Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai和保险行业

Answer

以下是关于 AI 和保险行业的相关内容:

人工智能和机器学习在金融服务行业的应用已有十多年,促成了从更好的信贷评估到更精确的基础欺诈评分等一系列改进。大型语言模型通过生成式人工智能代表着重大飞跃,正在改变多个领域。金融服务公司拥有大量历史金融数据,若用其微调大型语言模型或从零开始训练模型,能迅速回答几乎任何金融问题。金融服务行业已准备好使用生成式人工智能来实现五个目标:个性化的消费者体验、成本效益高的运营、更好的合规性、改进的风险管理以及动态的预测和报告。

在保险行业,文章探讨了人工智能如何提升保险服务的价值链。AI 的医疗大模型与真人医生的治疗方案达到了 96%的一致性。保险销售基于信任交易,用户体验和满意度是信任累积关键,未来 GPT 可视为业务人员的个人助理。优化保险服务链需考虑在线与远程服务体验、独特的用户分类方法、数字化服务体系、用户心理状态、路径设计以及保险营销员的实际需求等,以实现用户财务需求与保险商品的双赢。

Content generated by AI large model, please carefully verify (powered by aily)

References

金融服务业将比你想象得更快地接纳生成式 AI

原文地址:https://a16z.com/2023/04/19/financial-services-will-embrace-generative-ai-faster-than-you-think/原文作者:Angela Strange,Anish Acharya,Sumeet Singh,Alex Rampell,Marc Andrusko,Joe Schmidt,David Haber,Seema Amble发表时间:2023年4月19日译者:通往AGI之路,若有瑕疵之处,请在段落评论中斧正,谨此致谢人工智能和机器学习在金融服务行业的应用已经有十多年的历史,它们已经促成了从更好的信贷评估到更精确的基础欺诈评分等一系列的改进。大型语言模型(LLMs)通过生成式人工智能,代表着一次重大的飞跃,正在改变[教育](https://a16z.com/2023/02/08/the-future-of-learning-education-knowledge-in-the-age-of-ai/)、[游戏](https://a16z.com/2022/11/17/the-generative-ai-revolution-in-games/)、[商业](https://a16z.com/2023/02/07/everyday-ai-consumer/)等多个领域。与传统的AI/ML主要侧重于基于现有数据进行预测或分类不同,生成式人工智能可以创造全新的内容。这种能力,结合了对大量非结构化数据的训练和实际上无限的计算能力,可能将带来金融服务市场数十年来最大的变革。与其他平台转变——如互联网、移动设备、云计算——不同,在这些转变中金融服务行业的采用速度较慢,在这里,我们预计最优秀的新公司和现有企业将立即开始接纳生成式人工智能。

金融服务业将比你想象得更快地接纳生成式 AI

金融服务公司拥有大量的历史金融数据;如果他们使用这些数据来微调大型语言模型(或者像[BloombergGPT](https://www.cnbc.com/2023/04/13/bloomberg-plans-to-integrate-gpt-style-ai-into-its-terminal.html)那样从零开始训练模型),他们将能够迅速地回答几乎任何金融问题。例如,一个经过公司客户聊天记录和一些额外产品规格数据训练的LLM,应该能够立即回答有关公司产品的所有问题,而一个经过公司十年可疑活动报告(SARs)训练的LLM,应该能够识别出一组表明存在洗钱计划的交易。我们相信金融服务行业已经准备好使用生成式人工智能来实现五个目标:个性化的消费者体验、成本效益高的运营、更好的合规性、改进的风险管理、以及动态的预测和报告。在[现有企业与初创公司之间的竞争](https://a16z.com/2015/11/05/distribution-v-innovation/)中,由于拥有对专有金融数据的访问权限,现有企业在使用AI推出新产品和改进运营时将拥有初始优势,但他们最终将受到对准确性和隐私的高标准的限制。另一方面,新进入者最初可能需要使用公开的金融数据来训练他们的模型,但他们将迅速开始生成自己的数据,并逐渐使用AI作为新产品分销的突破口。让我们深入了解这五个目标,看看现有企业和初创公司如何利用生成式AI。

