直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

目前国产AI对比国外AI,存在哪些不足和差距,我要实事求是的回答

回答

目前国产 AI 对比国外 AI 存在以下不足和差距:

  1. 在通用语言模型方面,如 ChatGPT 和 GPT4 出现后,国内与国外拉开了约 2 年的技术差距。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距,甚至还不如临时拼凑的 Mistral 团队的水平。
  2. 国内部分企业可能存在骄傲自大的情况,也可能被之前 Google 主推的 T5 技术路线带偏,同时 AGI 影响巨大,可能存在国外相关机构与 OpenAI 有特殊沟通而国内未有的情况。
  3. 2023 年上半年国内笃信靠资金和卡能实现突破,但下半年纷纷转向“垂直应用”“商业化”,不提 AGI,这种转向可能是短视和致命的。
  4. 大厂虽具备冲击 AGI 的资源,但受内部短期考核压力影响,多数力量用于卷新产品圈地盘和向上汇报工作,实际效果未达预期,且背负较多其他业务和政治考量。

不过,在图像类 AI 产品方面,国内产品发展迅速,部分产品如通义万相在中文理解和处理方面表现出色,具有独特优势。在 AI 生成视频工具领域,国内涌现出一系列工具,其生成结果在某些方面甚至远超国外。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AGI万字长文(上)| 2023回顾与反思

[title]AGI万字长文(上)| 2023回顾与反思[heading1]上篇:2023,风暴的前奏[heading2]<7>国内进展与卡脖子从业内人的角度,ChatGPT和GPT4的出现时最令人惊讶的,不是它的能力,而是保密工作做的太好。2023之前国内AI行业还处在沾沾自喜,自认为和美国只有个把月差距,而且还有人口数据优势;这种论调一下子被GPT4打回了原形。OpenAI在国内完全没有预警的情况下,直接拉开2年技术差距。具体原因,可能是国内的骄傲自大,可能是被之前Google主推的T5技术路线带偏,也可能是因为AGI实在是影响过于巨大,FBI、美国国防部这些国家机关不可能没和OpenAI打过招呼。OpenAI的成功是大力出奇迹,所以23年上半年国内也笃信只要有卡有钱就可以“大炼钢铁”。那时不论是纷纷囤卡招人,研究类GPT架构的大厂们,还是讲着中国OpenAI的故事,拿着巨额融资的创业公司们,都想要第一个创造国产AGI。而到了下半年,在试验了一番发现不容易之后,又纷纷转向要做“垂直应用”、“商业化”;反而不提AGI了。这个转向是短视的,甚至是致命的。2023年,中美在AGI技术的差距并没有缩小。现在,国内最领先的模型水平大概在准ChatGPT3.5的水平,和GPT4还有不小差距;甚至还不如临时拼凑的Mistral团队的水平。大厂。大厂们无论是人才、GPU、数据,还是资金储备都是可以冲击AGI的,不过从实际效果上来看还并没有明确亮点。但与此同时,受内部短期考核压力的裹挟,大多数力量应该都放在卷新产品圈地盘和向上汇报工作上了。从另一个角度,这些模型虽然能力一般,但和业务的结合都是比较充分的。最后,大厂们同时背负了太多其他业务和政治考量:对于是否做大模型的出头鸟,很多公司都是要三思的。具体来讲,百度和阿里是大厂里比较高调:百度的“文心4.0”是当前国内能力最好的模型之一,即将发布的阿里的“通义千问

给小白的AI产品推荐

首先介绍的是"可灵",这是一款由快手团队开发的AI应用。可灵主要用于生成高质量的图像和视频。它的一大特点是生成的图像质量非常高。可灵最初采用内测邀请制,但现在已经向所有用户开放使用。然而,可灵的价格相对较高。与其他AI应用相比,它的费用要贵一些。对于重度用户,最高档的年费可能达到几千元人民币,如果平均到每个月,使用成本在400到600元人民币之间。但如果临时使用或轻度使用的话,仍然有每日免费点数和60多元单月的最便宜包月选项,对轻度用户来说还是值得一试的。[heading3]3.1.2通义万相[content]通义万相作为国产AI工具,它在中文理解和处理方面表现出色,这一特点使其在国内市场具有独特优势。用户可以从多种艺术风格和图像风格中进行选择,满足不同创作需求。生成的图像质量较高,细节丰富,能够满足大多数用户的期望。操作界面设计简洁直观,用户友好度高,降低了使用门槛。作为阿里生态系统的一部分,该工具可以与阿里其他产品和服务无缝整合,为用户提供更全面的解决方案。重点是现在免费,每天签到获取灵感值就可以。然而,这个应用也存在一些局限性。为了符合国内监管要求,某些类型的图像可能无法生成,这在一定程度上限制了创作自由度。在处理非中文语言或国际化内容方面,它可能不如一些国际AI图像生成工具那样出色。由于模型训练数据可能主要基于中文环境,在处理多元文化内容时可能存在偏差。

