Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

12个prompt 框架

Answer

以下是 12 种 Prompt 框架:

  1. Instruction(指令):即希望 AI 执行的具体任务,如翻译或写一段文字。
  2. Context(背景信息):给 AI 更多背景信息,引导模型做出更贴合需求的回复。
  3. Input Data(输入数据):告知模型需要处理的数据。
  4. Output Indicator(输出引导):告知模型输出的类型或风格。
  5. Capacity and Role(能力和角色):ChatGPT 应扮演的角色。
  6. Insight(见解):提供请求背后的见解、背景和上下文。
  7. Statement(声明):说明要求 ChatGPT 做什么。
  8. Personality(个性):希望 ChatGPT 以何种风格、个性或方式回应。
  9. Experiment(实验):请求 ChatGPT 回复多个示例。
  10. Background(背景):说明背景,为 ChatGPT 提供充足信息。
  11. Role(角色):希望 ChatGPT 扮演的角色。
  12. Objectives(目标):希望实现的目标。

此外,还有以下框架:

  1. TASK(任务):定义特定任务。
  2. ACTION(行动):描述需要做的事情。
  3. GOAL(目标):解释最终目标。
  4. INPUT(输入):描述信息或资源。
  5. STEPS(步骤):询问详细的步骤。
  6. EXPECTATION(期望):描述所需的结果。
  7. REQUEST(请求):描述您的要求。
  8. Key Result(关键结果):要什么具体效果,试验并调整。
  9. Evolve(试验并改进):三种改进方法自由组合,包括改进输入、改进答案、重新生成。
  10. CONTEXT(上下文背景):为对话设定舞台。
  11. OBJECTIVE(目的):描述目标。
  12. SCENARIO(方案):描述场景。

同时,还有一些特定的框架,如 ICIO 框架、CRISPE 框架、BROKE 框架等。

Content generated by AI large model, please carefully verify (powered by aily)

References

Prompts(提示词)

|框架|说明|例子|附件|父记录||-|-|-|-|-||框架集合|右侧附件做成了海报|||||Instruction:指令|即你希望AI执行的具体任务|比如翻译或者写一段什么文字||||Context:背景信息|给AI更多的背景信息引导模型做出更贴合需求的回复|||||Input Data:输入数据|告知模型需要处理的数据|||||Output Indicator:输出引导|告知模型我们要输出的类型或风格|||||Capacity and Role:能力和角色|ChatGPT应扮演什么角色|||||Insight:见解|提供你请求的背后见解、背景和上下文|||||Statement:声明|你要求ChatGPT做什么|||||Personality:个性|你希望ChatGPT以何种风格、个性或方式回应|||||Experiment:实验|请求ChatGPT为你回复多个示例|||||Background:背景|说明背景,为ChatGPT提供充足信息|||||Role:角色|我希望ChatGPT扮演的角色|||||Objectives:目标|我们希望实现什么||||

Prompts(提示词)

|框架|说明|例子|附件|父记录||-|-|-|-|-||TASK任务|定义特定任务|||||ACTION行动|描述需要做的事情|||||GOAL目标|解释最终目标|||||ROLE角色|指定ChatGPT的角色|||||INPUT输入|描述信息或资源|||||STEPS步骤|询问详细的步骤|||||EXPECTATION期望|描述所需的结果|||||TASK任务|定义特定任务|||||REQUEST请求|描述您的要求|||||ACTION行动|说明您需要的操作|||||CONTEXT上下文|提供上下文或情况|||||EXAMPLE示例|举一个例子来说明您的观点|||||EXPECTATION期望|描述所需的结果|||||ROLE角色|指定ChatGPT的角色|||||ACTION行动|指定需要采取哪些操作|||||CONTEXT上下文|为讨论设置阶段或上下文||||