问:Chain of Density 是什么

“Denser_Summary”:“本文探讨了人工智能如何提升保险服务的价值链。报道指出,AI的医疗大模型与真人医生的治疗方案达到了96%的一致性。保险销售是基于信任的交易,其中用户体验和满意度是信任累积的关键。未来,GPT可以被视为业务人员的个人助理,帮助他们更专业地为用户提供服务。"密度级别2:“Missing_Entities”:“服务体验设计;用户目标与方案桥梁;服务内容与方案“,“Denser_Summary”:“文章探究AI如何深化保险服务链的价值。AI医疗大模型与真医生治疗策略有96%相似。信任建立在用户满意的体验上,GPT被认为是业务助手。服务体验设计和用户目标是关键,要实现用户财务需求与保险商品的双赢,还需用AI设计服务链,提供优质服务内容和方案。"密度等级3:“Missing_Entities”:“在线、远程服务体验;用户分类不应标签化;数字化运营服务体系“,“Denser_Summary”:“AI可优化保险服务链,如医疗模型展示了96%的准确性。信任从优质体验中建立,而GPT成为业务的协助者。在线与远程服务的体验、非标签化的用户分类和数字化运营服务体系是改善用户体验的核心。结合用户目标和服务设计,AI为保险服务提供双赢策略。"密度级别4:“Missing_Entities”:“用户心理状态;路径设计用户分类;保险营销员现实需求“,“Denser_Summary”:“此文评估AI在加强保险价值链中的作用,强调医疗大模型96%的匹配度。建立信任需高质体验,GPT作为业务支援。关键在于线上服务体验,独特的用户分类方法,和数字化服务体系。考虑用户心理状态和路径设计,与保险营销员的实际需求相结合,确保双赢策略。"密度等级5:

