Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何搭建AI知识库

Answer

以下是搭建 AI 知识库的步骤:

  1. 设计您的 AI 机器人,确定其功能范围。
  2. 编写【prompt】提示词,设定 Bot 的身份和目标。
  3. 创建【知识库】:
    • 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。
    • 创建知识库路径:个人空间 - 知识库 - 创建知识库。
    • 知识库文档类型支持本地文档、在线数据、飞书文档、Notion 等,本次使用【本地文档】。
    • 按照操作指引上传文档、分段设置、确认数据处理。
    • 小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“###”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“###”。
    • 最终的知识库结果如下,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。

此外,您还可以参考相关文章,如《大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库》,以获取更深入的理解和帮助。

Content generated by AI large model, please carefully verify (powered by aily)

References

「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人

[heading5]3)创建【知识库】,整理“关键字”与“AI相关资料链接”的对应关系,并将信息存储起来。创建知识库路径:个人空间-知识库-创建知识库知识库文档类型支持:本地文档、在线数据、飞书文档、Notion等,本次使用【本地文档】按照操作指引上传文档、分段设置、确认数据处理。💡小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“###”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“###”。最终的知识库结果如下,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。

「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人

[heading5]3)创建【知识库】,整理“关键字”与“AI相关资料链接”的对应关系,并将信息存储起来。创建知识库路径:个人空间-知识库-创建知识库知识库文档类型支持:本地文档、在线数据、飞书文档、Notion等,本次使用【本地文档】按照操作指引上传文档、分段设置、确认数据处理。💡小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“###”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“###”。最终的知识库结果如下,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。

这可能是讲 Coze 的知识库最通俗易懂的文章了

大家好,我是大圣,一个致力于使用AI技术将自己打造为超级个体的程序员。对于知识库大家并不陌生,一系列的信息和知识聚集在一起就可以构成知识库。比如我最心爱的[通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)就是一个使用飞书软件搭建的AI知识库。当你需要了解AI某一领域知识的时候,你只需要在AGI的飞书大群中,跟机器人对话就能获取对应的资料。而在我的[大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb)也是以AI时代的知识库作为例子进行了讲解。这篇文章的目的就是帮助非编程人士来理解AI时代的知识库,读完本文你会收获:1.AI时代的知识库的概念、实现原理以及能力边界2.通往AGI之路大群中的通过对话就能获取知识库中资料的原理3.更好的使用Coze等AI Agent平台中的知识库组件,打造更加强大的智能体请允许我自卖自夸:我这篇文章可以说是知识库文章中Coze讲的最好的,讲Coze的文章中知识库讲的最好的。另外做个预告,我正在规划一个关于AI时代你应该具备的编程基础系列,大纲如下:数据库|让Coze拥有了记忆的组件1知识库|让Coze拥有了记忆的组件2变量|让Coze拥有了记忆的组件3JSON|让你更好的使用Coze插件API|外部应用程序该如何接入Coze操作系统与服务器|那些接入了Coze的微机器人都是运行在哪里的Docker|让你用最简单的方式部署微信机器人

