Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

langchain的提示词工程

Answer

LangChain 是一个在提示词工程领域具有重要地位的开源框架。

它允许开发者将语言模型与应用程序连接起来,使应用程序能够嵌入大模型的能力,俗称 ReAct,展示了一种提示词技术,允许模型“推理”和“行动”。

高级提示词工程技术的发展促使一系列工具和框架兴起,LangChain 已成为提示词工程工具包中的基石,最初专注于链条,后扩展到支持包括智能体和网络浏览等更广泛的功能,其全面的功能套件使其成为开发复杂 LLM 应用的宝贵资源。

在实际的工作场景中,LangChain 是常用的 RAG 框架之一。它是为简化大模型应用开发而设计的开源框架,通过提供模块化的工具和库,便于开发者集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛模型,具备良好可扩展性,有活跃的贡献者和持续更新,提供全面文档和示例代码,考虑了应用安全性和用户数据隐私保护,是多语言支持的灵活框架,适用于各种规模项目和不同背景开发者。

LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/

Content generated by AI large model, please carefully verify (powered by aily)

References

叶清:提示词链的搭建,成为提示词工程师「开源进阶提示词」

原文:https://mp.weixin.qq.com/s/IC4RfTCLeLDrQ52jxkGDdA作者:叶清提示词也可以是一个复杂的系统性工程,本文介绍了一种自动生成大量内容的方法。由Harrison Chase开发的LangChain,允许开发者将语言模型与应用程序连接起来,使应用程序能够嵌入大模型的能力。俗称ReAct,它展示了一种提示词技术,允许模型“推理”(通过思想链)和“行动”(通过能够使用预定义工具集中的工具,例如能够搜索互联网)。下面拿我23年初,我设计的一个简单的提示词链作为示例:目的:用AI批量生成拆书稿(拆书搞就是把一本书分解成为一些小节,一些平台会购买优质的书稿,帮助读者快速阅读)设计思路:十拆法,除了恰好有十个章节的书以外,多的就合并,少的就分解,根据实际情况拆分。程序输出:每次运行可以无需人工干预,自动生成上百篇内容。输入一个简单的书名,输出百篇文章,最大化效率!

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

高级提示词工程技术的普及促进了一系列工具和框架的发展,每个工具都旨在简化这些方法的实施并增强其能力。这些资源在将理论方法与实际应用之间的差距弥合方面至关重要,使研究人员和实践者能够更有效地利用提示词工程。Langchain已经成为提示词工程工具包景观中的基石,最初专注于链条,但扩展到支持包括智能体和网络浏览功能在内的更广泛的功能。它的全面功能套件使其成为开发复杂LLM应用的宝贵资源。由Microsoft提供的Semantic Kernel,提供了一个强大的技能开发和规划工具包,扩展了其实用性,包括链条、索引和内存访问。它支持多种编程语言的多功能性增强了其对广泛用户基础的吸引力。同样来自Microsoft的Guidance库,引入了一种针对提示词工程的现代模板语言,提供了与该领域最新进展对齐的解决方案。它专注于现代技术,使其成为尖端提示词工程应用的首选资源。NVidia的Nemo Guardrails专门设计用于构建Rails,确保LLM在预定义的指导方针内运行,从而增强了LLM输出的安全性和可靠性。LlamaIndex专门从事LLM应用的数据管理,为这些模型所需的数据流入提供必要的工具,简化了数据集成过程。来自Intel的FastRAG扩展了基本的RAG方法,与本文讨论的复杂技术紧密对齐,并为检索增强任务提供了优化解决方案。Auto-GPT专注于设计LLM智能体,通过其用户友好的界面和全面的功能,简化了复杂AI智能体的开发。同样,Microsoft的AutoGen因其在智能体和多智能体系统设计中的能力而受到关注,进一步丰富了提示词工程可用工具的生态系统。这些工具和框架在提示词工程的持续发展中起着重要作用,提供了从基础提示词管理到复杂AI智能体构建的一系列解决方案。随着该领域的不断扩展,新工具的开发和现有工具的增强将仍然是解锁LLM在各种应用中全部潜力的关键。

