直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

有哪些工具直接可以调用国外的多个LLM

回答

以下是一些关于能够调用国外多个 LLM 的相关信息:

  • 开源项目作者 ailm 提出一种仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力,使用多个不具备该功能的 LLM 进行实验,成功率达 100%,工作基于 comfyui 开发,适合无代码基础的人员复现和修改。
  • 在高级提示词工程领域,工具、连接器和技能的整合能显著增强 LLM 的能力。工具是指 LLM 可利用的外部功能或服务,扩展任务范围;连接器是 LLM 与外部工具或服务的接口,管理数据交换和通信;技能是 LLM 可执行的专门功能。
  • 目前开源模型与专有产品存在差距但在缩小,如 Meta 的 LLaMa 模型引发一系列变体。当开源 LLM 达到一定准确度水平时,预计会有大量实验等。开发人员对 LLM 操作工具的研究尚不深入,一些工具如缓存(基于 Redis)、Weights & Biases、MLflow、PromptLayer、Helicone 等得到较广泛使用,还有新工具用于验证 LLM 输出或检测攻击。多数操作工具鼓励使用自身的 Python 客户端进行 LLM 调用。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能

大家好,我是一个开源项目作者ailm。目前,绝大多数小型本地开源大语言模型以及部分商用大模型接口都不支持稳定的tool calling功能。而现有的解决方案是微调LLM,这导致大量的时间和算力被浪费。本文提出一种仅使用提示词工程和一些精巧的代码设计,即可让LLM获得稳定的tool calling能力。本文使用多个不具备tool calling能力的LLM作为测试模型,在多个工具调用任务上进行实验,成功率为100%。本文所有工作是基于comfyui开发,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改我的工作。

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

在高级提示词工程领域,工具、连接器和技能的整合显著增强了大型语言模型(LLM)的能力。这些元素使LLM能够与外部数据源互动,并执行超出其固有能力范围的特定任务,极大地扩展了它们的功能和应用范围。在这里,工具是指LLM可以利用的外部功能或服务。这些工具扩展了LLM可以执行的任务范围,从基本的信息检索到与外部数据库或API的复杂互动。连接器作为LLM与外部工具或服务之间的接口。它们管理数据交换和通信,使有效利用外部资源成为可能。连接器的复杂性可以变化,适应各种外部互动。技能是指LLM可以执行的专门功能。这些封装的能力,如文本摘要或语言翻译,增强了LLM处理和响应提示词的能力,即使没有直接访问外部工具。在论文“Toolformer:Language Models Can Teach Themselves to Use Tools”[8]中,作者超越了简单的工具使用,通过训练LLM决定何时使用什么工具,甚至API需要什么参数。工具包括两个不同的搜索引擎,或一个计算器。在以下示例中,LLM决定调用一个外部问答工具、一个计算器和一个Wikipedia搜索引擎。最近,伯克利的研究人员训练了一个新的LLM,名为Gorilla[9],它在使用API方面击败了GPT-4,这是一个特定但相当通用的工具。

LLM 应用程序的新兴架构

目前,开源模型落后于专有产品,但差距正在开始缩小。Meta的LLaMa模型为开源准确性设定了新的标准,并引发了一系列变体。由于LLaMa只被授权用于研究用途,许多新的提供商已经介入训练替代基础模型(例如Together、Mosaic、Falcon、Mistral)。Meta还在[讨论](https://youtu.be/6PDk-_uhUt8?t=139)LLaMa 2的真正开源版本。当(而不是如果)开源LLM达到与GPT-3.5相当的准确度水平时,我们期望看到文本的稳定扩散时刻——包括微调模型的大量实验、共享和生产。像Replicate这样的托管公司已经在添加工具,让软件开发人员更容易使用这些模型。开发人员越来越相信,更小、经过微调的模型可以在狭窄的用例中达到最先进的准确性。我们采访过的大多数开发人员还没有深入研究LLM的操作工具。缓存相对普遍——通常基于Redis——因为它可以缩短应用程序响应时间并降低成本。Weights & Biases和MLflow(从传统机器学习移植而来)或PromptLayer和Helicone(专为LLM设计)等工具也得到了相当广泛的使用。他们可以记录、跟踪和评估LLM输出,通常是为了改进提示构建、调整管道或选择模型。还有许多正在开发的新工具来验证LLM输出(例如Guardrails)或检测提示注入攻击(例如Rebuff)。大多数这些操作工具都鼓励使用他们自己的Python客户端来进行LLM调用,因此看看这些解决方案如何随着时间的推移共存将会很有趣。

其他人在问
如何将传统知识库通过LLM能力转化成更智能与精细化的知识库?包括但不限于分段、QA问答和图片解析描述和总结