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

[title]2024人工智能报告|一文迅速了解今年的AI界都发生了什么?[heading2]二、2024国内VS国外AI企业,竞争达到白热化阶段Google DeepMind和OpenAI都给我们展示了强大的文本到视频扩散模型的预览。但访问仍然受到严格限制,而且他们也没有提供很多技术细节。Meta更进一步,将音频加入其中,Movie Gen的核心是一个30亿视频生成和一个13亿音频生成模型,可以分别以每秒16帧的速度生成16秒的视频,并以每秒45秒的速度生成音频片段。这些模型利用了文本到图像和文本到视频任务的联合优化技术,以及为任意长度的视频生成连贯音频的新颖扩展方法。**小编说明:**在这份报告中,原作者并没有对中国的AI生成图,生成视频的工具展开详细说明,只说明中国可灵与国外AI生成工具在竞争中。但着这并不代表中国有关该功能AI工具落后于国外。在2024年,国内涌现类似可灵、即梦、智谱清影等等一系列AI生成视频工具,其生成结果甚至远超国外,详情大家可以查看小编之前实测的[8款国内外免费AI生成视频工具对比实测!我们真的可以做到“一人搞定一部影视作品“吗?](https://link.juejin.cn/?target=https%3A%2F%2Flink.zhihu.com%2F%3Ftarget%3Dhttp%253A%2F%2Fmp.weixin.qq.com%2Fs%253F__biz%253DMzkyNTI3NTY1Ng%253D%253D%2526mid%253D2247510194%2526idx%253D1%2526sn%253D5c00bae4b0830b35881ff977d1575714%2526chksm%253Dc1cbebd5f6bc62c3607525e1e6c78384bbfde23bcaea339121db6004414ee1fe0439c9530cea%2526scene%253D21%2523wechat_redirect)