RAG 提示工程(三):迈向工程化应用

到目前为止,我们一直利用Prompt Layer平台对提示词进行验证和迭代工作。然而,在实际的工作场景中,我们并不会局限于仅使用像Prompt Layer这样专门针对提示词优化的平台。相反,我们会采用更广泛的工具和框架进行大模型项目的开发。在实际项目中,我们会使用工程化框架,为开发提供必要的支持。随着我们向工程化的第一步迈进,我们将逐步转变思路,不再仅仅局限于提示词角度的建设和优化,而是更加从实际项目角度入手去考虑工程化建设。这意味着我们将转变我们要采用更全面的工具和方法,以确保能够满足实际业务需求,提供真正的价值。下面,我们就介绍几种常用的RAG框架,供大家参考。[heading4]3.1 LangChain[content]LangChain是一个为简化大模型应用开发而设计的开源框架。它通过提供一套模块化的工具和库,允许开发者轻松地集成和操作多种大模型,从而将更多的精力投入到创造应用的核心价值上。LangChain的设计注重简化开发流程,支持广泛的模型,并且具备良好的可扩展性,以适应不断变化的业务需求。作为一个得到社区广泛支持的开源项目,LangChain拥有活跃的贡献者和持续的更新,同时提供了全面的文档和示例代码帮助新用户快速掌握。此外,LangChain在设计时也充分考虑了应用的安全性和用户数据的隐私保护,是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。LangChain官方手册:https://python.langchain.com/docs/get_started/introduction/