Prompts(提示词)

|框架|说明|例子|附件|父记录||-|-|-|-|-||Key Result:关键结果|我要什么具体效果试验并调整|||||Evolve:试验并改进|三种改进方法自由组合<br>a.改进输入:从答案的不足之处着手改进背景B,目标O与关键结果R<br>b.改进答案:在后续对话中指正chatGPT答案缺点<br>c.重新生成:尝试在Prompt不变的情况下多次生成结果,优中选优|||||CONTEXT上下文背景|为对话设定舞台|||||OBJECTIVE目的|描述目标|||||ACTION行动|解释所需的动作|||||SCENARIO方案|描述场景|||||TASK任务|描述任务|||||ICIO框架|[https://github.com/dair-ai/Prompt-Engineering-Guide/blob/main/guides/prompts-intro.md](https://github.com/dair-ai/Prompt-Engineering-Guide/blob/main/guides/prompts-intro.md)|||||CRISPE框架|[https://github.com/mattnigh/ChatGPT3-Free-Prompt-List](https://github.com/mattnigh/ChatGPT3-Free-Prompt-List)|||||BROKE框架|作者:陈财猫,[https://web.okjike.com/originalPost/644fd53e263968405b6d5bfd](https://web.okjike.com/originalPost/644fd53e263968405b6d5bfd)|||||ACTION:行动|定义要完成的工作或活动|||||PURPOSE:目的|讨论意图或目标|||||EXPECTATION:期望|陈述预期的结果。||||