其他人在问
想学习AI编程需要从哪里开始,有什么资源吗
如果您想学习 AI 编程,可以从以下几个方面开始,并参考以下资源: 开始的方向: 1. 明确编程目标:确定您希望通过 AI 编程实现的具体任务或项目。 2. 了解 AI 编程的边界和限制:明白在何种情况下需要编程,何种情况下可以利用现有工具和资源。 学习资源: 1. 掌握 Python 基础: 基本语法:包括变量命名、缩进等规则。 数据类型:如字符串、整数、浮点数、列表、元组、字典等。 控制流:学会使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 函数:包括定义和调用函数、理解参数和返回值、掌握作用域和命名空间。 模块和包:学会导入模块和使用包来扩展功能。 面向对象编程(OOP):了解类和对象、属性和方法、继承和多态。 异常处理:理解异常及如何处理程序中的错误。 文件操作:掌握文件读写和文件与路径操作。 2. 在线教程和课程:例如“写给不会代码的你:20 分钟上手 Python + AI”。 3. 项目实践:通过实际项目来巩固所学知识。 开发建议: 1. 对于复杂的项目,如 P2P 传输程序,要充分考虑项目初始化、环境配置、库的选择等。 2. 对于 Rust 环境配置,可通过官网获取安装指南,使用 rustup 工具管理 Rust 版本。使用 cargo new <project_name>创建新的 Rust 项目,生成基本文件结构和 Cargo.toml 文件来管理项目依赖。 在学习过程中,优先寻找线上工具、插件和本地应用,先找现成的开源工具和付费服务,只有在没有现成方案时再考虑自己编程。
2024-11-21
有什么类似于ai秘书的产品吗?
以下是一些类似于 AI 秘书的产品: Replika:用户可在与它的关系中找到意义,每周花费数小时进行对话。 Anima:是一款 AI 聊天机器人产品。 CharacterAI:也是一款相关的产品。 Millie:可以优化约会应用程序的个人资料和消息。 YourMove:具有类似的优化功能。 Mumkin:能够帮助用户应对困难的对话。 早期的聊天机器人如 ELIZA、Clippy、SmarterChild、Alicebot 和 Kuki 等虽曾流行,但未给消费者留下深刻印象。新一波聊天机器人不同,如 ChatGPT 成为最快达到 1 亿用户规模的消费产品,这得益于大型语言模型(LLMs),使聊天机器人能自由流畅对话,听起来和人类无异。如今,容易想象出如人工智能朋友、心理治疗师、导师、教练等角色,早期版本常带有浪漫色彩,这可能与成人娱乐行业处于新技术前沿及社会变化有关。
2024-11-21
帮我推荐一些适合产品经理使用的AI产品吧
以下是为产品经理推荐的一些 AI 产品: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(https://uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(https://www.hypertype.co/) 会议信息:AskFred(http://fireflies.ai/apps) 团队知识库:Sense(https://www.senseapp.ai/) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(https://www.ellie.ai/) 企业自动化:Moveworks(moveworks.com) 此外,还有以下相关内容供您参考: 《AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会》中提到,AI 产品经理可分为入门级、研究级和落地应用级。入门级能通过开源网站或课程了解 AI 概念并实践;研究级有技术和商业化研究两条路径;落地应用级则有成功案例和商业化价值。 余一相关的内容,如《AI 时代个人生存/摸鱼探索指南.Beta》的迭代更新,以及《从 2023 年报,看中国上市公司怎么使用生成式 AI》等。 相关链接: 创新公司观察: 2022 2024 年融资 2000w 美金以上的公司列表和详细公司分析:https://ameliadev.notion.site/202220242000w08f50fafd81b420fa7f26ecd6c0b3243?pvs=4 AI Grant 公司列表和详细公司分析(三期):https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AIGC 行业与商业观察(2024.1):https://gamma.app/docs/AIGCDev9q1bax2pspnlxqu AI 产品/功能构建: 顶级科技公司产品团队正在构建哪些 AI 功能【总览】:https://gamma.app/docs/AIzawqmb2ff3cv958 顶级科技公司产品团队正在构建哪些 AI 功能【产品分析】:https://gamma.app/docs/AItebxqet8ubz3rje 顶级科技公司产品团队正在构建哪些 AI 功能【思考借鉴】
2024-11-21
请介绍图片搜索最好用的AI工具
以下为您介绍一些在图片搜索相关方面表现出色的 AI 工具: 图片去水印工具: 1. AVAide Watermark Remover:在线工具,支持多种图片格式,操作简单,可去除水印、文本、对象等。 2. Vmake:可上传最多 10 张图片,自动检测并移除水印,适合快速处理。 3. AI 改图神器:能一键去除图片中的多余物体、人物或水印,支持粘贴或上传手机图像。 图生图产品: 1. Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感。 2. Retrato:将图片转换为非凡肖像,有 500 多种风格选择。 3. Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:将上传照片转换为芭比风格。 图片生成 3D 建模工具: 1. Tripo AI:在线 3D 建模平台,能利用文本或图像快速生成高质量 3D 模型。 2. Meshy:支持文本、图片生成 3D 及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 可通过手绘草图实时设计 3D 形象。 4. Sudo AI:通过文本和图像生成 3D 模型,适用于游戏领域。 5. VoxCraft:免费工具,能将图像或文本快速转换成 3D 模型,提供多种功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。这些工具各有特点,您可以根据具体需求选择最适合您的工具。