Others are asking
LangChain
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和功能: 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供了一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 核心概念包括组件和链,组件是模块化的构建块,链是组合在一起完成特定任务的一系列组件(或其他链)。 具有模型抽象、提示模板和值、链、代理等功能。 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,且可与外部数据源交互并提供内存功能。 LangChain 与 RAG(检索增强生成)的关系: 框架与技术:LangChain 作为框架,提供实现 RAG 必需的工具和组件,RAG 技术可在其框架内实施利用。 模块化实现:允许开发者通过模块化组件构建 RAG 应用程序。 简化开发:通过提供现成的链和提示模板简化 RAG 应用开发过程。 提高性能:利用 LangChain 实现 RAG 可创建更高效、准确的应用程序,尤其在需大量外部信息辅助决策的场景。 应用构建:通过丰富的 API 和组件库支持构建复杂的 RAG 应用,如智能问答系统、内容推荐引擎等。 在开发 LangChain 应用时,构建 RAG 应用的相关组件包括数据加载器、文本分割器、文本嵌入器、向量存储器、检索器、聊天模型等,一般流程如下:(具体流程未给出,如有需要请补充提问)
2025-02-24
详细介绍下langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它具有以下特点和优势: 1. 提供一系列工具、组件和接口,使基于大型语言模型(LLM)和聊天模型创建应用程序更轻松。 2. 核心概念包括组件和链,组件是模块化构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。 3. 具有模型抽象功能,提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 4. 支持创建和管理提示模板,引导语言模型生成特定输出。 5. 允许开发人员定义处理步骤链,按顺序执行完成复杂任务。 6. 支持构建代理,能使用语言模型做决策并根据用户输入调用工具。 7. 支持多种用例,如特定文档问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。 LangChain 是一个开源框架,为简化大模型应用开发而设计。它通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具备良好的可扩展性以适应业务需求变化。作为社区广泛支持的开源项目,拥有活跃的贡献者和持续更新,提供全面的文档和示例代码帮助新用户快速掌握。同时,在设计时充分考虑应用的安全性和用户数据的隐私保护,是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-02-14
langchain与dify哪个更有发展前景
LangChain 和 Dify 都是在 LLM 应用开发领域具有特点和优势的工具,难以简单地判断哪个更有发展前景。 LangChain 是一个编排框架,在提示链细节抽象、与外部 API 接口、从向量数据库检索上下文数据以及在多个 LLM 调用中维持内存等方面表现出色,为多种常见应用提供模板,在业余爱好者和初创公司中被广泛使用。但它目前仍是相对新的项目,且一些开发者在生产中更愿意切换到原生 Python 以消除额外依赖性。 Dify 是一个开源的 LLM 应用开发平台,具有快速部署、创意文档生成、长文档摘要、自定义 API、连接全球 LLM、更接近生产环境等优势。它允许用户编排从代理到复杂 AI 工作流的 LLM 应用,并配备了 RAG 引擎,旨在为特定行业提供聊天机器人和 AI 助手。 两者的发展前景取决于多种因素,如技术创新、市场需求、社区支持等。在不同的应用场景和需求下,它们各自都有发挥作用的空间和潜力。
2025-02-14
langchain会被淘汰吗
LangChain 目前不太可能被淘汰。它是 LLM 应用程序编排框架中的领导者,在提示链细节抽象、与外部 API 接口、上下文数据检索以及维持内存等方面表现出色,为业余爱好者和初创公司广泛使用,并已开始有构建的应用转入生产。 虽然 LangChain 仍是相对新的项目,一些开发者特别是 LLM 的早期采用者,更愿意在生产中切换到原生 Python 以消除额外的依赖性,但预计这种自行制作的方法在大多数用例中的使用会随时间减少,这与传统的 web 应用堆栈情况类似。 同时,高级提示词工程技术的普及促进了一系列工具和框架的发展,LangChain 已成为提示词工程工具包景观中的基石,最初专注于链条,后扩展到支持包括智能体和网络浏览功能在内的更广泛功能,其全面的功能套件使其成为开发复杂 LLM 应用的宝贵资源。
