Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

提示词学习

Answer

以下是关于提示词学习的相关内容:

提示词的知识体系:

  • 可分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。
    • 场景:直接切入提示词的场景去学,对比在不同场景下使用提示词的效果。
    • 工具:使用现成的提示词工具,包括 Meta Prompt、Al 角色定制等。
    • 有效语句:学习大量经典论文中提出的提示词语句。
    • 方法论:将有效语句及其背后的原理整合成稳定可控的方法,自动编写稳定的提示词。

学习 Stable Diffusion 提示词的步骤:

  • 学习基本概念,包括了解其工作原理、模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。
  • 研究官方文档和教程,包括通读官方文档,学习开发团队和专家的分享。
  • 学习常见术语和范例,熟悉相关领域的专业术语和概念,研究优秀的图像标题和描述。
  • 掌握关键技巧,如组合词条精确描述效果、控制生成权重的符号使用、处理抽象概念等。
  • 实践和反馈,尝试生成不同风格和主题的图像,对比结果并总结经验,在社区分享请教。
  • 创建提示词库,根据主题、风格等维度建立,记录成功案例。
  • 持续跟进前沿,关注最新更新和趋势。

学习提示词运用的建议:

  • 理解提示词的作用,其为模型提供上下文和指示,影响输出质量。
  • 学习构建技巧,明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。
  • 参考优秀案例,在领域社区、Github 等资源中寻找。
  • 实践、迭代、优化,多与语言模型互动,比较输出差异。
  • 活用提示工程工具,如 Anthropic 的 Constitutional AI。
  • 跟上前沿研究。

精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结才能掌握窍门。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:提示词思考总结

我自己把提示词学习分成五个维度,从高到低依次是:思维框架,方法论,语句,工具和场景。这是经过近一年的探索和教学总结的框架,我也把这套框架完全融入了我的提示词学习课程。很多人学习的时候或者是被教授课程的时候,由于知识的诅咒和信息整合的问题,通常也是按照由高到低的顺序去了解和接触提示词的,但这样其实并不符合初学者的认知过程,大部分人会感到困难。舒适的学习顺序应当是反过来的:[heading3]场景:[content]不管那些艰深的理论和学术的东西,直接切入提示词的场景去学,比如在什么场景下,可以如何使用提示词,用特定提示词以及不用它们的效果对比。[heading3]工具:[content]然后去使用一些现成的、方便的提示词工具,包括一些Meta Prompt、一些Al角色定制等,也包括别人写好的成型的提示词,作为工具来体验和尝试,这都属于提示词工具的实践。[heading3]有效语句:[content]接下来要学的才是有效的提示语句,这包括大量的经典论文中明确提出的提示词语句。最典型的就是早期的think it step by step[heading3]方法论:[content]第四个维度是学习有效的方法论,这里就要把这些有效语句及其背后的原理整合成了比较稳定可控的一整套的方法,可以去自动编写一些稳定的提示词。例如think it step by step背后的原理是COT,但掌握了COT方法就不会只用一句think it step by step

问:如何系统学习 SD 的提示词

学习Stable Diffusion的提示词是一个系统性的过程,需要理论知识和实践经验的相互结合。以下是一些建议的步骤:1.学习基本概念-了解Stable Diffusion的工作原理和模型架构-理解提示词如何影响生成结果-掌握提示词的组成部分(主题词、修饰词、反面词等)2.研究官方文档和教程-通读Stable Diffusion官方文档,了解提示词相关指南-研究来自开发团队和专家的教程和技巧分享3.学习常见术语和范例-熟悉UI、艺术、摄影等相关领域的专业术语和概念-研究优秀的图像标题和描述,作为提示词范例4.掌握关键技巧-学习如何组合多个词条来精确描述想要的效果-掌握使用"()"、""等符号来控制生成权重的技巧-了解如何处理抽象概念、情感等无形事物的描述5.实践和反馈-使用不同的提示词尝试生成各种风格和主题的图像-对比提示词和实际结果,分析原因,总结经验教训-在社区内分享结果,请教高手,获取反馈和建议6.创建提示词库-根据主题、风格等维度,建立自己的高质量提示词库-将成功案例和总结记录在案,方便后续参考和复用7.持续跟进前沿-关注Stable Diffusion的最新更新和社区分享-及时掌握提示词的新技术、新范式、新趋势

问:如何学习提示词运用?