Others are asking
12种prompt框架
以下是 12 种 Prompt 框架: 1. Instruction(指令):说明希望 AI 执行的具体任务,例如翻译或写一段文字。 2. Context(背景信息):提供更多背景信息,引导模型做出更贴合需求的回复。 3. Input Data(输入数据):告知模型需要处理的数据。 4. Output Indicator(输出引导):告知模型输出的类型或风格。 5. Capacity and Role(能力和角色):明确 ChatGPT 应扮演的角色。 6. Insight(见解):提供请求背后的见解、背景和上下文。 7. Statement(声明):明确要求 ChatGPT 做什么。 8. Personality(个性):指定希望 ChatGPT 以何种风格、个性或方式回应。 9. Experiment(实验):请求 ChatGPT 回复多个示例。 10. Background(背景):说明背景,为 ChatGPT 提供充足信息。 11. Role(角色):指定希望 ChatGPT 扮演的角色。 12. Objectives(目标):说明希望实现的目标。 此外,还有一些其他相关的框架概念,如: 1. Key Result(关键结果):明确想要的具体效果,并试验和调整。 2. Evolve(试验并改进):包括改进输入、改进答案和重新生成等方法。 3. CONTEXT 上下文背景:为对话设定舞台。 4. OBJECTIVE 目的:描述目标。 5. ACTION 行动:解释所需的动作。 6. SCENARIO 方案:描述场景。 7. TASK 任务:描述任务。 8. ICIO 框架:相关链接 9. CRISPE 框架:相关链接 10. BROKE 框架:作者陈财猫,相关链接 11. PATFU 泡芙提示词框架:作者口袋君,包括 Problem(问题)、Aera(领域)、Task(任务)等。
2025-01-06
OpenAI过去12天的发布会总结
以下是 OpenAI 过去 12 天发布会的总结: 自媒体记录方面: 夕小瑶科技说:o3 发布,可能影响码农工作。 孔某人的低维认知:OpenAI 圣诞 12 天总评,感谢大佬赏饭。 MAX 01Founder:一文详解 o3,虽接近 AGI 但使用成本高。 南瓜博士:使用 o3 钱包和脑子可能不够。 数字生命卡兹克:OpenAI 正式发布 o3,通往 AGI 路上已无障碍。 具体发布内容: Day12:o3 与 o3 mini 正式亮相。 Day11:ChatGPT 桌面应用,Option+空格快速唤起。 Day10:OpenAI 发布电话倾诉功能 18002428478。 Day9:o1 满血版 API 和 4o 实时语音 API 更新。 Day8:AI 搜索功能免费开放,并支持实时语音搜索。 Day7:ChatGPT 全新“项目”功能发布。 Day6:实时视频通话&圣诞老人模式正式上线。 Day5:ChatGPT 与 Apple 的深度合作。 Day4:直播“翻车”的 Canvas。 Day3:Sora 终于上线,有案例和功能详解。 Day2:微调 O1 模型,低成本高效率。 Day1:强化学习微调的实操案例。 宝玉日报 12 月 18 日: AI 架构与技术选型的 4 条原则:选主流框架、确保测试覆盖率、避免私有框架、采用模块化设计。 OpenAI 12 天发布会第 9 天:o1 API 正式版速度更快成本降低,支持多种新功能;语音交互升级,引入 WebRTC 支持,处理费用降低;新增偏好微调功能和工具包,简化 API 密钥申请流程。 易观分析报告预测了 AI 技术未来的关键发展方向,德邦证券报告对 OpenAI 十二日发布会进行深度总结,认为随着大模型能力提升和应用场景扩展,AI 应用商业价值有望实现,建议关注相关领域。
2024-12-31
openai 12天都有哪些内容
以下是 OpenAI 12 天相关的内容: 12 月 18 日: API 正式版:速度更快,成本降低 60%,支持视觉识别、函数调用、结构化输出等功能。 语音交互升级:引入 WebRTC 支持,12 行代码即可实现实时语音交互,音频处理费用降低 60%。 偏好微调功能:让 AI 回答更具个性化,企业 AI 准确率提升显著。 新增 Go 和 Java 工具包,简化 API 密钥申请流程。 12 月 12 日: 苹果设备深度集成 ChatGPT,可通过 Siri 实现文档总结、任务分配、节日创意等操作。 多平台无缝衔接:支持 iPhone、iPad 和 Mac,涵盖 Siri 集成、写作工具增强、视觉智能分析等多种应用场景。 实用场景:圣诞派对策划、PDF 总结、歌单生成、视觉智能评选毛衣创意等功能演示,体现全新交互体验。 12 月 5 日: OpenAI 近日宣布将举行为期 12 天的活动,期间每天直播展示新功能或工具。 DeepMind 发布了基础世界模型 Genie 2,可以通过一张图片生成可操作的 3D 环境,实现智能体的实时交互与行为预测。 真格基金投资副总裁 Monica 在其播客「OnBoard!」发布的最新一期对谈中,与在一线大模型机构有实际训练大语言模型(LLM)经验的研究员针对 OpenAI o1 模型进行了三个多小时的拆解与解读。强化学习如何给大语言模型带来新的逻辑推理能力?这种能力的来源、实现方式和未来潜力又是怎样的?o1 带来的「新范式」会对行业有怎样的影响?
