Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

langchain的提示词工程

Answer

LangChain 是一个在提示词工程领域具有重要地位的开源框架。

它允许开发者将语言模型与应用程序连接起来,使应用程序能够嵌入大模型的能力,俗称 ReAct,展示了一种提示词技术,允许模型“推理”和“行动”。

高级提示词工程技术的发展促使一系列工具和框架兴起,LangChain 已成为提示词工程工具包中的基石,最初专注于链条,后扩展到支持包括智能体和网络浏览等更广泛的功能,其全面的功能套件使其成为开发复杂 LLM 应用的宝贵资源。

在实际的工作场景中,LangChain 是常用的 RAG 框架之一。它是为简化大模型应用开发而设计的开源框架,通过提供模块化的工具和库,便于开发者集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛模型,具备良好可扩展性,有活跃的贡献者和持续更新,提供全面文档和示例代码,考虑了应用安全性和用户数据隐私保护,是多语言支持的灵活框架,适用于各种规模项目和不同背景开发者。

LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/

Content generated by AI large model, please carefully verify (powered by aily)

References

叶清:提示词链的搭建,成为提示词工程师「开源进阶提示词」

原文:https://mp.weixin.qq.com/s/IC4RfTCLeLDrQ52jxkGDdA作者:叶清提示词也可以是一个复杂的系统性工程,本文介绍了一种自动生成大量内容的方法。由Harrison Chase开发的LangChain,允许开发者将语言模型与应用程序连接起来,使应用程序能够嵌入大模型的能力。俗称ReAct,它展示了一种提示词技术,允许模型“推理”(通过思想链)和“行动”(通过能够使用预定义工具集中的工具,例如能够搜索互联网)。下面拿我23年初,我设计的一个简单的提示词链作为示例:目的:用AI批量生成拆书稿(拆书搞就是把一本书分解成为一些小节,一些平台会购买优质的书稿,帮助读者快速阅读)设计思路:十拆法,除了恰好有十个章节的书以外,多的就合并,少的就分解,根据实际情况拆分。程序输出:每次运行可以无需人工干预,自动生成上百篇内容。输入一个简单的书名,输出百篇文章,最大化效率!

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

高级提示词工程技术的普及促进了一系列工具和框架的发展,每个工具都旨在简化这些方法的实施并增强其能力。这些资源在将理论方法与实际应用之间的差距弥合方面至关重要,使研究人员和实践者能够更有效地利用提示词工程。Langchain已经成为提示词工程工具包景观中的基石,最初专注于链条,但扩展到支持包括智能体和网络浏览功能在内的更广泛的功能。它的全面功能套件使其成为开发复杂LLM应用的宝贵资源。由Microsoft提供的Semantic Kernel,提供了一个强大的技能开发和规划工具包,扩展了其实用性,包括链条、索引和内存访问。它支持多种编程语言的多功能性增强了其对广泛用户基础的吸引力。同样来自Microsoft的Guidance库,引入了一种针对提示词工程的现代模板语言,提供了与该领域最新进展对齐的解决方案。它专注于现代技术,使其成为尖端提示词工程应用的首选资源。NVidia的Nemo Guardrails专门设计用于构建Rails,确保LLM在预定义的指导方针内运行,从而增强了LLM输出的安全性和可靠性。LlamaIndex专门从事LLM应用的数据管理,为这些模型所需的数据流入提供必要的工具,简化了数据集成过程。来自Intel的FastRAG扩展了基本的RAG方法,与本文讨论的复杂技术紧密对齐,并为检索增强任务提供了优化解决方案。Auto-GPT专注于设计LLM智能体,通过其用户友好的界面和全面的功能,简化了复杂AI智能体的开发。同样,Microsoft的AutoGen因其在智能体和多智能体系统设计中的能力而受到关注,进一步丰富了提示词工程可用工具的生态系统。这些工具和框架在提示词工程的持续发展中起着重要作用,提供了从基础提示词管理到复杂AI智能体构建的一系列解决方案。随着该领域的不断扩展,新工具的开发和现有工具的增强将仍然是解锁LLM在各种应用中全部潜力的关键。