2025-02-14
langchain 大白话解释一下给我听
LangChain 是一个用于构建高级语言模型应用程序的框架。它能简化开发人员使用语言模型构建端到端应用程序的流程,提供了一系列工具、组件和接口,让创建由大型语言模型和聊天模型支持的应用程序更轻松。 其核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用,链则是一系列组件或其他链的组合,用于完成特定任务。 主要特点有: 1. 模型抽象:提供对大型语言模型和聊天模型的抽象,方便开发人员选择合适模型并利用组件构建应用。 2. 提示模板和值:支持创建和管理提示模板,引导语言模型生成特定输出。 3. 链:允许开发人员定义一系列处理步骤,按顺序执行完成复杂任务。 4. 代理:支持构建代理,能使用语言模型做决策,并根据用户输入调用工具。 LangChain 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,能与外部数据源交互收集数据,还提供内存功能维护状态。它旨在为开发人员提供强大工具集,构建适应性强、高效且能处理复杂用例的高级语言模型应用程序。
2025-02-08
langchain开发手册
LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具助您轻松构建 RAG 应用。 组件包括: 1. 数据加载器(DocumentLoader):能从数据源加载数据并转为文档对象,文档包含 page_content(文本内容)和 metadata(元数据如标题、作者、日期等)。 2. 文本分割器(DocumentSplitter):将文档分割成多个小文档,方便后续检索和生成,因大模型输入窗口有限,短文本更易找相关信息。 3. 文本嵌入器(Embeddings):将文本转为高维向量的嵌入,用于衡量文本相似度以实现检索功能。 4. 向量存储器(VectorStore):存储和查询嵌入,常使用 Faiss 或 Annoy 等索引技术加速检索。 5. 检索器(Retriever):根据文本查询返回相关文档对象,常见实现是向量存储器检索器,利用向量存储器相似度搜索功能检索。 6. 聊天模型(ChatModel):基于大模型如 GPT3 实现文本生成,根据输入序列生成输出消息。 使用 LangChain 构建 RAG 应用的一般流程: 1. 加载数据:根据数据源类型选择合适的数据加载器,如网页可用 WebBaseLoader。 2. 分割文档:根据文本特点选择合适的文本分割器,如博客文章可用 RecursiveCharacterTextSplitter。 3. 转换和存储嵌入:选择合适的文本嵌入器和向量存储器,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 4. 创建检索器:使用向量存储器检索器,传递向量存储器和文本嵌入器对象创建。 5. 创建聊天模型:根据性能和成本选择,如 OpenAI 的 GPT3 模型。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-01-23
将婴儿彩超图生成照片的AI提示词
以下是关于将婴儿彩超图生成照片的 AI 提示词相关信息: 在图生图功能中,除了文本提词框,还有图片输入口。可将照片拖入,通过反推提示词的按钮(如 CLIP 可反推出完整含义的句子,DeepBooru 可反推出关键词组)获取提示词,但可能存在瑕疵,需手动补充信息。调整宽度和高度使红框匹配图片,并注意提示词相关性和重绘幅度这两个重要参数。 以生成蜘蛛侠生日海报为例,可在 Midjoureny Feed 中寻找优秀案例,复制 prompt 来跑,如使用“baby spider man”“birthday”等关键词。还可将 prompt 交给智谱清言拆解以获取更多关键词。找到满意的图后记录 seed 值保障一致性,为增加专属定制感可增加细节,如“4 岁男孩”“英文名 Andy”“西瓜(儿子的小名)”等。MJ 擅长创意和高质量图片,但细节处理随机,可通过调整“权重”和“局部重绘”解决。
2025-02-24
deepseek提示词
以下是关于 deepseek 提示词的相关内容: 1. 生成小红书爆款单词视频: 开始时输入单词主题、图片风格、单词数量。 选择 deepseekr1 模型生成单词数组,以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。 提示词中角色设定为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,且以特定数组形式呈现。 2. Deepseek 时代提示词的关键诉求: 观察发现完整的提示词可能不如片段有效,甚至可能干扰模型思考流程,过长提示会带来 Token 浪费和上下文污染。 在 deepseek 时代,用户只需在关键点进行引导,让模型自主发挥,“关键诉求直通车”模式是新一代 LLM 的正确打开方式。 新旧提示法对比:传统方法像唠叨家长,费力不讨好,新型技巧像对聪明助理打暗号,精准狙击。 3. 让 DeepSeek 生成相机运动轨迹的提示词: 以往的提示词是场景、构图、尺寸、位置、形态、半身全身、环境的组合。 现在把这些提示词喂给 DeepSeek,要求以“相机运动轨迹”的方式描写,可得到新提示词,如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”。 对空间理解和对语义的遵循能让有光影变化的泳池自然生成,海螺 AI 甚至能给主角穿上与场景匹配的拖鞋。