2024-12-20
输出12个精选prompt框架
以下是 12 种精选的 Prompt 框架: 1. Key Result(关键结果):明确想要的具体效果,通过试验并调整。包括改进输入、改进答案和重新生成等方法。 2. Evolve(试验并改进):三种改进方法自由组合,如从答案不足之处改进背景、目标与关键结果,在后续对话中指正 ChatGPT 答案缺点,或在 Prompt 不变情况下多次生成结果优中选优。 3. CONTEXT(上下文背景):为对话设定舞台。 4. OBJECTIVE(目的):描述目标。 5. ACTION(行动):解释所需的动作。 6. SCENARIO(方案):描述场景。 7. TASK(任务):描述任务。 8. ICIO 框架:相关链接 9. CRISPE 框架:相关链接 10. BROKE 框架:作者陈财猫,相关链接 11. PATFU 泡芙提示词框架:作者口袋君,包括清晰表述需要解决的问题、问题所在领域及需要扮演的角色、解决问题需要执行的具体任务。 12. Format(格式):详细定义输出的格式和限制条件,以及记录提示词版本并根据输出结果对提示词迭代。
2024-12-16
11月到12月AI领域的发展情况
在过去的 11 月到 12 月期间,AI 领域呈现出以下发展情况: 流量增长:在过去 12 个月里,人工智能行业是重要的技术发展之一。从 2022 年 9 月到 2023 年 8 月,研究的工具总流量增长了 10.7 倍,从起始的 2.418 亿次访问增长到 28 亿次访问。其中,流量的飞跃从去年 11 月开始,ChatGPT 成为最快达到 100 万用户的平台。2023 年 5 月达到峰值约 41 亿,之后有所回落,但人们的兴趣仍巨大。 创新机会: 整合组件使 AI 系统全面理解物理世界环境,做出更智能决策和行动,对开发先进机器人和自动化系统有益。 算力成为核心竞争力关键指标,科技巨头投入巨资建设超大规模 GPU 集群。如 xAI 公司建成超级计算机,Meta 训练新一代模型。 行业竞争格局转向“建设为王”的新时代,数据中心扩展成为重点,建设效率可能决定在 AI 下一阶段的表现。 高质量数据稀缺。 行业动态:2024 年 11 月,AI 行业呈现快速发展态势,大厂纷纷推出新功能,加速产品进化,AI 技术开始渗透到多个领域。如 Claude 上线桌面端和语音输入、Blendbox 推出图层式 AI 生成工具、阿里发布 EcomlD 支持生成真实人像、Suno 上线 Personas 功能等。
2024-12-06
NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37. If you want to use th
您好,出现“NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37.”这种情况,意味着您所使用的 NVIDIA 显卡的 CUDA 计算能力(sm_120)与当前安装的 PyTorch 版本不兼容。当前安装的 PyTorch 支持的 CUDA 计算能力为 sm_37 至 sm_90 以及 compute_37 。您可能需要重新安装与您显卡 CUDA 计算能力相匹配的 PyTorch 版本,或者升级您的显卡驱动程序来解决此兼容性问题。
2024-11-30
1.AI搜索的prompt怎么写 2.AI搜论文的prompt怎么写比较好
以下是关于 AI 搜索和 AI 搜论文的 prompt 写作的相关指导: 对于 AI 搜索的 prompt 写作: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述您的需求,避免过于笼统。 2. 添加视觉参考:若可能,在 prompt 中插入相关图片参考,以提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:为避免意外输出,添加如分辨率、比例等限制性条件。 6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步完善。 7. 参考优秀案例:研究 AI 社区流行且有效的 prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同写法,并根据输出效果反馈持续优化。 对于 AI 搜论文的 prompt 写作,您可以参考以下要点: 1. 