RAG 提示工程(三):迈向工程化应用

到目前为止,我们一直利用Prompt Layer平台对提示词进行验证和迭代工作。然而,在实际的工作场景中,我们并不会局限于仅使用像Prompt Layer这样专门针对提示词优化的平台。相反,我们会采用更广泛的工具和框架进行大模型项目的开发。在实际项目中,我们会使用工程化框架,为开发提供必要的支持。随着我们向工程化的第一步迈进,我们将逐步转变思路,不再仅仅局限于提示词角度的建设和优化,而是更加从实际项目角度入手去考虑工程化建设。这意味着我们将转变我们要采用更全面的工具和方法,以确保能够满足实际业务需求,提供真正的价值。下面,我们就介绍几种常用的RAG框架,供大家参考。[heading4]3.1 LangChain[content]LangChain是一个为简化大模型应用开发而设计的开源框架。它通过提供一套模块化的工具和库,允许开发者轻松地集成和操作多种大模型,从而将更多的精力投入到创造应用的核心价值上。LangChain的设计注重简化开发流程,支持广泛的模型,并且具备良好的可扩展性,以适应不断变化的业务需求。作为一个得到社区广泛支持的开源项目,LangChain拥有活跃的贡献者和持续的更新,同时提供了全面的文档和示例代码帮助新用户快速掌握。此外,LangChain在设计时也充分考虑了应用的安全性和用户数据的隐私保护,是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。LangChain官方手册:https://python.langchain.com/docs/get_started/introduction/