提示词(Prompt)在现代大型语言模型中扮演着极其重要的角色,掌握提示词的运用技巧可以最大限度地发挥模型的潜能。以下是一些学习提示词运用的建议:1.理解提示词的作用提示词向模型提供了上下文和指示,使其能更准确地理解并完成所需的任务。提示词的质量直接影响了模型输出的质量。1.学习提示词的构建技巧明确任务目标,用简洁准确的语言描述给予足够的背景信息和示例,帮助模型理解语境使用清晰的指令,如"解释"、"总结"、"创作"等对特殊要求应给予明确指示,如输出格式、字数限制等2.参考优秀案例研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。你可以在领域社区、Github等资源中找到大量案例。1.实践、迭代、优化多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。1.活用提示工程工具目前已有一些提示工程工具可供使用,如Anthropic的Constitutional AI。这些工具可辅助构建和优化提示词。1.跟上前沿研究提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。精心设计的提示词能最大限度发挥语言模型的潜力,是高效使用大模型的关键技能。多实践、多学习、多总结,终可掌握窍门。内容由AI大模型生成,请仔细甄别。

Others are asking
提示词
以下是关于提示词的相关知识: 艺术字生成: 模型选择图片 2.1,输入提示词(可参考案例提示词)。 案例参考: 金色立体书法,“立冬”,字体上覆盖着积雪,雪山背景,冬季场景,冰雪覆盖,枯树点缀,柔和光影,梦幻意境,温暖与寒冷对比,静谧氛围,传统文化,唯美中国风。 巨大的春联,金色的书法字体,线条流畅,艺术美感,“万事如意”。 巨大的字体,书法字体,线条流畅,艺术美感,“书法”二字突出,沉稳,大气,背景是水墨画。 巨大的奶白色字体“柔软”,字体使用毛绒材质,立在厚厚的毛绒面料上,背景是蓝天。 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词、使用图生图功能辅助创作。 提示词相关: 什么是提示词:用于描绘画面,支持自然语言(如一个长头发的金发女孩)和单个词组(如女孩、金发、长头发)输入,支持中英文。启用提示词优化可扩展描述画面内容。 如何写好提示词: 预设词组:小白用户可点击提示词上方官方预设词组生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词并调节权重,权重数值越大越优先,也可对已有提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 提示词要素: 提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 示例:在文本分类任务的提示示例中,指令是“将文本分类为中性、否定或肯定”,输入数据是“我认为食物还可以”,输出指示是“情绪:”。提示词所需格式取决于语言模型要完成的任务类型,并非所有要素都是必须的。
2025-01-26
提示词工程
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力,考虑提示的长度、结构、措辞和信息量等因素,设计有效的提示以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用模型的准确率、流畅度和相关性等指标评估提示的有效性。 提示词工程师需具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以设计有效提示。 2. 自然语言处理(NLP):了解 NLP 基本原理和技术,能理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 基本原理和技术,能理解和使用 AI 模型。 4. 沟通能力:具备良好沟通能力,与用户、团队成员和其他利益相关者有效交流。 以下是一些提示词工程师工作的实际案例:无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能。其实现原理主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中;工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。 基本概念方面,通过简单的提示词(Prompts)可获得大量结果,结果质量与提供的信息数量和完善度有关。一个提示词可包含指令、问题等信息,也可包含上下文、输入或示例等。还可通过不同角色(如 system、user 和 assistant)构建 prompt,system 有助于设定 assistant 的整体行为。提示工程(Prompt Engineering)就是探讨如何设计出最佳提示词,用于指导语言模型高效完成任务。上述示例基本说明了现阶段大语言模型能发挥的功能作用,可用于执行各种高级任务,如文本概括、数学推理、代码生成等。