设定角色为资深学术研究者,明确具备高效的学术论文阅读、总结能力。 2. 遵循“二八原则”进行论文总结。 3. 输出阅读的总结文字,包括列出论文的明确方法论、经过验证的结论等关键信息。 4. 采用结构化的内容组织方式,如使用编号、子标题和列表。 5. 按照规定概述内容解读结语的结构写作,先概述规定内容,然后解读具体内容,最后以结语结束。 6. 结合案例和挑战,增强说服力并提供解决方案。 7. 引入法规内容和实际操作案例,提供详细解释和建议。 8. 使用商业术语,确保专业性和针对性。 9. 注意文章结构,标题要开门见山、切中要害并引起目标群体悬念;第一部分说清楚要解决的问题及背景和可能导致的损失;第二部分以案例引入;第三部分对案例进一步分析;第四部分给出具体操作建议,包括事前、事中、事后的注意事项和措施。 总之,编写高质量的 prompt 需要不断实践和总结经验,熟悉 AI 模型的能力边界,保持开放思维并尝试创新描述方式。
2025-01-22
怎么在coze的智能体总加入一个使用MARKDOWN编写的代码的prompt?
在 Coze 的智能体中加入使用 Markdown 编写的代码的 prompt 可以参考以下方法: 首先,了解相关的任务和目标,比如像实现输入任意文章链接后,AI 自动生成适合微信分享的文章推荐卡片。为达到这一效果,大模型对话产品通常需要完成网页爬取、内容总结、二维码生成、卡片样式生成等关键步骤。 在编写 prompt 时,可以发现新的词生卡 Prompt 组织方法,把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”“字体规范”“颜色规范”的独立模块,并结合“内容结构”进行要求提示。这种提示词组织方式具有模型通用性、提示简易性和生成稳定性等显著优势。 对于刚入门的朋友,首推 LangGPT 结构化提示词,直观易懂,可以快速上手。对于想要进阶的用户,一方面可以继续选择 LangGPT,另一方面如有额外精力和好奇心,不妨尝试刚哥推崇的 Lisp 伪代码格式,有助于精炼提示词和提升对措辞理解、概念认知的能力。但需要注意的是,真正重要的不是提示词的外在形式,而是内容是否与 AI 的“理解机制”相契合。同时,在实际应用中,还需要经过多次调试,并根据测试 bug 微调提示词,直至稳定运行。
2025-01-19
仿写公众号的prompt
以下是关于仿写公众号 prompt 的相关内容: 1. 对于使用 GPT 模仿创作内容的万能思路: 明确目标是找到教 GPT 创作的方法论,即“know how”。 把方法论和示例写到 prompt 中,可改写大佬写好的 prompt,如 JK 老师的欢乐多朋友圈段子生产 V0.3,模仿改写出自己的小红书视频笔记标题产出助手 0.1。 把拆解得到的方法论和示例写到 Skills 部分,运用 COT(少样本提示)技巧。 若之前未写过结构化的 prompt,可打开云中江树老师的 LangGPT 项目学习 https://github.com/yzfly/LangGPT/blob/main/README_zh.md 了解。 0.1 版的使用效果。 2. 提示词快闪答疑: 新教师辅导专家的 prompt 编写要根据教学业务知识,写备课助手、上课助手和课后反思助手等,并融入“如何做好这些事”的方法论。 对于宋小涛 FewShot 产生更好内容的问题,可能是未把握模仿说话或写作风格的要素,需有关键词和方法论。 不同模型之间的区别一般通过实际使用总结经验,也可参考他人测评,如 。 当 ChatGPT 总结提炼文本效果差时,要描述清楚总结的方法、基于的规则、总结的内容以及期望的结果,如“请为我总结以下文档,提炼出每个段落中和 XXX 有关的核心内容,并把其中关于 XXX 的部分加粗显示”。 3. 专业的战争分析官 prompt:包括原始 prompt 和仿写 prompt 。
2025-01-16
prompt是什么
Prompt 是您提供给 AI 的文本,用于引发相关输出。它通常以问题或指示的形式出现,例如“为什么天空是蓝色的?”。在不同的 AI 应用中,如 Claude、Midjourney 等,其具体含义和使用方式有所不同。 在一般情况下,Prompt 是一段指令,用于指挥 AI 生成您所需要的内容。每个单独的提示词叫 tag(关键词)。支持的语言包括英语,emoji 也可以使用。语法规则方面,用英文半角符号逗号来分隔 tag,逗号前后有空格或者换行不影响效果。还可以改变 tag 权重,有两种写法,一种是通过设置权重数值,另一种是通过添加括号改变权重。此外,在某些高级玩法中,还可以进行 tag 的步数控制。 在 Midjourney 中,提示是您提供的文本命令,用来指示 AI 创建什么内容。它可以是一个单词、一句话,或者是一个详细的描述,结合各种元素来引导 AI 塑造输出内容。提示设计得越周到,结果就越有可能符合您的预期。例如,一个简单的提示可以是“An alien humanoidv 6.1”,更详细的提示可以是“A lowangle shot of an alien humanoid creature with a glowing screen on its face,looking down from the side,atmospheric lighting,and a minimalist backgroundv 6.1”。但需要注意的是,生成结果可能不稳定,影响提示的元素或组成部分不稳定。