Others are asking
如何用AI搭建个人知识库
以下是用 AI 搭建个人知识库的方法: 首先,要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入(投喂)定制化的知识。但 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识往往不够。为解决此问题,OpenAI 提供了 embedding API 解决方案。 embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。比如,向量是数学中表示大小和方向的一个量,通常用一串数字表示,在计算机科学和数据科学中,向量通常用列表(list)来表示。向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。 具体操作时,可将大文本拆分成若干个小文本块(也叫 chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,并在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过 embeddings API 转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt,发送给 GPT API。 例如,有一篇万字长文,拆分成多个 Chrunks 包含不同内容。如果提问是“此文作者是谁?”,可以直观地看出与问题关联度最高的文本块,通过比较 embeddings 向量也能得到结论。最后发送给 GPT API 的问题会类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。” 此外,还有案例展示了如何在 AI 时代把碎片化信息内化为自己的知识/智慧。比如在读书时看到有触动的文本,将其整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。基于笔记中提到的 AI 对人的赋能模式,展开深度实践,生成自己的观点和决策,并打造成体系化的内容产品,实现价值。通过一个碎片化知识在左侧知识库中的“点、线、面、体”式的流转,从一个书摘变成一个体系化内容或课程,把“别人说的话”变成“自己的智慧”。
2025-02-28
怎样给AI投喂小说
给 AI 投喂小说可以参考以下步骤: 1. 首先使用 code interpreter,将小说原文喂给它并写入到 dataframe 里,全部喂完后保存成 excel 文件备用。 2. 让 GPT 读取该文件并给出反馈。AI 会从情节合理与连贯性角度给出意见。 3. 进行细节修改,反复尝试后可能会发现某些结构化 prompt 效果更好,修改的成品有部分可直接采纳。每改一段,AI 会把修改后的内容写入内存并读取新的一段。 4. 一轮修改完成后,可让 AI 再修订一轮。若重复次数过多,可先合并段落。这一轮修改可能更强调字词和标点。 5. 还可以把相关写作课程的内容贴给 AI 让其总结,并依照总结的方法修订小说。 需要注意的是,在修改过程中,对于 GPT 改得不好的地方进行简单纠正。同时,由于 GPT 不稳定,为避免白忙活,应随时保存备份。
2025-02-28
我想知道AI如何提高办公效率
以下是 AI 提高办公效率的一些方式: 1. 在日常活动中,如交通监测系统能使通勤更顺畅,银行账户欺诈检测等方面,AI 能自动处理部分工作,提高效率。 2. 在游戏行业,从前期制作到后期迭代,大模型不仅能降低成本,还能打造创新玩法,提供更好的游戏体验。例如网易的《逆水寒》,将 AIGC 应用于美术开发、NPC 与玩家的交互,还内嵌了“AI 作词机”。 3. 在人力资源管理领域,AI 应用于招聘、员工绩效评估、培训与发展等环节,显著提高工作效率。 4. 在全行业中,基础办公如 PPT、Excel、会议报告、策划会、文案包装、图文海报、客服机器人等,从单个任务到角色再到角色间协同,都能显著提高工作效率。 5. 在信息检索和处理方面,如 You.com 等多种领先的 AI 产品,能帮助我们更高效地获取信息,提升工作效率和决策质量。
2025-02-28
写论文数据最真实的ai是哪个?
在论文写作领域,AI 技术的应用发展迅速,能在多个方面提供辅助。以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,这些工具只是辅助,使用时要结合自身写作风格和需求,选择最合适的,且内容由 AI 大模型生成,请仔细甄别。但目前没有哪个 AI 能保证提供的数据绝对真实,仍需您对数据进行仔细核实和评估。
2025-02-28
作为互联网公司的IT,如何用AI来优化或升级自己的工作