2025-01-25
AI图片生成视频的提示词公式
AI 图片生成视频的提示词公式如下: 1. 基础公式:主体+主体描述+运动+环境。例如:“一艘白色邮轮缓缓驶过海面。(A white cruise ship sails slowly across the sea.)” 2. 进阶技巧:对各部分进行详细描述,如“一只金色毛发的狗(描述主体)悠然自得地在阳光洒满的草地上行走,草叶轻轻地在它的爪下弯曲(详细描述环境和动作)。微风拂过,它的毛发随风轻动,时不时低下头嗅闻着大地。(进一步描述主体动作细节)远处,夕阳的余晖拉长了影子,营造出一种宁静祥和的氛围。(描述环境氛围)(A goldenhaired dog strolls leisurely across a sunlit grassy field,the blades of grass bending gently under its paws.A soft breeze passes by,causing its fur to sway,and it occasionally lowers its head to sniff the ground.In the distance,the setting sun casts long shadows,creating a peaceful and serene atmosphere.)”这样可以使生成的视频更稳定、提升美感。 3. 语法方面: 注意权重值最好不要超过 1.5。 可以通过 Prompt Editing 使得 AI 在不同的步数生成不一样的内容,语法为:例如“alandscape”,在一开始,读入的提示词为:the model will be drawing a fantasy landscape.在第 16 步之后,提示词将被替换为:a cyberpunk landscape,它将继续在之前的图像上计算。 提示词还可以轮转,比如在第一步时,提示词为“cow in a field”;在第二步时,提示词为“horse in a field.”;在第三步时,提示词为“cow in a field”,以此类推。 4. 其他方面: 指令参数:一般包括视频时长、分辨率、帧率等细节。PixVerse 默认生成 4s 时长的视频(会在后续更新中增加更长视频的生成),分辨率 1408×768。升级(Upscale)后,分辨率可以达到 4k,会导致生成所花费的时间比普通生成更长。 情感氛围:描述视频的情感基调或氛围,可用于人物的表情、环境氛围等的控制。 参考风格:可以输入参考的艺术风格等。
2025-01-25
langchain的提示词工程
LangChain 是一个在提示词工程领域具有重要地位的开源框架。 它允许开发者将语言模型与应用程序连接起来,使应用程序能够嵌入大模型的能力,俗称 ReAct,展示了一种提示词技术,允许模型“推理”和“行动”。 高级提示词工程技术的发展促使一系列工具和框架兴起,LangChain 已成为提示词工程工具包中的基石,最初专注于链条,后扩展到支持包括智能体和网络浏览等更广泛的功能,其全面的功能套件使其成为开发复杂 LLM 应用的宝贵资源。 在实际的工作场景中,LangChain 是常用的 RAG 框架之一。它是为简化大模型应用开发而设计的开源框架,通过提供模块化的工具和库,便于开发者集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛模型,具备良好可扩展性,有活跃的贡献者和持续更新,提供全面文档和示例代码,考虑了应用安全性和用户数据隐私保护,是多语言支持的灵活框架,适用于各种规模项目和不同背景开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-01-25
提示词学习
以下是关于提示词学习的相关内容: 提示词的知识体系: 可以分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。 场景:直接切入提示词的场景去学,对比在不同场景下使用提示词的效果。 工具:使用现成的提示词工具,包括 Meta Prompt、Al 角色定制等。 有效语句:学习大量经典论文中提出的提示词语句。 方法论:将有效语句及其背后的原理整合成稳定可控的方法,自动编写稳定的提示词。 学习 Stable Diffusion 的提示词: 是一个系统性的过程,需要理论知识和实践经验结合。 学习基本概念,包括了解工作原理、模型架构,理解提示词如何影响生成结果,掌握组成部分。 研究官方文档和教程。 学习常见术语和范例。 掌握关键技巧,如组合词条、控制生成权重、处理抽象概念等。 实践和反馈,对比结果并总结经验。 创建提示词库。 持续跟进前沿。 学习提示词运用的建议: 理解提示词的作用,其质量直接影响模型输出质量。 学习构建技巧,明确任务目标,给予足够背景信息和示例,使用清晰指令,对特殊要求明确指示。 参考优秀案例,可在领域社区、Github 等资源中找到。 实践、迭代、优化,多与语言模型互动,尝试各种变体。 活用提示工程工具,如 Anthropic 的 Constitutional AI。 跟上前沿研究。