2025-02-24
提示词如何设计
提示词的设计需要遵循以下要点和准则: 明确描述想要的内容:模型能完成多种任务,所以要清晰展示需求,而非简单告知。 遵循三个基本准则: 展示和告知:通过说明、示例或两者结合表明需求。如让模型排序或分类,要展示示例。 提供高质量数据:构建分类器或遵循某种模式时,确保有足够且正确的示例。 检查设置:温度和 top_p 控制模型生成响应的确定性,根据需求设置合适的值。 故障排除:若 API 未达预期,检查是否清楚预期结果、提供足够示例、示例有无错误、是否正确使用温度和 top_p。 让代理明确任务以提高表现:采用合理结构并清晰指令,如为不同代理设置不同指令结构,包括角色预设、回复要求、提供示例和所需掌握的知识等。 通用流程: 数据准备:收集高质量案例数据。 模型选择:根据创作目的选合适模型。 提示词设计:结合数据设计初版,注意角色、背景、目标、约束等要点。 测试与迭代:输入提示词测试,与模型交流获取优化建议,修正提示词,重复测试、交流、修正过程,直至满意。 总结提炼:归纳优化经验,形成最佳实践。 应用拓展:将方法论用于其他创意内容设计。 使用他人写好的 prompt 时,要深入揣摩背后思路,理解编写方式的原因和逻辑,关键在于养成充分利用模型、不断迭代、深度交流和思考的习惯。
2025-02-24
deepseek提示词
以下是关于 deepseek 提示词的相关内容: 1. 生成小红书爆款单词视频: 开始时输入单词主题、图片风格、单词数量。 选择 deepseekr1 模型生成单词数组,以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。 提示词中角色设定为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,并以特定数组形式呈现。 2. Deepseek 时代提示词的关键诉求: 观察发现完整的提示词可能不如片段有效,甚至可能干扰模型思考流程,过长提示会带来 Token 浪费和上下文污染。 新一代 LLM 的正确打开方式是“关键诉求直通车”模式,如像对聪明助理打暗号,让模型自主发挥。 3. 让 DeepSeek 生成相机运动轨迹的提示词: 以往提示词是场景、构图、尺寸等的组合,现在要求以“相机运动轨迹”方式描写,如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”。 对空间理解和语义遵循能让相关元素自然生成,如生成有光影变化的泳池和匹配场景的拖鞋。
2025-02-24
deepseek的提示词文档
以下是关于 DeepSeek 的相关信息: DeepSeek 爆火,价格亲民且实力超群,是智慧开源领航者,实时联网深度推理双冠王,用技术普惠重新定义了 AI 边界。便宜、开源且能联网,在 Appstore 排行第一,导致算力股大跌。 使用地址:https://chat.deepseek.com/(有手机客户端:扫描下面二维码) 模型下载地址:https://github.com/deepseekai/DeepSeekLLM?tab=readmeovfile API 文档地址:无 DeepSeek 的提示词使用方法比较长,单独列了一篇 魔改版本:https://huggingface.co/ValueFX9507/TifaDeepsex14bCoTGGUFQ4 、https://huggingface.co/mradermacher/DeepSeekR1DistillQwen7BabliteratedGGUF 一个提示词让 DeepSeek 能力更上一层楼的相关内容: 效果对比:用 Coze 做了小测试,对比视频 使用方法: Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不稳定) 完整提示词:v 1.3 特别鸣谢:李继刚(【思考的七把武器】在前期提供了很多思考方向)、Thinking Claude(项目是最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源)、Claude 3.5 Sonnet(最得力的助手)
2025-02-24
短视频 提示词