对于互联网公司的 IT 人员,利用 AI 优化或升级工作可以从以下几个方面入手: 1. 明确自身工作目标和想法:AI 是工具,能将能力放大,帮助更好更快地实现想法。重要的是思考自己真正想为这个世界做些什么,并着手尝试通过 AI 来实现。 2. 借鉴他人的 AI 工作流: 起床时,让 AI 为自己排 TODO 优先级,做私董会的脑暴。 工作中有阳光会撒娇/卖萌的傲娇 AI 小助理加油。 重点事项如内容创作,可拆成 bot 团队组,包括选题、标题、框架、扩写等,并让两个 AIbot 互相改。 优化 bot,如内容选题 bot、短视频脚本 bot、数据分析 bot 等,并将相关知识库和 Prompt 资产放入飞书的知识库和多维表单中维护。 准备备选的生产力 AI 工具库。 未来可将整个公司业务搬入飞书,外接 MJ、ChatBot 分身等。 3. 关注 AI 发展趋势:目前 AI 在一些具体任务上已超过多数人类,但在涉及推理和自主学习任务方面还有差距,通用人工智能的定义存在争议,其发展带来了技术、伦理、安全和哲学等方面的思考。 需要注意的是,AI 终究会发展到每个人触手可及的程度,对于大部分人来说,并不需要特别关注 AI 技术本身,而应专注于自身的工作需求和目标。
2025-02-28
用AI做数据分析有什么好办法
用 AI 做数据分析的好办法包括以下几个方面: 1. 提供大模型可访问的数据源或上传数据表格,并通过提示词明确需要分析的维度和结果输出格式。观察生成结果,迭代优化提示词,最终导出满意结果。 2. 将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,针对每个环节优化 AI 性能,便于发现和修正问题。 3. 针对复杂问题,采用逐步深化和细化的方式提问。先提出宽泛问题,再根据回答进一步细化。 4. 给 AI 提供参考和学习内容,包括高质量的操作指南、行业最佳实践、案例研究等,并编写详细流程和知识。 5. 在 Prompt 中使用专业领域术语引导,如法律术语,使 AI 更精准地提供信息。 6. 对于分析结果,要进行交叉验证,结合自身专业知识筛选和判断,确保信息准确。 在实际操作中,例如在 SQL 分析中,用户描述分析内容,后台连接数据库,让 AI 输出并校验 SELECT 类型的 SQL 语句,执行后将数据传给 GPT 分析,最后返回前端页面渲染图表和结论。个性化分析中,用户上传文件并描述辅助,前端解析后传给 GPT 处理,后续步骤与前者一致。
2025-02-28
从知识库中查询与:DeepSeek相关的热门资讯信息
以下是关于 DeepSeek 的热门资讯信息: 媒体报道和网络文章方面: 通往 AGI 之路:关于 DeepSeek 的所有事情【知识库持续更新中】,链接:https://mp.weixin.qq.com/s/n0WrrJL0fVX6zLeTBWpZXA 数字生命卡兹克:DeepSeek 的提示词技巧,就是没有技巧。链接:https://zhuanlan.zhihu.com/p/20544736305 (错误) 宝玉:教你如何破解 DeepSeek R1 系统提示词,类型为提示词破解,链接:https://mp.weixin.qq.com/s/vAp2wI5ozTw7R6jreLMw 橘子汽水铺:中国开源,震撼世界:DeepSeek R1 的变革、启示与展望,类型为基础认知,链接:https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw 橘子汽水铺:自学成才之路,DeepSeek R1 论文解读,类型为基础认知,链接:https://mp.weixin.qq.com/s/gmdHyh6fsUdj1JhM1sV9bg 新智元:史上首次,DeepSeek 登顶中美 AppStore!NYU 教授:全球「AI 霸权」之争已结束,类型为基础认知,链接:https://mp.weixin.qq.com/s/ybvV8RMX0yyS5YfG1qNWgg 一支烟花 AI:用流程图对比 DeepSeekR1,OpenAI O1,Claude 说明强化学习在 AI 大模型训练、推理的创新和意义,类型为基础认知,链接:https://mp.weixin.qq.com/s/mdGtOcg1RuQOEBn31KhxQ 腾讯科技:一文读懂|DeepSeek 新模型大揭秘,为何它能震动全球 AI 圈,类型为基础认知,链接:https://mp.weixin.qq.com/s/cp4rQx09wygE9uHBadI7RA 张小珺腾讯科技:一场关于 DeepSeek 的高质量闭门会:比技术更重要的是愿景,类型为进阶思考,链接:https://mp.weixin.qq.com/s/a7C5NjHbMGh2CLYk1bhfYw 全新 AI 整活计划方面: DeepSeek 模型热度很高,微信指数达 10 亿多次,引发大众关注。 元子使用 Monica 时发现电脑版双击能显示思考过程,且注意不能直接换 agent,否则可能会干掉搜索功能。 财猫曾为相关平台做 AI 顾问,设计整套提示词,写小说等,其公众号因相关内容被封 15 天,19 号恢复。 旧模型有过度道德说教和正面描述趋势,DeepSeek 模型能力强,在文学创作上更出色,能给予更多自由发挥空间。 好的文字能引起生理共鸣和情绪,AI 可写出好文字,大语言模型预训练数据丰富,能引发人类共鸣和情绪。 Deepseek 模型的文风显著,文笔优秀,能触达情感,有哲学思考,在写作方面表现出色,如写小说、写诗、写骈文等。 Deepseek 模型喜欢使用大词,文风欢脱,有独特的语言风格,易于辨别。 Deepseek 模型有极强的发散能力,但较难收敛,有时会出现幻觉,但从创作角度看有利。