2024-11-21
有没有免费的好用的ai
以下为一些免费且好用的 AI 工具: 获取信息和学习东西:最佳免费选项为必应(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx)。对于儿童,来自可汗学院的 Khanmigo(https://www.khanacademy.org/khanlabs)提供由 GPT4 驱动的良好的人工智能驱动辅导。 写东西:最佳免费选项为 Bing(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx)和 Claude 2(https://claude.ai/)。 在写代码方面的免费替代品有: Tabnine(https://tabnine.com/):AI assistant that speeds up delivery and keeps your code safe Codeium(https://codeium.com/):Free AI Code Completion & Chat Amazon CodeWhisperer(https://aws.amazon.com/codewhisperer/):Build applications faster and more securely with your AI coding companion SourceGraph Cody(https://cody.sourcegraph.com/):The AI that knows your entire codebase Tabby(https://tabby.dev/):Opensource, selfhosted AI coding assitant fauxpilot/fauxpilot(https://github.com/fauxpilot/fauxpilot):An opensource alternative to GitHub Copilot server 需要注意的是,虽然 ChatGPT 功能强大,但它是收费的且不面向中国。此外,虽然 ChatGPT 的开发者 OpenAI 并不像其名字那样开放,其源码与模型数据不对外开放,但 Meta 在 2023 年 2 月开源了 LLaMA 1,并在 7 月发布了进阶的 Llama 2 且允许商用。
2024-11-21
python编写比较好的AI有哪些
以下是一些用 Python 编写的与 AI 相关的内容: 1. 对于 AI 的基础学习,您需要了解以下方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的发展历程和重要里程碑。 数学基础:如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 算法和模型:监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习的基本概念。 评估和调优:了解如何评估模型性能(包括交叉验证、精确度、召回率等),以及如何使用网格搜索等技术优化模型参数。 神经网络基础:理解神经网络的基本结构(包括前馈网络、卷积神经网络、循环神经网络)和常用的激活函数(如 ReLU、Sigmoid、Tanh)。 2. 如果您想在 Python 中安装 FittenAI 编程助手: 首先需要安装 Python 的运行环境,具体可参考 。 安装步骤:点击左上角的 File Settings Plugins Marketplace 。安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。 其功能包括智能补全(按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议)、AI 问答(通过点击左上角工具栏中的 Fitten Code –开始新对话打开对话窗口进行对话)、自动生成代码(Fitten Code 工具栏中选择"Fitten Code 生成代码",然后在输入框中输入指令即可生成代码)、代码转换(Fitten Code 可以实现代码的语义级翻译,并支持多种编程语言之间的互译。选中需要进行翻译的代码段,右键选择"Fitten Code –编辑代码",然后在输入框中输入需求即可完成转换)、自动生成注释(Fitten Code 能够根据代码自动生成相关注释,通过分析代码逻辑和结构,为代码提供清晰易懂的解释和文档)。 3. 若希望更深入地学习 Python 和 AI,至少要熟悉以下 Python 基础内容: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等基本数据类型。 控制流:学习条件语句和循环语句来控制程序执行流程。 函数:包括定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块和使用包来扩展程序功能。 面向对象编程:了解类和对象、属性和方法、继承和多态。 异常处理:理解异常以及如何使用 try 和 except 语句处理错误。 文件操作:学习文件读写和文件与路径操作。
2024-11-21
我要做GPTs