以下是关于短视频提示词的相关内容: Pikadditions 功能 1. 上传基础视频 点击页面下方的【Pikaddition】按钮。 拖拽或点击上传本地视频。 若自己没有视频,可在“templates”板块使用官方示例视频做测试。 2. 添加主角图片 点击【Upload Image】上传角色图片文件。 3. 编写视频提示词 若需要参考角色在视频里的相关互动,需在输入框用英文描述期望效果(支持 Emoji 辅助),然后点击生成按钮。 Pika 会提供一段默认 prompt,若没有特殊想法,可以直接使用。 建议在自己的提示词尾部加入官方提供的默认提示词,效果会更好。 该功能提示词公式参考: 事件驱动句式:As... 空间锁定技巧:使用场景物体作坐标轴:on the.../behind the.../from the... 动态呼应原则:角色动作与视频元素联动:swaying with.../reacting to.../matching... Coze 智能体创建 1. “开始”节点 共有 4 个输入变量,分别为:idea_txt(主题观点)、left_to_txt(画面左上角的文字)、right_to_txt(画面右上角的文字)、img_prmpot(画面中间图片生成提示词)。 注意:这 4 个变量名称要和智能体中提示词的变量对应一致,方便接收用户传入的参数。 2. “大模型”节点 使用 DeepSeek R1 模型,提示词要求不复杂,说出需求即可,格式可用大白话说出来。 3. “文本”节点 为将文案分句,每一句要生图、配音。选择按“句号”分句,具体可根据文案格式选择不同方式。 4. “图像生成”节点 使用官方插件,模型选“LOGO 设计”。若要生成全景图,此插件效果欠佳,建议选其它插件。 5. “抠图节点” 将上个节点生成的图片进行抠图。 编剧提示词 默认适合大框架的故事结构。若做短视频,在提交创作偏好时标注片长,比如:这是个 3 分钟的短视频。输出是分阶段的,几个来回就可以搞定剧本。
2025-02-24
有可以用于建设工程工程量计算的AI软件吗
目前在建设工程工程量计算方面,有一些专门的 AI 软件可供使用。例如广联达 BIM 安装计量 GQI2021,它能够利用 AI 技术提高工程量计算的效率和准确性。此外,鲁班算量软件也在一定程度上应用了 AI 算法来辅助工程量的计算。不过,具体选择哪种软件还需根据您的具体需求和项目特点来决定。
2025-02-24
软件工程师如何从ai上获得帮助
软件工程师可以从以下几个方面在 AI 上获得帮助: 1. 辅助编程的 AI 工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,提供实时代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于大模型可快速生成代码。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力为开发者服务。 CodeFuse:蚂蚁集团支付宝团队提供的免费 AI 代码助手。 Codeium:由 AI 驱动,提供代码建议、重构提示和代码解释等帮助。 更多工具可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 生成性 AI 作为助手:模型在大量代码库上训练,在编码时给出建议,但要注意生成代码的正确性,在提高生产力的同时限制生成量以检查正确性。例如 GitHub Copilot 帮助提高了开发人员的生产力,估计增长在 2 倍或更少的范围内。 Sam Altman 的三点观察表明: 1. AI 模型的智能大致等于用于训练和运行它的资源的对数,预测这一规律的缩放定律在多个数量级上都准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,较低价格导致使用量大幅增加。 3. 社会经济上线性提升智力的价值具有超指数性质,这一结果导致看不到指数式投资在不久将来会停止的理由。 未来可能会推出人工智能代理,如软件工程师代理人,虽然存在一些不足,但仍可能产生重大影响。生成性 AI 作为程序员助手是最早应用之一,成果出色,但相对于图像生成,生产力提升相对较小,且要注意代码正确性。
2025-02-22
如何从0到1成为AI工程师
要从 0 到 1 成为 AI 工程师,您可以参考以下步骤: 1. 基础学习: 掌握计算机科学的基本概念,通过 CS50 课程和专门的 Python 资源学习 Python 编程技巧。 2. 机器学习基础: 学习基础的机器学习方法,建立扎实基础并培养处理数据的直觉。 巩固数学基础,包括微积分、线性代数和概率论。若能学习数值计算和优化则更好。 3. 深度学习技术: 选择优秀的深度学习课程,如 Yann Le Cun 的纽约大学讲座、fast.ai 或 deeplearning.ai 的深度学习专精课程深入学习。 4. MLOps 技能: 从 fullstackdeeplearning 学习 MLOps 技能。如有需要,可先通过 fullstackopen 学习软件工程的基本知识,包括 web 开发、分布式系统、DevOps 和关系数据库。 5. 专业发展: 寻找感兴趣的领域,通过构建和完善作品集来发展专业技能。可以从 Hugginface 的课程开始,深入挖掘兴趣方向,完成有趣的项目和论文并展示在 GitHub 上。 此外,您还可以关注以下资源和活动: 1. Reddit 上的 Claude Sonnet 3.5 代码编写提示词模板 V2 版本,其有详细解释和引导式思维链,包含代码审查、规划、输出、安全审查 4 个步骤。 2. 参加第二期「AI 实训营」,如“大咖带你快速上手通义灵码 AI 程序员”的共学直播,通过零基础互动练习、GitHub 部署实战等方式学习。 3. 学习 Code AI 应用开发,以证件照应用为例,了解其背景、现状和学习创建应用的过程,包括操作界面、业务逻辑和用户界面等。