2025-01-25
如何快速掌握AI提示词的技巧
以下是快速掌握 AI 提示词技巧的方法: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支及相互联系。同时浏览入门文章,了解 AI 的历史、应用和发展趋势。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据自身兴趣选择特定模块,比如一定要掌握提示词技巧,因其上手容易且有用。 4. 实践和尝试:理论学习后进行实践来巩固知识,尝试使用各种产品创作作品,并在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 此外,不同的 AI 产品在提示词方面也有各自的特点和技巧: 海螺 AI:MiniMax 视频模型能识别图片和理解指令,还能实现顶级特效和细腻表情呈现。提示词优化功能可扩展视频美学呈现,专业创作者有 2000 字的提示词空间。 星流一站式 AI 设计工具:在 prompt 输入框中可输入提示词和使用图生图功能。写好提示词要做到内容准确,包含人物主体、风格、场景特点等;可调整负面提示词;利用“加权重”功能突出重点;使用辅助功能如翻译、删除所有提示词、会员加速等。
2025-01-24
如何学习AI
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-26
建设一个基于ai的知识学习库,比如sre知识
建设基于 AI 的知识学习库,如 SRE 知识,需要以下几个关键步骤: 1. 明确学习库的目标和范围:确定要涵盖的 SRE 知识的具体领域和深度,例如系统架构、监控与告警、故障处理等。 2. 数据收集:收集相关的 SRE 资料,包括书籍、论文、技术文档、在线课程、实践案例等。 3. 数据整理与分类:对收集到的数据进行整理和分类,建立清晰的知识体系结构,便于后续的检索和学习。 4. 知识抽取与标注:运用自然语言处理技术,抽取关键信息,并进行标注,以便更好地被 AI 理解和处理。 5. 选择合适的技术架构:根据数据量和功能需求,选择适合的数据库和存储方案,以及相应的 AI 算法和模型。 6. 模型训练与优化:利用标注好的数据训练 AI 模型,不断优化模型的性能和准确性。 7. 界面设计:设计友好、易用的用户界面,方便用户进行知识查询、学习和交流。 8. 持续更新与维护:随着 SRE 领域的发展,不断更新学习库中的知识内容,确保其时效性和有效性。 希望以上步骤能为您建设基于 AI 的 SRE 知识学习库提供一些指导。
2025-01-26
如何学习AI
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-26
ai可以做什么,我可以学习什么
AI 具有广泛的应用和学习方向,以下为您详细介绍: 在获取信息和学习方面,AI 可用于辅助教育和自学。您可以要求 AI 解释概念,能获得不错的结果。比如,有很好的提示可作为自动导师,您可通过相关链接激活 ChatGPT 中的导师。但使用时需注意,因 AI 可能产生幻觉,关键数据要依据其他来源仔细核查。 在医疗保健领域,AI 会不可逆转地改变疾病的预防和治疗方式。医生可将文档工作交给 AI 书记员,初级医疗服务提供者能依赖聊天机器人进行分诊,预测蛋白结构库能加速药物开发。为实现真正的变革,应创建像优秀医生和药物开发者那样学习的“专家”AI 模型生态系统。成为领域顶尖人才通常从多年密集信息输入和正规学校教育开始,再经过学徒实践。AI 学习也应通过堆叠模型训练,而非仅依赖大量数据和生成模型。例如,应先训练生物学、化学模型,再添加特定数据点。就像医学生和药物设计科学家,需要从基础课程逐步学习积累,培养处理细微差别决策的直觉。
2025-01-26
小白学习AI的知识体系
对于小白学习 AI 的知识体系,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 有兴趣伙伴,可以留言互动,有需要可以提供一份 AI 工具逐渐进入状态的 tips 文章。
2025-01-25
AI知识怎麽学习?
以下是关于学习 AI 知识的建议: 了解基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从多个方面入手,全面系统地学习 AI 知识和技能。
2025-01-25