将传统知识库通过 LLM 能力转化为更智能和精细化的知识库是一个复杂但可行的过程,以下是一些关键步骤和方法: 1. 数据预处理:对传统知识库中的内容进行清理、格式化和标准化,确保数据的质量和一致性。 2. 内容分段:根据主题和逻辑结构,将长篇的知识内容合理分段,使信息更易于理解和处理。 3. 提取关键信息:从文本中提取重要的概念、实体和关系,为后续的问答和总结做准备。 4. 构建 QA 问答对:分析知识库中的内容,设计有针对性的问题和准确的答案,形成问答对,以方便用户快速获取所需信息。 5. 图片解析描述:对于包含图片的内容,使用图像识别技术提取关键元素,并进行详细的描述和解释。 6. 总结归纳:对分段后的内容进行总结,提炼核心要点,帮助用户快速了解主要内容。 在实施过程中,需要不断优化和调整方法,以确保转化后的知识库能够满足用户的需求,提供更高效和准确的服务。
2024-11-18
目前最强 llm
目前在大型语言模型(LLM)领域,Llama2 70B 可能是最强大的开源权重模型。它由 Meta.ai 发布,包含 700 亿个参数,模型的权重、架构和相关论文均已公开,在文件系统上表现为两个文件:一个包含参数的文件,以及一段运行这些参数的代码。参数文件大小约 104GB,采用 float 16 数据类型。 此外,GPT4V 是基于最先进的 LLM 并使用大量多模态数据训练的具有视觉能力的先进模型,在理解和处理不同输入模态的任意组合方面表现出色,支持多种输入和工作模式。 需要注意的是,尽管语言模型能力令人印象深刻,但仍存在一些限制,如生成的“幻觉”问题,在需要高级推理能力的任务上存在困难,还需要更具挑战性和强大的评估来衡量其真正的理解能力。
2024-11-15
集成LLM的工具
以下是关于集成 LLM 的工具的相关内容: 一、“手臂和腿部”:赋予模型使用工具的能力 1. 从知识挖掘转向行动导向,增加模型使用工具的能力,有望在消费者和企业领域实现一系列用例。 对于消费者,LLMs 可能给出菜谱建议并订购食材,或推荐早午餐地点并预订餐桌。 在企业领域,创始人可接入 LLMs 使应用程序更易用,如在 Salesforce 等应用中,用户能用自然语言更新,模型自动更改,减少维护 CRM 所需时间。 2. LLM 虽对常见系统有复杂理解能力,但无法执行提取的信息。不过,公司在不断改善其使用工具的能力。 老牌公司如必应、谷歌和初创公司如 Perplexity、You.com 推出搜索 API。 AI21 Labs 推出 JurassicX,解决独立 LLMs 缺陷。 OpenAI 推出 ChatGPT 插件测试版,允许与多种工具交互,在 GPT3.5 和 GPT4 中引入函数调用,允许开发者将 GPT 能力与外部工具链接。 二、无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 2. 提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。 TOOL_EAXMPLE 提示 LLM 如何理解和使用工具,编写时用无关紧要工具作示例避免混淆。 tools_instructions 是通用工具字典转换成 LLM 可读的工具列表,可动态调整。 REUTRN_FORMAT 定义调用 API 格式。 3. 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。通过识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受某些角色的 LLM 接口,可改为回传给 user 角色。通过以上提示词工程,可让无 tool calling 能力的 LLM 获得稳定的该能力。
2024-11-12
摘要总结作为 llm 训练的下游任务,一般的训练流程是怎样的
作为 LLM 训练的下游任务,一般的训练流程如下: 1. 首先从大量文本数据中训练出一个基础 LLM。 2. 随后使用指令和良好尝试的输入和输出来对基础 LLM 进行微调和优化。 3. 接着通常使用称为“人类反馈强化学习”的技术进行进一步细化,以使系统更能够有帮助且能够遵循指令。 在训练过程中,会涉及到一些相关的理论探讨和评价指标: 理论探讨方面,如在推理阶段对 InContext Learning 能力的运行分析,将其视为隐式微调,通过前向计算生成元梯度并通过注意力机制执行梯度下降,且实验表明 LLM 中的某些注意力头能执行与任务相关的操作。 评价指标方面,entropylike 指标(如 crossentropy 指标)常用于表征模型的收敛情况和测试集的简单评估(如 Perplexity 指标),但对于复杂的下游应用,还需更多指标,如正确性(Accuracy)、信息检索任务中的 NDCG@K 指标、摘要任务中的 ROUGE 指标、文本生成任务中的 BitsperByte 指标、不确定性中的 ECE 指标、鲁棒性(包括 invariance 和 equivariance)、公平性、偏见程度和有毒性等。
2024-11-07
如何学会ollma dify