Others are asking
langchain开发手册
LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具助您轻松构建 RAG 应用。 组件包括: 1. 数据加载器(DocumentLoader):能从数据源加载数据并转为文档对象,文档包含 page_content(文本内容)和 metadata(元数据如标题、作者、日期等)。 2. 文本分割器(DocumentSplitter):将文档分割成多个小文档,方便后续检索和生成,因大模型输入窗口有限,短文本更易找相关信息。 3. 文本嵌入器(Embeddings):将文本转为高维向量的嵌入,用于衡量文本相似度以实现检索功能。 4. 向量存储器(VectorStore):存储和查询嵌入,常使用 Faiss 或 Annoy 等索引技术加速检索。 5. 检索器(Retriever):根据文本查询返回相关文档对象,常见实现是向量存储器检索器,利用向量存储器相似度搜索功能检索。 6. 聊天模型(ChatModel):基于大模型如 GPT3 实现文本生成,根据输入序列生成输出消息。 使用 LangChain 构建 RAG 应用的一般流程: 1. 加载数据:根据数据源类型选择合适的数据加载器,如网页可用 WebBaseLoader。 2. 分割文档:根据文本特点选择合适的文本分割器,如博客文章可用 RecursiveCharacterTextSplitter。 3. 转换和存储嵌入:选择合适的文本嵌入器和向量存储器,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 4. 创建检索器:使用向量存储器检索器,传递向量存储器和文本嵌入器对象创建。 5. 创建聊天模型:根据性能和成本选择,如 OpenAI 的 GPT3 模型。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-01-23
langchain都包括什么
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下主要内容: 1. 核心概念:包括组件和链,组件是模块化的构建块,链是组合在一起完成特定任务的一系列组件或其他链。 2. 主要特点: 模型抽象:提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并构建应用。 提示模板和值:支持创建和管理提示模板。 链:允许定义一系列处理步骤以完成复杂任务。 代理:支持构建代理,使其能使用语言模型做决策并调用工具。 支持多种用例,可与外部数据源交互并提供内存功能。 3. 应用开发组件: 数据加载器:从数据源加载数据并转换为文档对象。 文本分割器:将文档对象分割成多个较小对象。 文本嵌入器:将文本转换为嵌入,用于衡量文本相似度以实现检索。 向量存储器:存储和查询嵌入,通常使用索引技术加速检索。 检索器:根据文本查询返回相关文档对象。 聊天模型:基于大模型生成输出消息。 4. 构建 RAG 应用的一般流程:未具体提及。 以上内容由 AI 大模型生成,请仔细甄别。
2025-01-10
那个框架特别适用于RAG,比如LlamaIndex、LangChain等
LlamaIndex 是一个专为构建大型语言模型(LLM)应用而设计的开发框架,为开发人员提供了强大且灵活的工具,能更有效地理解和处理文本数据。对于熟悉 LangChain 的开发者而言,它并不陌生。 其核心优势在于对大型语言模型的深度支持,允许开发者利用如 GPT3.5 Turbo 等模型执行多种文本处理任务,如文档问答、文章生成和自动翻译等。特别地,它提供了构建文档问答系统的功能,能自动从大量文档中检索相关信息并生成答案,这在处理大量知识信息的领域极具价值。 LlamaIndex 还允许对嵌入模型进行微调以适应特定任务需求,提升文档问答系统的性能。它支持连接结构化、半结构化和非结构化等不同类型的数据源,为应用程序提供全面信息。 此外,其设计注重简化开发流程,即使复杂的 NLP 任务也能通过少量代码实现,无需深入了解底层复杂性。这种设计哲学不仅降低了开发大型语言模型应用的门槛,还极大提升了开发效率和应用性能。 LlamaIndex 的 GitHub 地址:https://github.com/runllama/llama_index/
2025-01-07
Langchain 是什么?
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它提供了一系列工具、组件和接口,使得创建由大型语言模型(LLM)和聊天模型支持的应用程序变得更加容易。其核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用,链则是组合的一系列组件(或其他链)以完成特定任务。 主要特点有: 1. 模型抽象:提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 2. 提示模板和值:支持创建和管理提示模板。 3. 链:允许开发人员定义一系列处理步骤以完成复杂任务。 4. 代理:支持构建代理,能使用语言模型做决策并调用工具。 LangChain 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。它为开发人员提供强大工具集,以构建适应性强、高效且能处理复杂用例的高级语言模型应用程序。 此外,LangChain 是一个为简化大模型应用开发而设计的开源框架,通过提供模块化工具和库,允许开发者轻松集成和操作多种大模型。它设计注重简化开发流程,支持广泛模型,具备良好可扩展性,有活跃贡献者和持续更新,提供全面文档和示例代码,考虑应用安全性和用户数据隐私保护,是多语言支持的灵活框架,适用于各种规模项目和不同背景开发者。LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-01-03
LangChain是什么