2025-01-15
prompt优化
以下是关于优化 Prompt 的相关知识: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述您想要表达的内容,避免使用过于笼统的词语,以便 AI 更准确地理解您的需求。 2. 添加视觉参考:在 Prompt 中插入相关的图片参考,可显著提高 AI 理解您的意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩,让 AI 能生成出期望的语境和情绪。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的 Prompt 描述方式。 5. 增加约束条件:为避免 AI 产生意料之外的输出,可以在 Prompt 中添加限制性条件,如分辨率、比例等。 6. 分步骤构建 Prompt:将复杂的需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、被证明有效的 Prompt 范例,借鉴其中的写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 Prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 总之,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界。保持开放的思维尝试创新的描述方式也很有帮助。 另外,关于 Grok 角色设定 prompt 方面,目前 Grok 没有完全开放,可尝试直接用 Grok 的设定在其他大语言模型做尝试,比如先直接问问题,参考 Grok 的人物设定,对 prompt 稍微做优化。 在提示工程方面,在整个提示开发生命周期中,值得从最具能力的模型和无约束的提示长度开始,以建立性能上限。一旦达到所需的输出质量,可以尝试优化,如缩短提示或使用较小的模型,以根据需要降低延迟和成本。通过遵循测试驱动的方法论,并在一开始仔细定义任务和成功标准,投入时间设计健壮的测试用例和提示,将在模型性能和可维护性方面获得好处。
2025-01-13
李继刚的prompt
李继刚在 AI 领域的相关工作主要是用 Claude 做卡片,其中包括图尔敏论证结构分析、So what、Unicode、信达雅翻译、情绪解析器、撕考者、方法论、沉思者、疯狂星期四、知识卡片、答案之书、职业新解、说文解字等方面的 Prompt 。 在字体使用方面,可将常用词生成后在手机设置中添加快捷输入,如输入 cc 输出 𝓒𝓸𝓸𝓵 。想让说文解字显示甲骨文,可通过加载本地字体或在 Prompt 中指定 fontfamily 为相应字体来实现。 此外,李继刚还进行了直播分享“如何与 AI 对话”,有相关视频回放。他开了公众号,并在制作记忆卡片和创新概念解释器的过程中,意识到写 Prompt 时存在词汇量、审美能力和抽象能力的不足。同时,还分享了 SVG 图的 Prompt ,如 SVGArtist ,其画图效果惊艳。还涉及质疑之锥、逻辑之刃(升级版)、细节、胡思乱想、metaClaude 等内容。欢迎大家评论区贴上自己的测试效果。
2025-01-12
dify编排框架是什么意思
Dify 编排框架是一种在 AI 领域中应用的可视化编排框架,例如在 workflow 可视化编排页面中使用(框架:React Flow)。它具有以下特点和优势: 1. 集各家所长,在用户体验方面表现出色。 2. 可以人为编排 Workflow 里的子任务,与 AutoGPT 由大模型编排任务的方式不同,这种手动编排方式带来了明显的优化,如在流程中加入人类 Knowhow 以补足模型知识的不足,通过专家测试试跑减少生产环境中的反复无效反思,引入图的概念灵活组织节点、连接各类工具等。 3. 加入图的概念后,workflow 的天花板变得非常高,可以在流程中任意增加节点和各种类型的节点,不仅能套工具、套其它 agent,还能写代码用硬逻辑处理或接大模型进行判断,能力上限很大程度取决于想象力。 4. 对于个人开发者构建高质量的 AI 数字人很有帮助,有大量开源工作者维护,集成了各种主流的模型供应商、工具以及算法实现等,可以通过它快速编排出自己的 AI Agent,赋予数字人灵魂。利用其编排和可视化交互能任意修改流程,构造不同的 AI Agent,并实现相对复杂的功能,如知识库搭建、工具使用等,无需任何编码和重新部署工作。