以下是关于学习 Ollama 的详细步骤: 1. 了解 Ollama :Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。它是一个轻量级、可扩展的框架,提供了简单的 API 来创建、运行和管理模型,还有预构建模型库,降低了使用门槛,适合初学者或非技术人员使用,特别是希望在本地与大型语言模型交互的用户。 2. 安装 Ollama : 官方下载地址:https://ollama.com/download 。 安装完成后,可通过访问 http://127.0.0.1:11434/ 判断是否安装成功。 3. 启动 Ollama : 从 ollama 的 github 仓库找到对应版本并下载。 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。 将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/ 以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 4. 常见报错及解决方案:如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 5. 使用 Ollama 运行本地大模型: 安装完成 ollama 后,在命令行中运行相应命令。 可通过查看并选择要运行的本地大模型,如 llama2 大模型。考虑机器配置及不同版本的内存要求选择合适的模型参数。运行时,ollama 会自动下载大模型到本地。
2024-11-06
LLM和COT分别是什么
LLM 即大型语言模型(Large Language Model),是一种基于深度学习的自然语言处理模型,具有强大的语言理解和生成能力。例如 FlanT5、ChatGLM、UL2、Qwen、Chinchilla、OPT、PaLM、LLaMA、LLaMA2、Vicuna 等都是常见的 LLM 模型。 COT 即思维链(ChainofThought),它能引导 LLM 逐步推理,增强其逻辑推理能力,对于需要逻辑解决方案的任务非常有效,但在创造性问题解决中存在局限性。在一些研究中,如多模态大模型中,LLM 作为核心智能体可以继承包括 COT 在内的一些显著属性。同时,ReAct 框架中也提到了将 ReAct 和 COT 结合使用的方法。
2024-10-28
能生成sql语句的ai模型或工具,能提供api调用的
以下是一些能生成 SQL 语句并提供 API 调用的 AI 模型或工具的相关信息: OpenAI 的 GPT 系列模型,如 gpt40613 和 gpt3.5turbo0613 ,可以通过函数调用及其他 API 更新,让开发人员向模型描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象。但需要注意的是,为了让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。 在使用代码执行来进行更精确的计算或调用外部 API 时,不能依赖模型自行准确地执行算术或长计算。可以指示模型编写和运行代码,例如将代码放入三重反引号中。生成输出后,可以提取并运行代码。同时,模型在正确使用 API 的指导下,可以编写使用 API 的代码,但需要通过提供 API 文档或代码示例进行指导。 但需要注意的是,执行模型生成的代码存在安全风险,建议在安全的沙箱环境中运行代码,避免潜在危害。
2024-11-19
在调用大模型的过程中,将token设置最大值,大模型回答还是会出现中断的情况,应该怎么避免和解决
在调用大模型的过程中,将 token 设置最大值但回答仍出现中断的情况,可以从以下几个方面避免和解决: 1. 调整相关参数: Max_output_tokens:根据具体需求设置合适的值。若需要更短响应,设为较低值;若希望更长回答,设为较高值。但注意设置过低可能导致回答在奇怪位置截断。 Temperature:值越小,模型返回结果越确定;值调高,可能更随机和具创造性。对于质量保障等任务设低,诗歌生成等创造性任务可适当调高。 Top_p:用于控制模型返回结果的真实性,需要准确和事实答案时调低,想要更多样化答案时调高。一般改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:调整以控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。 Stop Sequences:指定字符串,模型生成文本遇到时停止,可控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。 2. 利用插入文本的最佳实践: 使用 max_tokens > 256,模型插入较长完成时效果更好,且只按实际生成 token 数收费。 优先选择 finish_reason == "stop",表明模型成功连接后缀且完成质量良好。 重新采样 3 5 次,温度较高以增加多样性。若所有返回示例的 finish_reason 都是“length”,可能 max_tokens 太小,需考虑增加再重试。 尝试给出更多线索,通过提供示例帮助模型确定自然停顿处。
2024-11-18
可以调用不同大预言模型的整合工具推荐