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和作用: 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供了一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更轻松。 核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用程序,链是组合在一起完成特定任务的一系列组件(或其他链)。 主要特点包括: 模型抽象:提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用程序。 提示模板和值:支持创建和管理提示模板,引导语言模型生成特定输出。 链:允许开发人员定义一系列处理步骤,按顺序执行完成复杂任务。 代理:支持构建代理,使用语言模型做决策并决定调用工具。 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。 为开发人员提供强大工具集,构建适应性强、高效且能处理复杂用例的高级语言模型应用程序。 LangChain 与 RAG(检索增强生成)的关系: LangChain 作为框架,提供实现 RAG 必需的工具和组件。 RAG 作为技术,可在 LangChain 框架内实施和利用。 LangChain 允许通过模块化组件构建 RAG 应用程序。 通过提供现成的链和提示模板,简化 RAG 应用程序开发过程。 利用 LangChain 实现 RAG 可创建更高效、准确的应用程序,尤其在需要大量外部信息辅助决策的场景。 通过丰富的 API 和组件库,支持构建复杂的 RAG 应用,如智能问答系统、内容推荐引擎等。
2024-12-26
langchain是干什么的
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和功能: 1. 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供了一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更轻松。 2. 核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。 3. 主要特点包括: 模型抽象:提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 提示模板和值:支持创建和管理提示模板。 链:允许开发人员定义一系列处理步骤以完成复杂任务。 代理:支持构建代理,能使用语言模型做决策并调用工具。 4. 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互并提供内存功能维护状态。 5. 为开发人员提供强大工具集,构建适应性强、高效且能处理复杂用例的高级语言模型应用程序。 此外,LangChain 允许开发者将语言模型与应用程序连接起来,使应用程序能够嵌入大模型的能力。它是一个为简化大模型应用开发而设计的开源框架,注重简化开发流程,支持广泛的模型,具备良好的可扩展性,拥有活跃的贡献者和持续更新,提供全面文档和示例代码,充分考虑应用安全性和用户数据隐私保护,是多语言支持的灵活框架,适用于各种规模项目和不同背景的开发者。LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2024-11-28
帮我找找有哪些在具体场景提升办公技能的提示词
以下是一些在办公场景中能提升办公技能的提示词: 1. 编辑写作助手:编辑以下段落,提高其整体清晰度和连贯性:{粘贴段落} 链接: 用途:帮助优化段落的清晰度和连贯性。 2. 语法纠正助手:纠正以下语法错误<br>{粘贴段落} 链接: 用途:纠正文本中的语法错误。 3. 头脑风暴助手:帮我想一些不同的想法,围绕这样的话题: 链接: 用途:围绕特定话题提供不同的想法。 4. 翻译助手:将以下内容翻译成{语言};我希望你能担任英语翻译、拼写校对和修辞改进的角色。我会用任何语言和你交流,你会识别语言,将其翻译并用更为优美和精炼的英语回答我。请将我简单的词汇和句子替换成更为优美和高雅的表达方式,确保意思不变,但使其更具文学性。请仅回答更正和改进的部分,不要写解释。我的第一句话是{这里写英语},请翻译它。 链接: 用途:进行文本翻译和语言优化。 5. 排版大师:🎩我是您的文字排版大师!📚 我的工作内容包括: 1️⃣优化阅读体验:💡 利用 ASCII 符号和 Emoji 表情符号,我可以优化您的文本,让信息更易于理解。 2️⃣增强信息可读性:🌟 通过合理的排版,我可以帮助您提高信息的可读性,增加用户的专注度。 3️⃣审美排版:🎨 我熟悉各种 ASCII 符号和 Emoji 表情符号的使用方法,同时具备较强的审美和文艺能力,能够让您的文本更具美感。 请告诉我您需要优化哪段文本,我会很高兴帮助您。 用途:优化文本排版,提升阅读体验和美感。 6. 总结助手:请帮我总结以下文章<br>{粘贴文章};将以下文本总结为 100 个单词,使其易于阅读和理解。摘要应简明扼要,并抓住文本的要点。避免使用复杂的句子结构或技术术语。请首先编辑以下文本:{粘贴文章} 链接: 用途:对文章进行总结。 7. 周报生成器:👉根据日常工作内容,提取要点并适当扩充,以生成周报。我本周的工作内容是{……} 链接: 用途:根据工作内容生成周报。
2025-01-26
客服系统,需要写一段提示词给大模型,需求是,先跟用户表示歉意,产品问题请咨询我另外一个同事,点击同事名称即可咨询,每次回复的内容不能一样
以下是为您生成的客服系统相关的大模型提示词示例,每次回复内容不同: 1. 非常抱歉给您带来了不便,关于产品问题,您可以咨询我的同事,点击即可进行咨询。 2. 很抱歉让您遇到了困扰,产品方面的疑问请找我的同事咨询,点击就能联系到。 3. 实在不好意思呀,产品的问题您向我的同事咨询会更清楚,点击即可开启咨询。 4. 深感抱歉,对于产品的情况,建议您咨询我的同事,点击就能和他交流。 5. 抱歉给您造成了不好的体验,产品相关问题请咨询我的同事,点击就能获取帮助。
2025-01-26
提示词
以下是关于提示词的相关知识: 艺术字生成: 模型选择图片 2.1,输入提示词(可参考案例提示词)。 案例参考: 金色立体书法,“立冬”,字体上覆盖着积雪,雪山背景,冬季场景,冰雪覆盖,枯树点缀,柔和光影,梦幻意境,温暖与寒冷对比,静谧氛围,传统文化,唯美中国风。 巨大的春联,金色的书法字体,线条流畅,艺术美感,“万事如意”。 巨大的字体,书法字体,线条流畅,艺术美感,“书法”二字突出,沉稳,大气,背景是水墨画。 巨大的奶白色字体“柔软”,字体使用毛绒材质,立在厚厚的毛绒面料上,背景是蓝天。 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词、使用图生图功能辅助创作。 提示词相关: 什么是提示词:用于描绘画面,支持自然语言(如一个长头发的金发女孩)和单个词组(如女孩、金发、长头发)输入,支持中英文。启用提示词优化可扩展描述画面内容。 如何写好提示词: 预设词组:小白用户可点击提示词上方官方预设词组生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词并调节权重,权重数值越大越优先,也可对已有提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 提示词要素: 提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 示例:在文本分类任务的提示示例中,指令是“将文本分类为中性、否定或肯定”,输入数据是“我认为食物还可以”,输出指示是“情绪:”。提示词所需格式取决于语言模型要完成的任务类型,并非所有要素都是必须的。