同时,Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这两个接口可将数字人的语音识别和语音生成都交由 Dify 控制。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台进行部署。此外,数字人 GUI 工程中仍保留了多个模块,能保持更好的扩展。 在使用 Dify 接口时,需要注意必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,可自行选择方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
2025-01-21
18种提示词框架
以下是 18 种提示词框架: 1. Instruction(指令):即您希望 AI 执行的具体任务,比如翻译或者写一段什么文字。 2. Context(背景信息):给 AI 更多的背景信息,引导模型做出更贴合需求的回复。 3. Input Data(输入数据):告知模型需要处理的数据。 4. Output Indicator(输出引导):告知模型我们要输出的类型或风格。 5. Capacity and Role(能力和角色):ChatGPT 应扮演什么角色。 6. Insight(见解):提供您请求的背后见解、背景和上下文。 7. Statement(声明):您要求 ChatGPT 做什么。 8. Personality(个性):您希望 ChatGPT 以何种风格、个性或方式回应。 9. Experiment(实验):请求 ChatGPT 为您回复多个示例。 10. Background(背景):说明背景,为 ChatGPT 提供充足信息。 11. Role(角色):您希望 ChatGPT 扮演的角色。 12. Objectives(目标):我们希望实现什么。 13. Key Result(关键结果):您要什么具体效果,试验并调整。 14. Evolve(试验并改进):三种改进方法自由组合:a.改进输入:从答案的不足之处着手改进背景、目标与关键结果;b.改进答案:在后续对话中指正 ChatGPT 答案缺点;c.重新生成:尝试在 Prompt 不变的情况下多次生成结果,优中选优。 15. CONTEXT 上下文背景:为对话设定舞台。 16. OBJECTIVE 目的:描述目标。 17. ACTION 行动:解释所需的动作。 18. SCENARIO 方案:描述场景。 此外,还有一些常见的特定框架,如: 1. ICIP 框架:包括指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填)。 2. BROKE 框架:着重于背景(Background)、角色定义(Role)、目标设定(Objectives)、关键成果展示(Key Result)以及持续的试验与优化(Evolve)。 3. CRISPE 框架:分为上下文(Context)、角色(Role)、说明(Instruction)、主题(Subject)、预设(Preset)和例外(Exception)。 提示词工程师是专门负责为大语言模型设计、优化和实施 Prompt 的技术角色,他们深刻理解模型的工作原理,能够根据具体需求定制合适的 Prompt,确保其有效性。随着大语言模型在商业和研究领域的应用,定制化的 Prompt 编写服务日渐受到欢迎。这些专业服务往往由资深的提示词工程师提供,他们会深入了解客户的具体需求,从而为其设计、优化并定制出最合适的 Prompt。
2025-01-15
对话框架都有哪些
以下是一些常见的对话框架: 1. 智谱·AI 开源模型列表中的 Chat 模型框架: ChatGLM36B:第三代 ChatGLM 对话模型,采用全新 Prompt 格式,原生支持工具调用、代码执行和 Agent 任务等复杂场景,上下文 token 数为 8K。 ChatGLM36Bbase:第三代 ChatGLM 基座模型,采用更多样训练数据、更充分训练步数和更合理训练策略,在 10B 以下基础模型中性能最强,上下文 token 数为 8K。 ChatGLM36B32k:第三代 ChatGLM 长上下文对话模型,在 ChatGLM36B 基础上强化长文本理解能力,能处理最多 32K 长度上下文。 ChatGLM26B32k:第二代 ChatGLM 长上下文对话模型,在 ChatGLM26B 基础上进一步强化长文本理解能力,能处理最多 32K 长度上下文。 ChatGLM26B32kint4:ChatGLM26B32K 的 int4 版本。 ChatGLM6B:第一代 ChatGLM 对话模型,支持中英双语,基于 General Language Model架构,具有 62 亿参数,结合模型量化技术可在消费级显卡上本地部署,上下文 token 数为 2K。 