2025-02-28
如何将大量记录的文本内容输入知识库,并且形成有效问答问答
要将大量记录的文本内容输入知识库并形成有效问答,可参考以下方法: 1. 使用 embeddings 技术: 将文本转换成向量(一串数字),可理解为索引。 把大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,这些向量与文本块的语义相关。 在向量储存库中保存 embeddings 向量和文本块。 当用户提出问题时,将问题转换成向量,与向量储存库的向量比对,查找距离最小的几个向量,提取对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 2. 创建知识库并上传文本内容: 在线数据: 自动采集:适用于内容量大、需批量快速导入的场景。 在文本格式页签选择在线数据,单击下一步。 单击自动采集。 单击新增 URL,输入网站地址,选择是否定期同步及周期,单击确认。 上传完成后单击下一步,系统自动分片。 手动采集:适用于精准采集网页指定内容的场景。 安装扩展程序,参考。 在文本格式页签选择在线数据,单击下一步。 点击手动采集,完成授权。 输入采集内容网址,标注提取内容,查看数据确认后完成采集。 本地文档: 在文本格式页签选择本地文档,单击下一步。 拖拽或选择要上传的文档,支持.txt、.pdf、.docx 格式,每个文件不大于 20M,一次最多上传 10 个文件。 上传完成后单击下一步,选择内容分段方式,包括自动分段与清洗(系统自动处理)和自定义(手动设置分段规则和预处理规则)。
2025-02-28
怎么针对知识库提问
知识库问答是机器人的基础功能,其利用了大模型的 RAG 机制。RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种结合了检索和生成两种主要人工智能技术的自然语言处理技术,用于提高机器对话和信息处理的能力。 简单来说,RAG 机制先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成当问复杂问题时,RAG 机制先在巨大图书馆里找相关书籍,再基于这些书籍信息给出详细回答。这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 基于 RAG 机制实现知识库问答功能,首先要创建包含大量社区 AI 相关文章和资料的知识库,通过手工录入方式上传文章内容,如创建有关 AI 启蒙和信息来源的知识库。在设计 Bot 时,添加知识库并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。 具体步骤包括: 1. 上传文档:支持 txt、pdf、docx 等格式,将文档转换为 Markdown 格式。 2. 文本切割:将长文本切割为小块(chunk)以便分析和处理。 3. 文本向量化:通过 embedding 技术将切割的 chunk 转换为算法可处理的向量,存入向量数据库。 4. 问句向量化:用户提问后,将问句向量化。 5. 语义检索匹配:将用户问句与向量数据库中的 chunk 匹配,找出最相似的 top k 个。 6. 提交 Prompt 至 LLM:将匹配出的文本和问句添加到配置好的 prompt 模板中,提交给 LLM。 7. 生成回答:LLM 生成回答并返回给用户。 RAG 研究范式不断发展,分为基础 RAG(Naive RAG)、高级 RAG(Advanced RAG)和模块化 RAG(Modular RAG)三种类型。
2025-02-28
我是一名小白,怎么进入知识库?
