直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

可以调用不同大预言模型的整合工具推荐

回答

以下是为您推荐的可以调用不同大语言模型的整合工具:

  1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT-4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。访问地址:https://poe.com/ 。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可以尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容,但 GPT-4、Claude+产品需要付费订阅使用。
  2. 国内的一些模型,如智谱和文心,在文生图方面有一定能力。

另外,大模型工具可根据自身条件准备,推荐顺序为:1. chatGPT 4.0 2. kimichat 3. 智谱清言 4 。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

提示词快闪答疑

1.lili上课用什么工具大模型工具请大家自行准备哈。根据自己条件准备,以下是推荐顺序:1.chatGPT 4.02.kimichat3.智谱清言41.张俊文本纠错方面有什么方法案例如果是问工具的话飞书文档就带纠错功能,还可以。如果是用prompt纠错的话文本量不能太大,就直接告诉大模型:检查下列文本中的错别字、语法错误和格式错误,指出并改正,重新生成新的文本。1.王鹏华用文心一言APP,可以吗可以1.和子有没有适用于Mj Dalle3,stable diffusion方面AI绘画提示词生成技巧绘画问题超纲了1.Claire看到国外有些提示词已经可以支持调用其他AI工具了。例如chatGPT调用画图的AI工具。国内有类似AI工具之间调用的吗?你的问题没有描述清楚,是指国产大模型能不能文生图吗?是的话,一些模型可以,比如智谱和文心。1.Claire看到国外有些提示词已经可以支持调用其他AI工具了。例如chatGPT调用画图的AI工具。国内有类似AI工具之间调用的吗?你的问题没有描述清楚,是指国产大模型能不能文生图吗?是的话,一些模型可以,比如智谱和文心。1.有没有什么方法把文章给AI看看让他自己给自己写Prompt把文章给大模型看看很容易发给他就想了,关键是自己给自己写什么样的prompt?1.lili如果只是用来自己学,长期学习,必须需要iPhone手机或者对显卡有一定要求吗?现在ChatGPT交费有问题。没有途径。

AIGC落地应用大全,40+ 语言大模型案例推荐

推荐指数:🌟🌟🌟🌟🌟由Quora(海外问答平台,类似国内知乎)开发,有APP版本,支持跨端使用。主要亮点在于集成了Chat GPT、GPT-4、Claude+、Claude、Dragonfly等模型,同时支持用户自建Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。Dragonfly擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude更擅长创造性回复,配合Poe中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用Chat GPT时的体验(但和Chat GPT一样,Claude也时常会给出一些错误回复,一些问题我会尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容。但GPT-4、Claude+产品需要付费订阅使用。访问地址:[https://poe.com/](https://poe.com/)Poe中的提问引导真的能够启发到用户支持Explore Chatbot,但丰富度不如后续要介绍的Charactermidjourney prompt扩写Chatbot能力很惊人[heading3]

Prompts 共学快闪活动

大家自己填写自己想问的问题,目前在飞书群进行问题接龙及答疑1.li上课用什么工具大模型工具请大家自行准备哈。根据自己条件准备,以下是推荐顺序:1.chatGPT 4.02.kimichat3.智谱清言41.张俊文本纠错方面有什么方法案例如果是问工具的话飞书文档就带纠错功能,还可以。如果是用prompt纠错的话文本量不能太大,就直接告诉大模型:检查下列文本中的错别字、语法错误和格式错误,指出并改正,重新生成新的文本。1.王鹏华用文心一言APP,可以吗可以1.和子有没有适用于Mj Dalle3,stable diffusion1方面AI绘画提示词生成技巧绘画问题超纲了1.Claire看到国外有些提示词已经可以支持调用其他AI工具了。例如chatGPT调用画图的AI工具。国内有类似AI工具之间调用的吗?你的问题没有描述清楚,是指国产大模型能不能文生图吗?是的话,一些模型可以,比如智谱和文心。1.有没有什么方法把文章给AI看看让他自己给自己写Prompt把文章给大模型看看很容易发给他就想了,关键是自己给自己写什么样的prompt?1.lili如果只是用来自己学,长期学习,必须需要iPhone手机或者对显卡有一定要求吗?现在ChatGPT交费有问题。没有途径。