2. COSTAR 框架: 定义:指明文本的整体风格,包括词汇选择、句式结构及可能的参照对象。 重要性:不同风格适合不同场合,如学术论文和社交媒体帖子。 示例:科学论文需正式语言和客观语气,博客文章可采用轻松、个人色彩写作风格。 Tone(语气) 定义:设定文本的情感基调,确保符合预期氛围。 重要性:正确语气可建立与读者联系,传达适当态度。 示例:商业计划书需正式、专业且有说服力语气,产品评测可采用轻松幽默语气。 Audience(受众) 定义:明确回答或文本的目标读者。 重要性:了解受众有助于调整语言复杂度、术语使用及整体信息传递方式。 示例:专业人士可用行业术语和复杂概念,大众需简化语言避免专业化术语。 Response(回复) 定义:指定最终输出的形式和结构。 重要性:正确格式使信息更易理解和消化。 示例:详细分析报告按标准报告格式组织,简单问答可直接列表呈现答案。
2025-01-14
提示词框架
以下是关于提示词框架的相关内容: 视频模型中的提示词框架: Vidu Prompt 基本构成: 提示词基础架构:包括主体/场景、场景描述、环境描述、艺术风格/媒介。需调整句式和语序,避免主体物过多/复杂、模糊术语表达,使用流畅准确的口语化措辞,丰富、准确和完整的描述以生成特定艺术风格、满足需求的视频。 提示词与画面联想程度的说明:以单帧图像为例,通过具体详实的位置描述/环境描述进行构图,艺术风格描述提升效果和氛围,统一画面风格。 AI 提示词工程师相关的提示词框架: 提示词工程师是专门负责为大语言模型设计、优化和实施 Prompt 的技术角色,不仅编写 Prompt,还需测试和优化以确保输出内容质量。 发展出多种提示词框架,如 ICIP 框架(包括指令、背景信息、输入数据、输出指示器)、BROKE 框架(包括背景、角色定义、目标设定、关键成果展示、持续的试验与优化)、CRISPE 框架(包括上下文、角色、说明、主题、预设、例外)。 有定制化的 Prompt 编写服务,由资深提示词工程师深入了解客户需求设计、优化并定制最合适的 Prompt。 RAG 提示工程中的提示词框架: 在输入环节构建全面的提示词框架,包含伦理审查及针对不同类型攻击的审查规则,具体划分为伦理审查及对越狱类、泄露类、目标劫持类等攻击类型的审查。融入人格设定元素,利用大型模型的注意力机制,加固输入防护的审核能力及人格设定的稳定性。
2025-01-13
ai agent 框架有哪些
目前常见的 AI Agent 框架主要有以下几种: 1. LangChain 的 LangGraph:通过简化标准底层任务,如调用 LLM、定义和解析工具、链接调用等,使入门变得容易,但可能创建额外抽象层,增加调试难度。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet:拖放式 GUI 的 LLM 工作流构建器。 4. Vellum:用于构建和测试复杂工作流的 GUI 工具。 此外,行业里常用于为 LLM 增加工具、记忆、行动、规划等能力的框架是 LangChain,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。AutoGPT 被描述为使 GPT4 完全自主的实验性开源尝试,也是一种重要的框架。但需要注意的是,当前大多数代理框架都处于概念验证阶段,还不能可靠、可重现地完成任务。
2025-01-08
提示词框架
以下是关于提示词框架的相关内容: 视频模型中的提示词框架: 基本构成: 提示词基础架构包括主体/场景、场景描述、环境描述、艺术风格/媒介。需调整句式和语序,避免主体物过多/复杂、模糊术语表达,使用流畅准确的口语化措辞,丰富、准确和完整的描述以生成特定艺术风格、满足需求的视频。 提示词与画面联想程度:以单帧图像为例,通过具体详实的位置描述/环境描述和艺术风格描述等,构建画面的基本呈现效果和统一画面风格。 示例:基础词“玻璃桌上的咖啡杯,杯子外面写着单词LOVE”,适度联想扩充为“花园里的透明玻璃桌上的咖啡杯,杯子外面写着单词LOVE,周围满是盛开的鲜花,和煦的阳光洒满整个花园,Claude Monet,印象派风格”。 AI 提示词工程师中的提示词框架: 提示词工程师是专门负责为大语言模型设计、优化和实施 Prompt 的技术角色,不仅编写 Prompt,还需测试和优化以确保输出内容质量,善于发现需求、解析需求并解决问题。 发展出多种提示词框架,如 ICIP 框架(包括指令、背景信息、输入数据、输出指示器)、BROKE 框架(包括背景、角色定义、目标设定、关键成果展示、持续的试验与优化)、CRISPE 框架(包括上下文、角色、说明、主题、预设、例外),还有定制化提示词编写服务。 RAG 提示工程中的提示词框架: 在输入环节构建全面的提示词框架,包含伦理审查及针对不同类型攻击的审查规则,划分为关键部分,融入人格设定元素,利用大型模型的注意力机制加固输入防护的审核能力和人格设定的稳定性。
2025-01-08