以下是为您推荐的可以调用不同大语言模型的整合工具: 1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。访问地址: 。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可以尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 2. 国内的一些模型,如智谱和文心,在文生图方面有一定能力。 另外,大模型工具可根据自身条件准备,推荐顺序为:1. chatGPT 4.0 2. kimichat 3. 智谱清言 4 。
2024-11-12
如何快速创建调用API的应用
以下是快速创建调用 API 应用的步骤: 1. 了解请求的组成部分: Body:用于传递请求主体,GET 方法中通常不使用。 Path:定义请求路径,GET 方法中可编码参数在其中。 Query:定义请求查询部分,是 GET 方法常用的参数传递方式。 Header:定义 HTTP 请求头信息,通常不用于传递参数。 2. 配置输出参数: 在配置输出参数界面,可自动解析或手动新增参数。 包括设置参数名称、描述、类型、是否必填等。 对于 Object 类型参数,可添加子项。 3. 调试与校验: 在调试与校验界面填写输入参数并运行。 查看输出结果,Request 为输入传参,Response 为返回值。 4. 发布:在插件详情页右上角点击发布。 以创建调用 themoviedb.org API 应用为例: 注册并申请 API KEY:前往 themoviedb.org 注册,依次点击右上角头像 账户设置 API 请求 API 密钥 click here,选择 Developer 开发者,填写相关信息并提交,获取 API 读访问令牌备用。 构建 GPT:新创建 GPT,设置名字和描述,添加 Instructions 内容,并添加 Webpilot Action 和粘贴相关 Schema 内容。
2024-11-08
字节跳动也被曝出在其秘密研发的大模型项目中存在违规调用 OpenAI 的 API ,你如何看待
2023 年下半年,部分声称性能卓越的中国大模型被揭露为“套壳”产品。如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构,但强调是为快速起步。12 月,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API 并使用 ChatGPT 的输出数据来训练自己的模型。OpenAI 反应迅速坚决,暂停相关账号并表示将进一步调查。字节跳动回应称在 2023 年初技术团队在大模型探索初期有部分工程师将 GPT 的 API 服务用于较小模型的实验性项目研究,且自 2023 年 4 月引入调用规范检查后已停止。此外,不仅国内存在此类现象,24 年也有更多被指“套壳”的事件。同时,提示词攻击在业内是公开的秘密,国内外各大著名的 AI 厂商几乎无一幸免,系统提示处于泄露状态,大模型应用脆弱,数据易被获取。
2024-11-03
deepseek支持function calling,在dify的agent的prompt里要如何写才能调用工具。我说的是如何写提示词,才能让deepseek通过Function Calling调用工具。
要在 Dify 的 agent 的 prompt 里让 DeepSeek 通过 Function Calling 调用工具,您可以参考以下内容: 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入:将工具信息及使用工具的提示词添加到系统提示中。INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时注意用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,可动态调整。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传:利用正则表达式抓取输出中的“tool”和“parameters”参数。对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码。通过识别 LLM 返回的调用工具的字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受该角色的 LLM 接口,可改为回传给 user 角色。 2. 当模型判断需要调用工具函数时,检测到返回的 json 里 function_call 字段不为空,则执行异步函数调用,采用回调方式获取函数返回结果。通过判断返回的 functionCall 的名称执行不同函数并返回结果。 3. 在大模型请求中,最大的两个变量是 Messages 和 Tools。Messages 里放 sys prompt、memory、user query;Tools 里放能力的 Json Scheme,两者组合形成整个完全的 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。短期记忆在 messages 里的历史 QA 对,长期记忆是 summary 之后的文本再塞回 system prompt。RAG 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。Action 是触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型交互,没有 tool_calls 标记则循环结束。Multi Agents 是更换 system prompt 和 tools。