Others are asking
如何用AI搭建个人知识库
以下是用 AI 搭建个人知识库的方法: 首先,要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入(投喂)定制化的知识。但 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识往往不够。为解决此问题,OpenAI 提供了 embedding API 解决方案。 embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。比如,向量是数学中表示大小和方向的一个量,通常用一串数字表示,在计算机科学和数据科学中,向量通常用列表(list)来表示。向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。 具体操作时,可将大文本拆分成若干个小文本块(也叫 chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,并在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过 embeddings API 转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt,发送给 GPT API。 例如,有一篇万字长文,拆分成多个 Chrunks 包含不同内容。如果提问是“此文作者是谁?”,可以直观地看出与问题关联度最高的文本块,通过比较 embeddings 向量也能得到结论。最后发送给 GPT API 的问题会类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。” 此外,还有案例展示了如何在 AI 时代把碎片化信息内化为自己的知识/智慧。比如在读书时看到有触动的文本,将其整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。基于笔记中提到的 AI 对人的赋能模式,展开深度实践,生成自己的观点和决策,并打造成体系化的内容产品,实现价值。通过一个碎片化知识在左侧知识库中的“点、线、面、体”式的流转,从一个书摘变成一个体系化内容或课程,把“别人说的话”变成“自己的智慧”。
2025-02-28
怎样给AI投喂小说
给 AI 投喂小说可以参考以下步骤: 1. 首先使用 code interpreter,将小说原文喂给它并写入到 dataframe 里,全部喂完后保存成 excel 文件备用。 2. 让 GPT 读取该文件并给出反馈。AI 会从情节合理与连贯性角度给出意见。 3. 进行细节修改,反复尝试后可能会发现某些结构化 prompt 效果更好,修改的成品有部分可直接采纳。每改一段,AI 会把修改后的内容写入内存并读取新的一段。 4. 一轮修改完成后,可让 AI 再修订一轮。若重复次数过多,可先合并段落。这一轮修改可能更强调字词和标点。 5. 还可以把相关写作课程的内容贴给 AI 让其总结,并依照总结的方法修订小说。 需要注意的是,在修改过程中,对于 GPT 改得不好的地方进行简单纠正。同时,由于 GPT 不稳定,为避免白忙活,应随时保存备份。
2025-02-28
我想知道AI如何提高办公效率
以下是 AI 提高办公效率的一些方式: 1. 在日常活动中,如交通监测系统能使通勤更顺畅,银行账户欺诈检测等方面,AI 能自动处理部分工作,提高效率。 2. 在游戏行业,从前期制作到后期迭代,大模型不仅能降低成本,还能打造创新玩法,提供更好的游戏体验。例如网易的《逆水寒》,将 AIGC 应用于美术开发、NPC 与玩家的交互,还内嵌了“AI 作词机”。 3. 在人力资源管理领域,AI 应用于招聘、员工绩效评估、培训与发展等环节,显著提高工作效率。 4. 在全行业中,基础办公如 PPT、Excel、会议报告、策划会、文案包装、图文海报、客服机器人等,从单个任务到角色再到角色间协同,都能显著提高工作效率。 5. 在信息检索和处理方面,如 You.com 等多种领先的 AI 产品,能帮助我们更高效地获取信息,提升工作效率和决策质量。
2025-02-28
写论文数据最真实的ai是哪个?
在论文写作领域,AI 技术的应用发展迅速,能在多个方面提供辅助。以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,这些工具只是辅助,使用时要结合自身写作风格和需求,选择最合适的,且内容由 AI 大模型生成,请仔细甄别。但目前没有哪个 AI 能保证提供的数据绝对真实,仍需您对数据进行仔细核实和评估。
2025-02-28
作为互联网公司的IT,如何用AI来优化或升级自己的工作
对于互联网公司的 IT 人员,利用 AI 优化或升级工作可以从以下几个方面入手: 1. 明确自身工作目标和想法:AI 是工具,能将能力放大,帮助更好更快地实现想法。重要的是思考自己真正想为这个世界做些什么,并着手尝试通过 AI 来实现。 2. 借鉴他人的 AI 工作流: 起床时,让 AI 为自己排 TODO 优先级,做私董会的脑暴。 工作中有阳光会撒娇/卖萌的傲娇 AI 小助理加油。 重点事项如内容创作,可拆成 bot 团队组,包括选题、标题、框架、扩写等,并让两个 AIbot 互相改。 优化 bot,如内容选题 bot、短视频脚本 bot、数据分析 bot 等,并将相关知识库和 Prompt 资产放入飞书的知识库和多维表单中维护。 准备备选的生产力 AI 工具库。 未来可将整个公司业务搬入飞书,外接 MJ、ChatBot 分身等。 3. 关注 AI 发展趋势:目前 AI 在一些具体任务上已超过多数人类,但在涉及推理和自主学习任务方面还有差距,通用人工智能的定义存在争议,其发展带来了技术、伦理、安全和哲学等方面的思考。 需要注意的是,AI 终究会发展到每个人触手可及的程度,对于大部分人来说,并不需要特别关注 AI 技术本身,而应专注于自身的工作需求和目标。
2025-02-28
用AI做数据分析有什么好办法
用 AI 做数据分析的好办法包括以下几个方面: 1. 提供大模型可访问的数据源或上传数据表格,并通过提示词明确需要分析的维度和结果输出格式。观察生成结果,迭代优化提示词,最终导出满意结果。 2. 将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,针对每个环节优化 AI 性能,便于发现和修正问题。 3. 针对复杂问题,采用逐步深化和细化的方式提问。先提出宽泛问题,再根据回答进一步细化。 4. 给 AI 提供参考和学习内容,包括高质量的操作指南、行业最佳实践、案例研究等,并编写详细流程和知识。 5. 在 Prompt 中使用专业领域术语引导,如法律术语,使 AI 更精准地提供信息。 6. 对于分析结果,要进行交叉验证,结合自身专业知识筛选和判断,确保信息准确。 在实际操作中,例如在 SQL 分析中,用户描述分析内容,后台连接数据库,让 AI 输出并校验 SELECT 类型的 SQL 语句,执行后将数据传给 GPT 分析,最后返回前端页面渲染图表和结论。个性化分析中,用户上传文件并描述辅助,前端解析后传给 GPT 处理,后续步骤与前者一致。
2025-02-28