以下是进入知识库的步骤: 1. 地址输入浏览器:http://这里替换为你宝塔左上角的那一串:3000/ 。然后到“文件”菜单中执行,点击文件找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。 2. 点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)。 3. 粘贴“cp configtemplate.json config.json”,点击回车。点击后,关闭此弹窗。 4. 刷新页面。在当前目录下,找到 config.json 文件。双击这个文件,修改画红框的地方。如果是小白,建议直接复制下方的配置。删除文件里的所有代码,复制下边的代码,粘贴到文件里。粘贴后,找到第 4、5 行,把刚才 FastGPT 里拿到 API 和 key,根据要求粘贴到双引号里。修改完之后,点击保存,关闭文件。 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,包括最大召回数量、最小匹配度、调用方式等。配置项说明: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回。按需调用:需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 创建知识库并上传文本内容: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入知识库页面,并单击创建知识库。 4. 在弹出的页面配置知识库名称、描述,并单击确认。一个团队内的知识库名称不可重复,必须是唯一的。 5. 在单元页面,单击新增单元。 6. 在弹出的页面选择要上传的数据格式,默认是文本格式,然后选择一种文本内容上传方式完成内容上传。
2025-02-28
知识库的商业化应用场景有哪些
知识库的商业化应用场景主要包括以下几个方面: 1. 生物医药领域: 医药企业研发立项:回答关于作用机制、目标治疗疾病的竞争格局、主流技术路径、同技术路径其他公司产品在临床试验阶段的安全性风险和有效性等问题。 科研机构临床转化评估:回答关于科学家研究方向的临床转化潜力等问题。 投资机构评估标的公司:回答关于国外对标技术的发展情况、融资情况、临床转化的可靠性等问题。 2. 其他工作场景: 可以替代大部分传统医药数据库的商业化场景。 在一般的工作场景中,通过提示词设定角色和技能,结合知识库,让大语言模型能够按照需求做出准确回复。例如设定角色为“美嘉”,知识库为《爱情公寓》全季剧情,能够回答相关问题。 此外,在知识库的检索原理方面: 1. 文本预处理:包括去除无关字符、标准化文本、分词等,以清洁和准备文本数据。 2. 嵌入表示:将预处理后的文本转换为向量,通常通过使用预训练的嵌入模型完成。 3. 特征提取:对于整个问题句子,应用进一步的特征提取技术,如句子级别的嵌入,或使用深度学习模型直接提取整个句子的表示。 4. 向量优化:在某些情况下,问题的向量表示可能会根据具体任务进行优化。 5. 知识库检索阶段:在大模型的检索中,依靠问题在空间中的向量位置,寻找距离这个向量最近的其他词句完成检索,知识库被转化成巨大的向量库。
2025-02-28
如何搭建Ai工作流?
搭建 AI 工作流可以从以下几个方面入手: 1. 搭建 AI 工作流所需的能力: 熟悉各种 AI 工具:了解不同 AI 工具的特点和用途,根据具体任务选择合适的工具。例如,写标题可用 ChatGPT,写文章可用 Claude,检查文本中的错别字和病句可用秘塔写作猫的 AI 纠错功能。 编写提示词:提示词是搭建人与 AI 之间“沟通桥梁”的关键,要用 AI 能理解的语言清晰说明需求、任务内容和步骤。 搭建 AI 智能体。 2. 搭建 AI 工作流的工作流: 找到一个工作场景:选择熟悉的工作场景,如写文章、做 PPT 等。 拆解工作流程:将工作拆解成几个小步骤,如写文章可拆分为选题、写稿、改稿、写标题。 给每一个步骤嵌入工具:针对每个小步骤,选择合适的 AI 工具,可参考他人的做法,灵活选择最优解,以提高工作效率为目的。 此外,还有一些具体的操作示例,如在 Comfyui 界面中搭建工作流,包括打开界面后右键找到目录,手动连接节点或直接拖拽工作流文件一键复刻提示词工程实验。启动 ollama 时,从其 github 仓库找到对应版本并下载,在 cmd 中输入相应指令,将默认 base URL 和 api_key 填入 LLM 加载器节点即可调用模型进行实验。若出现 ollama 连接不上的报错,可能是代理服务器的问题,需将 127.0.0.1:11434 添加到不使用代理服务器的列表中。
2025-02-28
基础搭建的知识库效果很差,模型答案的幻觉很严重,我应该怎么改进?(Deepseek调用api接入本地faiss的rag库)
以下是一些改进基础搭建的知识库效果、减轻模型答案幻觉问题的建议: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对您的场景,后者的性能可能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果可能最优。 4. 对文档名称进行处理:人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,虽然重命名文件对结果的提升效果不明显,但勾选该选项后,回答的无关信息可能减少,效果有所提升。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务。 在大模型中,向量可想象成空间中的点位,每个词或短语对应一个点。系统通过查看词在虚拟空间中点的位置,寻找直线距离最近的点来检索语义上接近的词语或信息。理解向量后,当收到一个对话时,RAG 的完整工作流程为:检索器从外部知识中检索相关信息,生成器利用这些信息生成答案。 要优化幻觉问题和提高准确性,需要了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优,以达到最佳效果。
