工具时,结构化思维也非常重要。例如,在使用 ChatGPT 时,可以通过追问法来提高对话能力。具体来说,可以先问主题、面向和希望的细节,然后针对回复追问差别、步骤、条件或资源,提供可行的做法与选择,并加入风格或其他限制,最后再提供更多元素让它改写。这样可以帮助我们更好地利用 AI 工具,获得更准确、详细的答案。 此外,在使用 AI 工具时,还需要注意一些问题。例如,上下文 token 长度可能会有限制,需要参考分治法来解决。同时,在让 AI 学习现有数据时,需要描述清楚如何总结规律才能总结得好。 总之,结构化思维是一种非常重要的思维方式,可以帮助我们更好地理解问题、解决问题,并提高使用 AI 工具的效果。
2024-07-05
知识库中有哪些关于结构化提示词的文章,请列表显示
以下是知识库中关于结构化提示词的一些文章: 1. 《LangGPT 相关视频 & 活动分享》:介绍了 LangGPT 项目的相关视频和活动,包括结构化 prompt。 2. 《系统论述文章构建高性能 Prompt 之路—结构化 Prompt》:探讨了如何构建高性能的 Prompt,包括结构化 Prompt 的使用。 3. 《提示链 Prompt Chain 和多提示词协同》:介绍了 Prompt Chain 和多提示词协同的概念,以及如何使用它们来提高模型的性能。 4. 《如何构建生产级鲁棒高性能 Prompt》:提供了一些关于如何构建生产级鲁棒高性能 Prompt 的建议。 5. 《提升大模型可靠性的 prompt 方法汇总》:总结了一些提升大模型可靠性的 prompt 方法,包括结构化 Prompt。 6. 《为什么结构化 Prompt 如此有效?》:解释了结构化 Prompt 之所以有效的原因。 7. 《DALLE3 的紧箍咒》:讨论了 DALLE3 模型的限制,以及如何使用结构化 Prompt 来克服这些限制。 这些文章提供了关于结构化提示词的不同方面的信息,包括如何使用它们来提高模型的性能和可靠性,以及如何构建生产级的高性能 Prompt。
2024-05-15
AI提示词方法
以下是关于 AI 提示词方法的全面介绍: 优化和润色提示词(Prompt)对于提高文生图、对话等 AI 模型的输出质量非常重要,方法包括: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述想要表达的内容,避免过于笼统。 2. 添加视觉参考:在 Prompt 中插入相关的图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的 Prompt 描述方式。 5. 增加约束条件:为避免 AI 产生意料之外的输出,添加限制性条件,如分辨率、比例等。 6. 分步骤构建 Prompt:将复杂的需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、被证明有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 Prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 编写 prompt 时,还应遵循以下建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,提供足够的上下文。 3. 使用清晰的语言:尽量用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在 prompt 中明确指出。 5. 使用示例:如有特定期望结果,在 prompt 中提供示例。 6. 保持简洁:尽量简洁明了,避免过多信息使 AI 模型困惑。 7. 使用关键词和标签:帮助 AI 模型更好地理解任务的主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整 prompt,可能需要多次迭代。 在星流一站式 AI 设计工具的 prompt 输入框中: 1. 提示词用于描绘画面。 2. 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 3. 写好提示词的方法包括: 预设词组:小白用户可点击提示词上方官方预设词组进行生图,提示词内容应准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大越优先,也可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。
2024-11-22
文生图反向推出提示词
在文生图中,反向推出提示词的方式主要有以下几种: 1. 在图生图功能中,除了文本提词框外,还有图片框输入口。随便照一张照片拖入后,文本输入框旁边有两个反推提示词的按钮:CLIP 可以通过图片反推出完整含义的句子;DeepBooru 可以反推出关键词组。例如一张小男孩坐在长凳上的图片,通过 CLIP 反推得到的提示词为“a young boy sitting on a bench with a toy train and a lego train set on the floor next to him,Adam Rex,detailed product photo,a stock photo,lyco art”,通过 DeepBooru 反推得到的提示词为“shoes,solo,hat,orange_background,yellow_background,smile,socks,black_hair,sitting,sneakers”。但这两种方式生成的提示词可能存在瑕疵,需要手动补充信息。补充好提示词后,调整宽度和高度,使红框刚好匹配图片,同时注意两个重要参数:提示词相关性和重绘幅度。 2. 利用上一期活动图片反推工作流,使用唯美港风图片进行反推提示词,在大模型后接一个相关模型。上一期活动链接:。 3. 利用抱脸的 joycaption 图片反推提示词,然后在哩布上跑 flux 文生图工作流。joycaption 链接(需要魔法):https://huggingface.co/spaces/fancyfeast/joycaptionprealpha 。文生图工作流: 。在哩布上跑文生图:https://www.liblib.art/modelinfo/e16a07d8be544e82b1cd14c37e217119?from=personal_page 。 在写文生图的提示词时,例如“”。
2024-11-22
我想要学习AI提示词的使用方法