2025-01-26
提示词工程
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力,考虑提示的长度、结构、措辞和信息量等因素,设计有效的提示以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用模型的准确率、流畅度和相关性等指标评估提示的有效性。 提示词工程师需具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以设计有效提示。 2. 自然语言处理(NLP):了解 NLP 基本原理和技术,能理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 基本原理和技术,能理解和使用 AI 模型。 4. 沟通能力:具备良好沟通能力,与用户、团队成员和其他利益相关者有效交流。 以下是一些提示词工程师工作的实际案例:无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能。其实现原理主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中;工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。 基本概念方面,通过简单的提示词(Prompts)可获得大量结果,结果质量与提供的信息数量和完善度有关。一个提示词可包含指令、问题等信息,也可包含上下文、输入或示例等。还可通过不同角色(如 system、user 和 assistant)构建 prompt,system 有助于设定 assistant 的整体行为。提示工程(Prompt Engineering)就是探讨如何设计出最佳提示词,用于指导语言模型高效完成任务。上述示例基本说明了现阶段大语言模型能发挥的功能作用,可用于执行各种高级任务,如文本概括、数学推理、代码生成等。
2025-01-25
AI图片生成视频的提示词公式
AI 图片生成视频的提示词公式如下: 1. 基础公式:主体+主体描述+运动+环境。例如:“一艘白色邮轮缓缓驶过海面。(A white cruise ship sails slowly across the sea.)” 2. 进阶技巧:对各部分进行详细描述,如“一只金色毛发的狗(描述主体)悠然自得地在阳光洒满的草地上行走,草叶轻轻地在它的爪下弯曲(详细描述环境和动作)。微风拂过,它的毛发随风轻动,时不时低下头嗅闻着大地。(进一步描述主体动作细节)远处,夕阳的余晖拉长了影子,营造出一种宁静祥和的氛围。(描述环境氛围)(A goldenhaired dog strolls leisurely across a sunlit grassy field,the blades of grass bending gently under its paws.A soft breeze passes by,causing its fur to sway,and it occasionally lowers its head to sniff the ground.In the distance,the setting sun casts long shadows,creating a peaceful and serene atmosphere.)”这样可以使生成的视频更稳定、提升美感。 3. 语法方面: 注意权重值最好不要超过 1.5。 可以通过 Prompt Editing 使得 AI 在不同的步数生成不一样的内容,语法为:例如“alandscape”,在一开始,读入的提示词为:the model will be drawing a fantasy landscape.在第 16 步之后,提示词将被替换为:a cyberpunk landscape,它将继续在之前的图像上计算。 提示词还可以轮转,比如在第一步时,提示词为“cow in a field”;在第二步时,提示词为“horse in a field.”;在第三步时,提示词为“cow in a field”,以此类推。 4. 其他方面: 指令参数:一般包括视频时长、分辨率、帧率等细节。PixVerse 默认生成 4s 时长的视频(会在后续更新中增加更长视频的生成),分辨率 1408×768。升级(Upscale)后,分辨率可以达到 4k,会导致生成所花费的时间比普通生成更长。 情感氛围:描述视频的情感基调或氛围,可用于人物的表情、环境氛围等的控制。 参考风格:可以输入参考的艺术风格等。
2025-01-25
提示词学习
以下是关于提示词学习的相关内容: 提示词的知识体系: 可分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。 场景:直接切入提示词的场景去学,对比在不同场景下使用提示词的效果。 工具:使用现成的提示词工具,包括 Meta Prompt、Al 角色定制等。 有效语句:学习大量经典论文中提出的提示词语句。 方法论:将有效语句及其背后的原理整合成稳定可控的方法,自动编写稳定的提示词。 学习 Stable Diffusion 提示词的步骤: 学习基本概念,包括了解其工作原理、模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 研究官方文档和教程,包括通读官方文档,学习开发团队和专家的分享。 学习常见术语和范例,熟悉相关领域的专业术语和概念,研究优秀的图像标题和描述。 掌握关键技巧,如组合词条精确描述效果、控制生成权重的符号使用、处理抽象概念等。 实践和反馈,尝试生成不同风格和主题的图像,对比结果并总结经验,在社区分享请教。 创建提示词库,根据主题、风格等维度建立,记录成功案例。 持续跟进前沿,关注最新更新和趋势。 学习提示词运用的建议: 理解提示词的作用,其为模型提供上下文和指示,影响输出质量。 学习构建技巧,明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。 参考优秀案例,在领域社区、Github 等资源中寻找。 实践、迭代、优化,多与语言模型互动,比较输出差异。 活用提示工程工具,如 Anthropic 的 Constitutional AI。 跟上前沿研究。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结才能掌握窍门。