2025-02-27
如何搭建一个自动把录音文件转文字的agent,然后发布到飞书多维表格字段捷径
搭建一个自动把录音文件转文字的 agent 并发布到飞书多维表格字段捷径的步骤如下: 1. 工作流调试完成后,加入到智能体中。可以选择工作流绑定卡片数据,智能体通过卡片回复。绑定卡片数据可自行研究,如有疑问可留言。 2. 发布:选择需要的发布渠道,重点是飞书多维表格。记得智能体提示词的 4 个变量,填写上架信息(为快速审核,选择仅自己可用),确认发布并等待审核。审核通过后即可在多维表格中使用。 3. 创建飞书多维表格,添加相关字段。配置选择“自动更新”,输入 4 个字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 4. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 5. 点击多维表格右上角的“自动化”,创建想要的自动化流程。 此外,关于 Coze 应用与多维表格的结合还有以下相关内容: 1. Coze 智能体(字段捷径)获取笔记+评论信息:创建智能体,使用单 Agent 对话流模式,编排对话流,配置相关节点和插件,进行数据处理和测试,最后发布。 2. Coze 应用:完成后端准备工作后,创建应用,设计界面和工作流,包括读取博主笔记列表的工作流,进行相关配置和参数设置。
2025-02-27
如何用扣子搭建自己的智能体
用扣子搭建自己的智能体可以参考以下步骤: 1. 创建智能体: 输入智能体的人设等信息。 为智能体起一个名称。 写一段智能体的简单介绍,介绍越详细越好,系统会根据介绍智能生成符合主题的图标。 2. 配置工作流: 放上创建的工作流。 对于工作流中的特定节点,如【所有视频片段拼接】,注意插件 api_token 的使用,避免直接发布导致消耗个人费用,可以将其作为工作流的输入,让用户自行购买后输入使用。 3. 测试与发布: 配置完成后进行测试。 确认无误后再发布。 扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot。开发完成后还可发布到各种社交平台和通讯软件上供用户交互聊天。同时,像菠萝作词家这样的智能体,是专为特定需求设计的,能够帮助解决相关领域的问题。
2025-02-27
如何搭建一个工作流来做ai agent 的事情,帮助学生找工作的整个流程,从找合适岗位-> 投递简历 -> 和hr联系 ->做面试前的search工作和面试准备-> 提醒参加面试-> 面试结果追踪,后续的复盘,得到面试经验
搭建一个用于帮助学生找工作的 AI Agent 工作流可以参考以下步骤: 1. 规划 总结任务目标与执行形式,明确帮助学生从找合适岗位到面试结果追踪及复盘的全过程。 将任务分解为可管理的子任务,例如找合适岗位、投递简历、与 HR 联系、面试前准备、提醒参加面试、面试结果追踪和复盘等,并确立它们的逻辑顺序和依赖关系。 设计每个子任务的执行方法,比如确定合适的岗位筛选标准、制定简历投递策略、规划与 HR 沟通的方式等。 2. 实施 在相应的平台(如 Coze 等)上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,例如设置岗位筛选的参数、简历模板和投递渠道、与 HR 联系的话术等,并验证每个子任务的可用性。 3. 完善 整体试运行工作流,识别功能和性能的卡点。 通过反复测试和迭代,优化工作流,直至达到预期效果,例如提高学生找到合适工作的成功率、提升面试表现等。 此外,在技术实现方面,例如实现无代码开发和工具调用,您可以参考以下操作: 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的工作流,也可以直接将相关工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 从 ollama 的 github 仓库找到对应版本并下载,启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。如果 ollama 连接不上,很可能是代理服务器的问题,请将您的 127.0.0.1:11434 添加到不使用代理服务器的列表中。
2025-02-27