其他人在问
本群怎么实现的调用知识库
要实现本群对知识库的调用,可以通过以下两种方式: 1. 在 Bot 内使用知识库: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项说明如下: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回;按需调用:您需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 2. 在工作流内使用 Knowledge 节点: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。
2024-11-21
能生成sql语句的ai模型或工具,能提供api调用的
以下是一些能生成 SQL 语句并提供 API 调用的 AI 模型或工具的相关信息: OpenAI 的 GPT 系列模型,如 gpt40613 和 gpt3.5turbo0613 ,可以通过函数调用及其他 API 更新,让开发人员向模型描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象。但需要注意的是,为了让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。 在使用代码执行来进行更精确的计算或调用外部 API 时,不能依赖模型自行准确地执行算术或长计算。可以指示模型编写和运行代码,例如将代码放入三重反引号中。生成输出后,可以提取并运行代码。同时,模型在正确使用 API 的指导下,可以编写使用 API 的代码,但需要通过提供 API 文档或代码示例进行指导。 但需要注意的是,执行模型生成的代码存在安全风险,建议在安全的沙箱环境中运行代码,避免潜在危害。
2024-11-19
在调用大模型的过程中,将token设置最大值,大模型回答还是会出现中断的情况,应该怎么避免和解决
在调用大模型的过程中,将 token 设置最大值但回答仍出现中断的情况,可以从以下几个方面避免和解决: 1. 调整相关参数: Max_output_tokens:根据具体需求设置合适的值。若需要更短响应,设为较低值;若希望更长回答,设为较高值。但注意设置过低可能导致回答在奇怪位置截断。 Temperature:值越小,模型返回结果越确定;值调高,可能更随机和具创造性。对于质量保障等任务设低,诗歌生成等创造性任务可适当调高。 Top_p:用于控制模型返回结果的真实性,需要准确和事实答案时调低,想要更多样化答案时调高。一般改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:调整以控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。 Stop Sequences:指定字符串,模型生成文本遇到时停止,可控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。 2. 利用插入文本的最佳实践: 使用 max_tokens > 256,模型插入较长完成时效果更好,且只按实际生成 token 数收费。 优先选择 finish_reason == "stop",表明模型成功连接后缀且完成质量良好。 重新采样 3 5 次,温度较高以增加多样性。若所有返回示例的 finish_reason 都是“length”,可能 max_tokens 太小,需考虑增加再重试。 尝试给出更多线索,通过提供示例帮助模型确定自然停顿处。
2024-11-18
有哪些工具直接可以调用国外的多个LLM
以下是一些关于能够调用国外多个 LLM 的相关信息: 开源项目作者 ailm 提出一种仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力,使用多个不具备该功能的 LLM 进行实验,成功率达 100%,工作基于 comfyui 开发,适合无代码基础的人员复现和修改。 在高级提示词工程领域,工具、连接器和技能的整合能显著增强 LLM 的能力。工具是指 LLM 可利用的外部功能或服务,扩展任务范围;连接器是 LLM 与外部工具或服务的接口,管理数据交换和通信;技能是 LLM 可执行的专门功能。 目前开源模型与专有产品存在差距但在缩小,如 Meta 的 LLaMa 模型引发一系列变体。当开源 LLM 达到一定准确度水平时,预计会有大量实验等。开发人员对 LLM 操作工具的研究尚不深入,一些工具如缓存(基于 Redis)、Weights & Biases、MLflow、PromptLayer、Helicone 等得到较广泛使用,还有新工具用于验证 LLM 输出或检测攻击。多数操作工具鼓励使用自身的 Python 客户端进行 LLM 调用。
2024-11-12
如何快速创建调用API的应用
以下是快速创建调用 API 应用的步骤: 1. 了解请求的组成部分: Body:用于传递请求主体,GET 方法中通常不使用。 Path:定义请求路径,GET 方法中可编码参数在其中。 Query:定义请求查询部分,是 GET 方法常用的参数传递方式。 Header:定义 HTTP 请求头信息,通常不用于传递参数。 2. 配置输出参数: 在配置输出参数界面,可自动解析或手动新增参数。 包括设置参数名称、描述、类型、是否必填等。 对于 Object 类型参数,可添加子项。 3. 调试与校验: 在调试与校验界面填写输入参数并运行。 查看输出结果,Request 为输入传参,Response 为返回值。 4. 发布:在插件详情页右上角点击发布。 以创建调用 themoviedb.org API 应用为例: 注册并申请 API KEY:前往 themoviedb.org 注册,依次点击右上角头像 账户设置 API 请求 API 密钥 click here,选择 Developer 开发者,填写相关信息并提交,获取 API 读访问令牌备用。 构建 GPT:新创建 GPT,设置名字和描述,添加 Instructions 内容,并添加 Webpilot Action 和粘贴相关 Schema 内容。