以下是关于 AI 提示词使用方法的详细介绍: 一、什么是提示词 提示词用于描绘您想要的画面。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),并且支持中英文输入。启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 二、如何写好提示词 1. 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 2. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 3. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 4. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可以对已有的提示词权重进行编辑。 三、辅助功能 1. 翻译功能:一键将提示词翻译成英文。 2. 删除所有提示词:清空提示词框。 3. 会员加速:加速图像生图速度,提升效率。 四、关于 Prompt 的语法规则 1. Prompt 是一段指令,用于指挥 AI 生成您所需要的内容,每个单独的提示词叫 tag(关键词)。 2. 支持的语言为英语(不用担心英语不好的问题,),另外 emoji 也可以用。 3. 语法规则:用英文半角符号逗号,来分隔 tag。注意逗号前后有空格或者换行都不影响效果。改变 tag 权重有两种写法:括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。还可以进行 tag 的步数控制。 如果您是新手学习 AI,建议先了解 AI 基本概念,阅读「」中找到适合初学者的课程。选择感兴趣的模块深入学习,掌握提示词技巧,通过实践和尝试巩固知识,体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 产品。
2024-11-22
通过图反向退出提示词
在 Stable Diffusion(SD)中,通过图反向退出提示词有以下几种情况: 1. 图生图功能除了文本提词框外还有图片框输入口,可通过图片给与 AI 创作灵感。随便照一张照片拖入,文本输入框旁有两个反推提示词的按钮,CLIP 可通过图片反推出完整含义的句子,DeepBooru 可反推出关键词组。例如一张图通过两种反推方式得到的提示词分别为:CLIP——“a young boy sitting on a bench with a toy train and a lego train set on the floor next to him,Adam Rex,detailed product photo,a stock photo,lyco art”;DeepBooru——“shoes,solo,hat,orange_background,yellow_background,smile,socks,black_hair,sitting,sneakers”。但两种方式生成的提示词可能有瑕疵,需要手动补充信息,调整宽度和高度,使红框匹配图片,还要注意提示词相关性和重绘幅度这两个参数。 2. 去除图像人物时,将图放入 WD 1.4 标签器中裁剪只保留背景部分,然后反推提示词,如“outdoors,no humans,tree,scenery,grass,sky,cloud,day,blue sky,mountain,road,house,path,building,nature,cloudy sky”,检查无误后发送到文生图中,开启 ControlNet,使用 inpaint 模型涂抹人物部分生成。可调整控制权重和控制模式来优化效果。 3. 进行角色设计时,设置文生图提示词,如大模型“majicmixRealistic_v6.safetensors”,正向提示词“,lowres,sig,signature,watermark,username,bad,immature,cartoon,anime,3d,painting,b&w”,设置参数如迭代步数 50、采样方法 DPM++ 2M Karras、尺寸 1328×800px 后出图,可得到 15 个不同角度的人物图片。
2024-11-22
哪些AI软件可以设计提示词和优化提示词
以下是一些可以设计和优化提示词的 AI 软件: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 写好提示词的方法包括使用预设词组、保证内容准确(包含人物主体、风格、场景特点、环境光照、画面构图、画质等)、调整负面提示词、利用“加权重”功能突出重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt 网站精选: :AI 艺术提示词生成器。 :通过玩游戏练习 Prompt 书写。 NovelAI tag 生成器:设计类 Prompt 提词生成器,地址为。 魔咒百科词典:简单易用的 AI 绘画 tag 生成器,地址为。 KREA:设计 AI 的 Prompt 集合站,create better prompts,网址为。 Public Prompts:免费的 prompt 合集,收集高质量的提示词,网址为。 AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词,网址为。 3. OpenAI API: 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。 模型通过将文本分解为标记(Token)来理解和处理文本,可通过分词器工具了解更多。 需要注意的是,在给定的 API 请求中处理的 Token 数量取决于输入和输出长度,文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2024-11-22
leap提示词技术
以下是关于 leap 提示词技术的相关内容: 在工作中,将两个观察联系起来,对 PROMPT ENGINEERING A PROMPT ENGINEER 进行研究,构建元提示指导 LLM 更有效地进行提示词工程。引入元提示组件,如逐步推理模板和上下文规范,从常见优化概念中汲取灵感并引入口头化对应物。在两个数学推理数据集上测试并确定最佳性能组合 PE2,其在 MultiArith 和 GSM8K 数据集上取得了强大的实证性能,在多种设置中超过自动提示词工程基准,在反事实任务上最为有效,在优化生产中使用的冗长、真实世界提示词方面也证明了适用性。 实验中将方法与普通人类提示词、ChainofThought,并介绍了实施细节。 随着 LLM 和生成式 AI 的发展,提示词设计和工程将更关键,讨论了基础和尖端方法,如检索增强生成(RAG),自动提示词工程(APE)这样的创新未来可能成为标准实践。
2024-11-22