2025-01-25
AI在土木工程领域的应用
AI 在土木工程领域有以下应用: 1. 绘图方面:存在一些 AI 工具和插件可以辅助或自动生成 CAD 图,例如 CADtools 12(Adobe Illustrator 插件,添加 92 个绘图和编辑工具)、Autodesk Fusion 360(集成 AI 功能的云端 3D CAD/CAM 软件)、nTopology(基于 AI 的设计软件,帮助创建复杂 CAD 模型)、ParaMatters CogniCAD(基于 AI 的 CAD 软件,根据输入自动生成 3D 模型),一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等也提供基于 AI 的生成设计工具。但使用这些工具通常需要一定的 CAD 知识和技能,初学者建议先学习基本建模技巧。 2. 交通方面:可用于交通管理,优化交通信号灯和交通流量,缓解交通拥堵。 3. 物流配送方面:能够优化物流路线和配送计划,降低运输成本。 4. 教育方面:用于个性化学习,为学生提供定制化学习体验。 5. 农业方面:分析农田数据,提高农作物产量和质量。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-23
输出一个“BIM工程师如何用AI辅助工作”的PPT
很抱歉,目前没有关于“BIM 工程师如何用 AI 辅助工作”的 PPT 相关内容。但 BIM 工程师可以考虑以下几个方面利用 AI 辅助工作: 1. 利用 AI 进行建筑信息模型的自动生成和优化,提高建模效率和准确性。 2. 借助 AI 对建筑性能进行模拟和预测,例如能耗分析、结构稳定性评估等。 3. 通过 AI 实现施工进度的智能规划和监控,及时发现潜在的延误风险。 4. 运用 AI 辅助进行建筑材料和设备的选型,以达到成本控制和质量提升的目的。 您可以根据以上思路来制作 PPT。
2025-01-22
提示词工程的学习路径
以下是关于提示词工程的学习路径: 1. 基础概念学习 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,提示词在现代大型语言模型中极其重要,学习提示词运用还需: 1. 理解提示词的作用 提示词向模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”、“总结”、“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例 研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。 4. 实践、迭代、优化 多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具 目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究 提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。 在相关工作方面: 自动提示词工程方面,研究界开发了各种策略,用技术如增量编辑、强化学习、算法搜索等来自动化这一过程,也有利用大型语言模型本身进行自动提示词工程的工作。用于复杂推理任务的大型语言模型提示方面,提升大型语言模型在此方面的性能有引导模型产生中间推理步骤的提示方法和自我反思方法。提示词工程是一项复杂的语言任务,人类提示词工程师通常会检查当前提示词产生的失败案例,进行推理和假设,并撰写新的提示词。
2025-01-12
Agent 提示工程设计
在提示词工程设计方面: 对于游戏中的代理,如小机器人艾科,其指令结构包括角色预设(要求模型采用角色)、回复要求(提供参考文本)、提供示例(举例说明)和需要让 LLM 掌握的知识(提供参考文本)。以艾柯的提示词为例,在角色预设分别输入世界观、任务、回复的要求,设置身份,而掌握的知识就是环境的信息,使之能够与环境交互。同时,可以让 ChatGPT 帮忙生成和优化指示词,ChatGPT4.0 的 PromptPerfect 插件也可用于优化和生成指示词。 在创建工作流驱动的 AI Agent 时,简单情况可分为 3 个步骤: 规划:制定任务的关键方法,总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:在 Coze 上搭建工作流框架,设定每个节点的逻辑关系,详细配置子任务节点,并验证每个子任务的可用性。 完善:整体试运行 Agent,识别功能和性能的卡点,通过反复测试和迭代,优化至达到预期水平。接下来,从制定关键方法与流程,梳理「结构化外文精读专家」Agent 的任务目标。
2025-01-07
提示词工程技术
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 提示词工程师的主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例: 在推理任务方面,目前对于大语言模型来说具有挑战性,但通过更高级的提示词工程技术可以改进。例如在涉及数学能力的推理任务中,通过设计不同的提示词和示例来展示算术功能。 在实现让 LLM 获得 tool calling 的功能方面,采用的提示词工程主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。利用正则表达式抓取输出中的“tool”和“parameters”参数,对于不同工具采用相应的处理方式。通过以上提示词工程,可以避免微调,让完全没有 tool calling 能力的 LLM 获得稳定的 tool calling 能力。 提示词工程师是一个新兴的职业,随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。
2025-01-06