2024-11-08
字节跳动也被曝出在其秘密研发的大模型项目中存在违规调用 OpenAI 的 API ,你如何看待
2023 年下半年,部分声称性能卓越的中国大模型被揭露为“套壳”产品。如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构,但强调是为快速起步。12 月,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API 并使用 ChatGPT 的输出数据来训练自己的模型。OpenAI 反应迅速坚决,暂停相关账号并表示将进一步调查。字节跳动回应称在 2023 年初技术团队在大模型探索初期有部分工程师将 GPT 的 API 服务用于较小模型的实验性项目研究,且自 2023 年 4 月引入调用规范检查后已停止。此外,不仅国内存在此类现象,24 年也有更多被指“套壳”的事件。同时,提示词攻击在业内是公开的秘密,国内外各大著名的 AI 厂商几乎无一幸免,系统提示处于泄露状态,大模型应用脆弱,数据易被获取。
2024-11-03
整合多家大预言模型的工具
以下为整合多家大语言模型的工具介绍: 1. Poe: 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验,但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性。 支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导能够启发用户,支持 Explore Chatbot,但丰富度不如后续要介绍的 Character,midjourney prompt 扩写 Chatbot 能力很惊人。 2. Ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 下载安装地址:https://ollama.com/download/ ,安装完后,在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。 3. 未来还会不断丰富大模型的外延能力,例如知识库检索、计算工具、WolframAlpha、操作软件等。首先集成了 LangChain 框架,可更方便地基于 Llama2 开发文档检索、问答机器人和智能体应用等。针对 LangChain 框架封装的 Llama2 LLM 类见,简单的调用代码示例如下。
2024-11-15
国内外大预言模型对比
以下是国内外大语言模型的对比情况: 1. 工具使用能力: 在工具使用的测评中,GPT4 Turbo 取得满分。 国内大模型中智谱清言表现不俗,取得 83.78 的高分,排名国内第一。文心一言 4.0、通义千问 2.0、Yi34BChat、AndesGPT 均有超过 70 分的表现。超过 GPT3.5 的国内模型有 12 个。 开源模型中,Baichuan213BChat、Xverse13B2Caht 表现可圈可点,均超过 GPT3.5 以及众多闭源模型。总体来看,国内大模型在工具使用能力上表现优异,这与国内大模型厂商积极落地应用密不可分。 2. 主观和客观对比: 通过对比模型在主观简答题 OPEN 和客观选择题 OPT 上的不同表现,国内大模型多数擅长做选择题,普遍选择题分数高于简答题分数。文心一言 4.0 和智谱清言表现相对稳定。 GPT4 Turbo 的表现最为稳定。 客观题相对主观题更容易通过题库形式进行训练和提升,同时由于客观题中包含中文特性问题,中文模型有一定优势,应综合来看模型的评测效果。 在本次测评中,国外的代表性大模型如 GPT4 的不同版本、Claude2、Llama2 都有很好的稳定性表现,值得国内大模型进一步分析研究。 3. 总体表现: GPT 4 Turbo 总分 90.63 分遥遥领先,高于其他国内大模型及国外大模型。国内最好模型文心一言 4.0有 4.9 分的差距。 过去 1 年国内大模型有长足进步,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个。 在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。国内外的平均水平差距在缩小,11 月差距在 10 分左右。 国内开源模型在中文上表现好于国外开源模型,如百川智能的 Baichuan213BChat、阿里云的 Qwen72B、Yi 34BCha t 均优于 Llama213BChat。
2024-11-12
你知道有支持个性化训练的大预言模型么
以下是一些支持个性化训练的大语言模型: 1. Character.ai:更注重人格属性,试图满足社交、情感、陪伴等需求,与 ChatGPT 侧重不同,后者注重提高效率和解放生产力。 2. Midjourney:今天发布了模型个性化 Personalization 或 'p'的早期测试版本。模型个性化会学习用户的喜好,以便更可能用用户的口味来填补空白。其要求包括目前从成对排名中的投票和喜欢的探索页面上的图像中学习,需要大约 200 个成对排名/喜欢才能生效。使用时只需在提示后输入 'p',或使用提示栏中的设置按钮为所有提示启用个性化功能,还可以使用 's 100'控制个性化效果的强度。但需注意个性化目前不是一个稳定的功能,会随着进行更多的成对排名而变化,且可能会在接下来的几周内推出算法更新。