2024-10-24
windows电脑和安卓手机可以怎么注册并使用chatgpt? 请详细说明如何访问国外网络和注册及使用、
以下是 Windows 电脑和安卓手机注册并使用 ChatGPT 的详细步骤: 安卓手机: 1. 对于自带谷歌框架的机型(如红米 K60): 打开系统设置。 拉到最底下,点击更多设置。 点击账号与同步。 点击谷歌基础服务。 打开基础服务按钮。 2. 安装 Google Play: 到小米自带的应用商店搜索 Google Play 进行安装。 安装好后打开谷歌商店,点击右上角登录谷歌账号。 3. 安装 ChatGPT: 到谷歌商店搜索 ChatGPT 进行下载安装,建议把谷歌邮箱也安装上,方便接收验证码。 如果您只想体验 ChatGPT 3.5 版本,不升级 GPT4,可跳转到第 4 步第 6 小步进行登录使用,如果想直接订阅 GPT4 Plus 版本,请接着往下看。 Windows 电脑:未提供相关内容。 需要注意的是,在中国访问国外网络需要合法合规的途径。同时,ChatGPT 的使用也需要遵守其相关规定和服务条款。
2024-11-14
目前国外主流的图像类AICG应用有哪些
目前国外主流的图像类 AICG 应用包括 DALL·E2、StableDiffusion 等。DALL·E2 能够根据输入的文本描述生成逼真且富有创意的图像;StableDiffusion 则以其强大的生成能力和广泛的自定义选项受到众多用户的青睐。
2024-11-13
目前国外主流的十大图像类AICG应用有哪些
目前关于国外主流的十大图像类 AICG 应用,暂时没有确切和权威的统一排名。不同的评估标准和应用场景可能会导致结果有所差异。一些常见且受到广泛关注的图像类 AICG 应用包括 DALL·E2、StableDiffusion、Midjourney 等,但要确切指出十大应用会因各种因素而难以确定。
2024-11-13
目前国外主流的图像类AICG应用有哪些
目前国外主流的图像类 AICG 应用包括 DALL·E2、StableDiffusion 等。DALL·E2 能够根据输入的文本描述生成逼真的图像;StableDiffusion 则具有强大的图像生成能力和丰富的自定义选项。
2024-11-13
目前国产AI对比国外AI,存在哪些不足和差距,我要实事求是的回答
目前国产 AI 对比国外 AI 存在以下不足和差距: 1. 在通用语言模型方面,如 ChatGPT 和 GPT4 出现后,国内与国外拉开了约 2 年的技术差距。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距,甚至还不如临时拼凑的 Mistral 团队的水平。 2. 国内部分企业可能存在骄傲自大的情况,也可能被之前 Google 主推的 T5 技术路线带偏,同时 AGI 影响巨大,可能存在国外相关机构与 OpenAI 有特殊沟通而国内未有的情况。 3. 2023 年上半年国内笃信靠资金和卡能实现突破,但下半年纷纷转向“垂直应用”“商业化”,不提 AGI,这种转向可能是短视和致命的。 4. 大厂虽具备冲击 AGI 的资源,但受内部短期考核压力影响,多数力量用于卷新产品圈地盘和向上汇报工作,实际效果未达预期,且背负较多其他业务和政治考量。 不过,在图像类 AI 产品方面,国内产品发展迅速,部分产品如通义万相在中文理解和处理方面表现出色,具有独特优势。在 AI 生成视频工具领域,国内涌现出一系列工具,其生成结果在某些方面甚至远超国外。
2024-11-03
国产AI与国外AI的实际差距
国产 AI 与国外 AI 存在一定的差距,但情况较为复杂,且在不同方面表现有所不同。 在 2023 年之前,国内 AI 行业曾自认为与美国差距不大,但 ChatGPT 和 GPT4 的出现打破了这种认知,OpenAI 直接拉开了 2 年的技术差距。当时国内出现了从追求创造国产 AGI 到转向做“垂直应用”“商业化”的转变。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 仍有差距。大厂在人才、GPU、数据和资金储备上有冲击 AGI 的能力,但实际效果尚不明确,且受内部短期考核压力等因素影响。 然而到了 2024 年,竞争达到白热化阶段。在文本到视频扩散模型方面,Google DeepMind 和 OpenAI 展示了强大的成果,但中国的相关情况在报告中未详细说明,不过国内也涌现出了一系列表现出色的 AI 生成视频工具,生成结果甚至远超国外。Llama 3.1 在某些任务中能与 GPT4 相抗衡,而中国的一些模型如由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了前沿水平。中国模型在计算效率、数据集建设等方面各有优势,能弥补 GPU 访问的限制等不足。
2024-11-03
我需要能够帮我找到能根据字幕对应视频剪辑到内容的工具