2025-02-12
软件行业质量体系工程师可以用AI做什么
软件行业质量体系工程师可以利用 AI 实现以下转变和拓展工作: 1. 需求分析师可转变为 AI 洞察翻译官,未来能利用 AI 分析海量数据以揭示隐藏的用户需求,技能需向数据分析、用户心理学和商业洞察力转型。 2. 系统架构师可转变为创新架构策略师,未来设计能适应快速变化和 AI 集成的灵活架构,技能要向前沿技术跟踪、跨学科知识整合和创新思维转型。 3. 开发工程师可转变为 AI 协作编程专家,未来与 AI 结对编程,专注于创新性和复杂逻辑的实现,技能要向 AI 工具应用、算法优化和创造性问题解决转型。 4. 测试工程师可转变为质量战略专家,未来设计高级测试策略,处理 AI 无法覆盖的边缘情况,技能要向测试策略设计、用户体验评估和风险管理转型。 5. 运维工程师可转变为系统优化专家,未来专注于系统整体优化和异常情况处理,技能要向性能调优、安全加固和智能监控系统设计转型。 6. 项目经理可转变为价值流优化专家,未来专注于价值交付和团队协作效率的提升,技能要向精益管理、跨职能团队协调和持续改进转型。 此外,AI 在生成测试用例方面具有显著优势,能自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。AI 在医疗保健、金融服务、零售和电子商务、制造业、交通运输等行业也有广泛应用,例如医学影像分析、药物研发、风控和反欺诈、产品推荐、预测性维护等方面。
2025-02-11
软件质量工程师可以使用AI做什么
软件质量工程师可以利用 AI 实现以下几个方面的工作: 1. 生成测试用例:AI 能够自动化和智能化地生成高覆盖率的测试用例,从而减少人工编写测试用例的时间和成本,提高测试效率、增强测试覆盖率并发现潜在问题,提升软件质量和用户体验。 2. 转型为质量战略专家:设计高级测试策略,处理 AI 无法覆盖的边缘情况。技能转型方面,需要掌握测试策略设计、用户体验评估和风险管理。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-11
AIGC工程师
以下是为您整理的 AIGC 相关招聘信息: 猿印教育 AIGC 图像生成算法工程师/专家(北京五道口附近) 简历请发送至:stephen.wang@yyinedu.com 岗位职责: 面向 AIGC 领域,结合应用场景,开发针对性图像生成解决方案。 负责模型的部署和推理性能优化,确保模型在实际应用中的高效性和稳定性。 持续关注最新的技术发展和业界趋势,积极推动团队技术水平的提升,并将新技术应用到实际项目中。 任职要求: 计算机相关专业本科及以上学历,具备扎实的计算机基础知识。 熟练掌握 Python 语言,熟悉至少一种主流深度学习框架(TensorFlow/Pytorch 等)。 对深度学习和计算机视觉领域的基础理论和方法有深入理解,熟悉 DDPM,DDIM,Stable Diffusion 原理,了解 Dreambooth,ControlNet 等可控生成技术。 具有强烈的技术兴趣和钻研精神,具备良好的学习能力、沟通能力和团队合作精神。 数字银行 AIGC 产品经理(深圳) 请直接飞书联系@Eason 任职要求: 相信 AIGC:有过第一次用 chatgpt 时的兴奋,记得去年那个 AI 疯狂的 3 月份,熬夜看过 gpt4、copilot 的发布会,想过各种办法搞定 plus 账号,现在在翘首以盼 gpt5。 喜欢用:用过各种 AIGC 应用,如 GPT4,newbing,Kimi,Perplexity,Suno 等等。看到新的爆款产品,就会第一时间玩一玩。 能上手:可以简单的上手,不限于调用 api 做个小 demo,会写复杂的提示词,做一个简单的 RAG 应用,文生图、视频,微调模型等。 岗位职责: 构建赋能海量用户的大模型工程化产品,帮助某数字银行塑造技术领先性。 探索和设计工程化产品,来支持更快的 AI 原生应用构建(类似 Langchain,Llamaindex 等等,或者由您亲自来颠覆它们,做一个 Langxx,Llamaxx)。 在重点业务场景中深入探索大模型的应用落地,用最新的理念,做出真正能在海量金融业务场景中跑起来的应用(把类似 MetaGPT,AutoGen,Advanced RAG 真正落地,或者创造自己的 multi agent 应用)。 此外,3 月 2 日接龙中涉及 AIGC 相关人员的工作内容包括: 雯琋(Vinci)AIGC 不会编程但会鼓励编程。 AI 译文打杂文案。 AI 译然,AI 视频相关的都会一点,就是完全不会做网站。 Stanico,产品、运营、prompt。
2025-02-10