2024-10-18
如何用langchian加载本地模型
要使用 Langchain 加载本地模型,您可以按照以下步骤进行: 1. 加载所需的库和模块,例如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型。使用 ollama 前请确保服务已经开启并下载好模型。 2. 从订阅源获取内容,通过特定函数从指定的 RSS 订阅 URL 提取内容,若需接收多个 URL 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终将这些文档合并成一个列表用于后续处理。 3. 为文档内容生成向量,使用文本向量模型 bgem3。从 hf 下载好模型后,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效的向量存储。 在整个过程中,还需要了解以下相关知识: 1. RAG(Retrieval Augmented Generation):大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成。RAG 应用包括文档加载(从多种来源加载文档,LangChain 提供 100 多种文档加载器)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 2. Ollama:支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,提供模型库,用户可下载不同模型,还支持自定义模型、提供 REST API 用于运行和管理模型及与其他应用程序集成,社区贡献丰富。安装完后确保后台服务已启动,可通过 ollama list 确认,通过 ollama 命令下载模型。
2024-11-23
大模型微调的目的和意义,会产生什么效果
大模型微调具有重要的目的、意义和效果,具体如下: 目的和意义: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中会有更好的表现,虽然可能会失去一些通用性。 提高模型效率:实现更低的延迟和更低的成本。通过专门化模型可使用更小的模型,且只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和成本。 适应特定领域需求:通用大模型在特定领域如法律或医学中的表现可能不理想,微调能优化模型在该领域的表现,使其更具专业性。 经济高效:从头开始训练具备自然语言处理能力的大模型需要大量时间和资源,小公司负担不起,微调可在现有模型基础上更经济、高效地适应新应用领域,节省成本并加快模型部署和应用速度。 效果: 优化模型参数:在特定领域的数据上训练模型,调整所有层的参数。 增强特定领域表现:使模型在特定领域的任务中表现更佳。 目前业界比较流行的微调方案是 PEFT(ParameterEfficient Fine Tuning),OpenAI 官方微调教程可参考:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-11-23
图片生成图片的AI模型有哪些
目前比较成熟的图片生成图片(图生图)的 AI 模型主要有: 1. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,可将图片转换为非凡肖像,有 500 多种风格供选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果出色。 此外,一些受欢迎的文生图工具也可用于图生图,例如: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量的图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和友好的用户界面设计而广受欢迎,在创意设计人群中尤其流行。 在 WaytoAGI 网站(https://www.waytoagi.com/category/104),可以查看更多文生图工具。 关于图生图的操作方式:在相关工具的首页有对话生图对话框,输入文字描述即可生成图片,不满意可通过对话让其修改。例如在吐司网站,图生图时能调整尺寸、生成数量等参数,高清修复会消耗较多算力建议先出小图。Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成的图片效果受多种因素影响。国外模型对中式水墨风等特定风格的适配可能存在不足,可通过训练 Lora 模型改善。
2024-11-23
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
有什么AI可以将我的多份文献阅读笔记整合为一份。
以下是一些可以将您的多份文献阅读笔记整合为一份的 AI 工具和方法: 1. ChatGPT:例如马多克斯先生将自己的锻炼笔记粘贴进去,让 ChatGPT 用简洁格式总结并指出遗漏的肌肉群,还能给出训练建议。森博斯基女士让 ChatGPT 写无麸质饮食计划。卡彭先生口述文章让 ChatGPT 纠正拼写和语法错误。 2. 利用 Coze 与飞书多维表格的组合:通过飞书机器人与 Coze 搭建的智能体在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划的推荐。 此外,您还可以参考以下关于知识管理体系构建的思路: 像小七姐提到的,把碎片化信息通过整理归纳、标记重点、打赏标签等方式放入笔记系统,准备展开深度思考和实践,基于此生成自己的观点和决策,并打造成体系化的内容产品。 希望这些信息对您有所帮助。