以下为您推荐一些能够根据字幕对应视频剪辑内容的工具: 1. 剪映:有很多人性化设计和简单的音效库、小特效。但无法协同工作和导出工程文件,难以达到更好的商业化效果。其剪辑流程包括视频粗剪、定剪、音效/音乐、特效、包装(如字幕)等环节。 2. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能翻译字幕并生成双语字幕,处理视频数量多,识别准确率高。 3. 绘影字幕:一站式专业视频自动字幕编辑器,提供字幕制作和翻译服务,支持多种语言,准确率高,可自定义字幕样式。 4. Arctime:能对视频语音自动识别并转换为字幕,支持自动打轴,支持主流平台和多种字幕功能。 5. 网易见外:国内知名语音平台,支持视频智能字幕功能和音频转写,转换正确率较高。 您可以根据自身需求选择适合的工具。
2024-11-21
有没有把外国PPT翻译为中文的工具
以下为您介绍将外国 PPT 翻译为中文的工具及相关方法: 有一种自动 PPT 翻译脚本,其开发过程如下: 1. 前期准备: 翻译需要外接 API,推荐讯飞大模型,新账户免费送 200 万 tokens,有效期 3 个月。 进入 https://xinghuo.xfyun.cn/ ,首页选择 API 接入,然后点服务管理进入控制台。 创建一个新项目,比如“PPT 翻译”,以避免 API 泄露。 点进去,找到左边机器翻译的模型,按提示领取 200 万 tokens 的礼包,然后在主控台看到对应的 id、apikey、api secret 和接入路径。 2. 导入依赖: 大部分依赖是常用的,只有一个 ppt 可能需要装,运行 CMD 输入 pip install pythonpptx,如果还缺的可以按提示安装。 3. 初始化 API 相关信息和文件路径: 先设置对应的 api 信息,其他模型可以对应做替换。 4. 读取并提取 PPT 文本: 根据讯飞的 API 文档配置做请求指令,确保 API 可以正确调用。打印响应数据设置方便监测脚本执行动态,如果碰到报错可以随时做优化。 5. 翻译脚本: 目前只设置了文本翻译,未对表格元素处理,排除了所有 shape,如果要加入表格翻译,可以定义 shape = table 来定义表格,然后翻译表格里的 cell 实现。 接收路径已调好,如果用其他的 API,要在 translated_text = get_result 后面替换成自己的地址。 语言选择,原文件是中文用'cn'表示,英文文档改成‘en’,其他语种对应。 此外,还有 Claude 官方文档提示词工程最佳实践@未来力场编译版(中英对照),源地址 https://docs.anthropic.com/claude/docs ,扫码关注未来力场:AIGC 最佳实践中文互联网搬运工。
2024-11-21
企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?
企业做自己的小模型,可能会用到以下工具及背后的公司: 1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability, & PreTraining)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。 3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。 4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。 此外,还有以下工具和相关公司: 1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。 企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。
2024-11-20
利用ai编写h5比较优秀的工具有那些?
目前在利用 AI 编写 H5 方面,以下是一些较为优秀的工具: 1. Adobe Spark:提供了易于使用的模板和设计工具,结合 AI 辅助功能,可帮助您快速创建吸引人的 H5 页面。 2. Canva:拥有丰富的模板和元素库,其 AI 功能可以为您的设计提供创意和布局建议。 3. Wix:具有强大的自定义功能,部分 AI 特性能够协助您优化页面内容和布局。 但需要注意的是,AI 在编写 H5 中的应用仍在不断发展和完善,不同工具的性能和适用场景可能会有所差异,您可以根据具体需求进行选择和尝试。
2024-11-20
如果只能推荐3个AI辅助ppt制作的工具,你会推荐哪些?为什么?
以下为您推荐 3 个 AI 辅助 PPT 制作的工具及原因: 1. GPT4:具有强大的语言理解和生成能力,能为 PPT 提供清晰、准确且富有创意的内容大纲和文字描述。 2. WPS AI:与常用的办公软件 WPS 结合紧密,方便在熟悉的操作环境中利用 AI 功能进行 PPT 制作,提高效率。 3. chatPPT:可能提供了便捷的交互方式和智能的设计辅助,帮助用户更轻松地创建和优化 PPT。
2024-11-20
有什么ai的漫画工具
以下是一些常见的 AI 漫画工具: Pika:可用于生成视频中的画面。 Pixverse:能参与视频画面的创作。 Runway:不仅能从文本创建视频,还可用于在视频中为人脸制作动画,创建短剪辑展示未来发展。 SVD:在视频生成方面有一定作用。 此外,DiD 是用于在视频中为人脸制作动画的工具。即梦也可用于制作动态视频。
2024-11-20