2024-11-07
我需要一个AI将我的多份文献阅读笔记整合为一份。
以下是为您提供的将多份文献阅读笔记整合为一份的相关信息和思路: 在 AI 与生活场景结合的案例中,ChatGPT 可以帮助人们在健康方面发挥作用,如马多克斯先生利用它制定锻炼计划,森博斯基女士让其规划无麸质饮食,还有应对注意力缺陷多动障碍(ADHD)和阅读障碍等。 另外,关于打造专属 AI 智能体来实现文献阅读笔记的整合,一泽 Eze 提出的方案思路如下: 1. 简化“收集”:实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 即可完成收集,借鉴微信文件传输助手的方式通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”:系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态,且阅读清单支持跨平台查看。 3. 智能“选择”推荐:根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成合适的阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理数据,理论上无需开发插件、APP 就能实现跨平台的收集与智能阅读计划推荐。
2024-11-07
推荐一些国内的整合AI
以下是为您推荐的一些国内的整合 AI 产品: 聊天对话类: Kimi:具有超长上下文能力,最初支持 20 万字,现提升至 200 万字,对处理长文本或大量信息任务有优势,但文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。 智谱清言:背后技术源自清华大学研发团队的科研成果转化,以 ChatGPT 为对标打造用户体验,是国内首批开放智能体应用的公司之一,在逻辑推理和处理复杂提示词方面表现出色。 图像类: 可灵:由快手团队开发,用于生成高质量的图像和视频,图像质量高,但价格相对较高。 通义万相:在中文理解和处理方面出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,现免费,每天签到获取灵感值即可,但某些类型图像因国内监管要求无法生成,处理非中文语言或国际化内容可能不如国际工具出色,处理多元文化内容时可能存在偏差。 PPT 类: 爱设计 PPT:背后团队实力强大,对市场需求有敏锐洞察力,成功把握 AI 与 PPT 结合的市场机遇,已确立市场领先地位,能提高 PPT 制作效率并保证高质量输出。
2024-11-05
最新的comfyui整合包
以下是关于最新的 ComfyUI 整合包的相关信息: 如果您是 AI 绘图工作者,对 ComfyUI 不熟悉,可在 GitHub 上拉取项目,或在 B 站下载整合包,如秋叶大佬的绘世整合包、只剩一瓶辣椒酱的铁锅炖整合包。 ComfyUI LLM party 是一个以 ComfyUI 作为前端的节点库,用于 LLM 智能体以及 LLM 工作流的无代码开发。可通过以下方法安装: 在中搜索 comfyui_LLM_party,一键安装,然后重启 ComfyUI。 导航到 ComfyUI 根文件夹中的 custom_nodes 子文件夹,使用克隆此存储库:git clone https://github.com/heshengtao/comfyui_LLM_party.git 教学辅导书(含知识点扩充与分享链接): ComfyUI 整合包下载: 官方 Release 页面:github.com/comfyanonymous/ComfyUI/releases 分流度盘:pan.baidu.com/s/1d9XLF96OzWlLtUGvZiYdVA?pwd=nely 分流 Quark:pan.quark.cn/s/ff8172bebe27(无提取码,请完整复制所有链接) 8 月 13 日 ComfyUI 共学中提到了关于康维 UI 部署及工作流搭建的分享会,包括 dream shaper 的 SD 1.5 底模、秋叶的两个整合包等内容,还提供了特定文件的下载链接及电脑配置要求的说明,以及关于 AI 绘图的本地及云端部署、模型介绍与文生图工作流讲解。
2024-10-01
项目型,任务型的AI整合工具,推荐一下
以下是为您推荐的项目型、任务型的 AI 整合工具: 1. 项目管理和任务跟踪工具: Jira、Trello 等项目管理软件已开始集成 AI 功能,可辅助制定计划、分配任务、跟踪进度。 2. 文档和协作工具: 微软的 Copilot 可集成到 Office 套件中,为项目文档撰写、编辑提供 AI 助手功能。 云存储服务如 Google Drive 也开始提供 AI 驱动的文档管理和协作功能。 3. 风险管理和决策支持工具: 部分 AI 工具能帮助识别和分析项目风险,并提供决策建议。 4. 沟通和协作工具: AI 助手可辅助进行团队沟通协调、客户关系维护等。 5. 创意生成工具: 如文心一格、Vega AI 等 AI 绘画工具,可帮助快速生成创意图像素材。 6. Dart: 是一款擅长智能化处理任务管理的项目管理工具,具有路线图、日历视图、文档处理等功能。 拥有用户友好界面、AI 功能(如自动填充特性和子任务自动生成),可高度自定义布局,轻松区分工作和个人任务。 集成了生成性 AI(如 ChatGPT),在规划和任务创建方面能为用户节约大量时间和精力。 随着 AI 技术的发展,越来越多的工具正在为项目管理提供智能化的辅助功能,涵盖项目管理的各个环节,有助于提高工作效率和决策能力。
2024-09-19