做 GPTs 的原因主要有以下几点: 1. 从社会层面看,虽然 AI 信息充斥,但大多数人对其了解有限,直接面对大模型时交流有限。而 Character.ai 因创造具体角色,数据居高不下,这表明需要明确的引导,而 GPTs 的创作者们可以做到这一点。 2. 对于平台来说,需要场景反哺产品,也需要先行者带动,形成双赢的共存生态。 3. 从从业者角度,如作者自身,虽有丰富经验,但在做 LLMs 应用时面临诸多问题,如找不到落脚点、技术与业务的断档等。懂技术的人不懂业务,熟悉业务的人对新技术没概念。 4. 从产品角度,普通用户的简单交流大模型难以明白其意图,而 GPTs 通过对话引导逐步获取用户信息,将生成高质量 Prompt 的过程拆解为以一轮对话为最小单元任务的重复,解决了用户说什么以及低门槛生成高质量 Prompt 的问题。
2024-11-21
我有一张图像,我要如何用stable Diffusion给它添加噪音。我是一个小白,请给出详细的步骤,用webui来操作。
以下是使用 WebUI 为图像添加噪音的详细步骤: 1. 首先,了解 Stable Diffusion 的加噪原理。从数据集中选择一张干净样本,然后用 random 函数生成 0 3 共 4 种强度的噪声,在每次迭代中随机选择一种强度的噪声添加到干净图片上,完成图片的加噪流程。 2. 在训练过程中,对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。 3. 加噪过程中,每次增加的噪声量级可以不同,假设存在 5 种噪声量级,每次都可以选取一种量级的噪声,以增加噪声的多样性。 4. 与图片生成图片的过程相比,在预处理阶段,先把噪声添加到隐空间特征中。通过设置去噪强度(Denoising strength)控制加入噪音的量。如果去噪强度为 0 ,则不添加噪音;如果为 1 ,则添加最大数量的噪声,使潜像成为一个完整的随机张量。若将去噪强度设置为 1 ,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。
2024-11-18
我有一张图像,我要如何用stable Diffusion给它添加噪音
要使用 Stable Diffusion 给一张图像添加噪音,以下是相关的原理和过程: 在 Stable Diffusion 中,与 GAN 等生成式模型一样,它学习拟合训练集分布,并能够生成与训练集分布相似的输出结果。但与 GAN 相比,SD 模型训练过程更稳定,且具备更强的泛化性能,这归功于其核心的前向扩散过程和反向扩散过程。 在前向扩散过程中,SD 模型持续对一张图像添加高斯噪声直至变成随机噪声矩阵。而在反向扩散过程中,SD 模型进行去噪声过程,将一个随机噪声矩阵逐渐去噪声直至生成一张图像。 Stable Diffusion 的整个训练过程在最高维度上可以看成是如何加噪声和如何去噪声的过程,并在针对噪声的“对抗与攻防”中学习到生成图片的能力。 其训练逻辑为: 1. 从数据集中随机选择一个训练样本。 2. 从 K 个噪声量级随机抽样一个 timestep t。 3. 将 timestep t 对应的高斯噪声添加到图片中。 4. 将加噪图片输入 UNet 中预测噪声。 5. 计算真实噪声和预测噪声的 L2 损失。 6. 计算梯度并更新 SD 模型参数。 在训练时,需要把加噪的数据集输入模型中,每一次迭代用 random 函数生成从强到弱各个强度的噪声,通常会生成 0 1000 一共 1001 种不同的噪声强度,通过 Time Embedding 嵌入到训练过程中。Time Embedding 由 Timesteps(时间步长)编码而来,引入 Timesteps 能够模拟一个随时间逐渐向图像加入噪声扰动的过程。每个 Timestep 代表一个噪声强度(较小的 Timestep 代表较弱的噪声扰动,而较大的 Timestep 代表较强的噪声扰动),通过多次增加噪声来逐渐改变干净图像的特征分布。 以下是一个简单的加噪声流程示例:首先从数据集中选择一张干净样本,然后再用 random 函数生成 0 3 一共 4 种强度的噪声,然后每次迭代中随机一种强度的噪声,增加到干净图片上,完成图片的加噪流程。 在训练过程中,首先对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。接着,让 SD 模型学习去噪过程,最后抽象出一个高维函数,这个函数能在纯噪声中不断“优化”噪声,得到一个干净样本。其中,将去噪过程具像化,就得到使用 UNet 预测噪声,并结合 Schedule 算法逐步去噪的过程。加噪和去噪过程都是逐步进行的,假设进行 K 步,那么每一步,SD 都要去预测噪声,从而形成“小步快跑的稳定去噪”。与此同时,在加噪过程中,每次增加的噪声量级可以不同,假设有 5 种噪声量级,那么每次都可以取一种量级的噪声,增加噪声的多样性。
2024-11-18
我要用数字人AI做教学讲课
数字人 AI 用于教学讲课具有诸多优势: 1. 突破时空限制:可以让历史人物如牛顿亲自授课《牛顿运动定律》,白居易讲述《长恨歌》背后的故事,学生能与任何历史人物对话交流,不受时空约束。 2. 个性化教学:能根据学生的学习情况、兴趣和偏好提供定制化学习计划和资源,因材施教,提高学习效率和成果,缓解教育资源不平等问题。 3. 提高参与感:数字教师博学多能、善解人意且不受情绪左右,基本可实现一对一辅导,让学生参与感更高。 4. 丰富教学形式:如卡尔的 AI 沃茨的数字人课程,包含 15 节视频课,持续更新并增加最新内容,还有课外社群辅导。课程回顾了 2023 年数字人领域的破圈事件,如 AI 马斯克对谈 AI 乔布斯等。 5. 优化工作流:数字人的出现能在制作个人 IP 短视频、配音、直播、智能客服、虚拟偶像等领域完成赋能。 关于数字人课程的学习: 1. 推荐卡尔的 AI 沃茨的数字人课程,建立了完整的数字人学习体系。 2. 报名方式可通过扫码查看课程详细内容和介绍。 在与 AI 交互方面: 1. 对于提示词工程和学习提示词,有人持反对观点,认为像打字和写作一样,不断尝试和大模型交互是最佳方法。 2. 和大模型交互不一定需要遵循规则,未达成目的可锲而不舍地开新窗口再尝试,或更换模型。 3. 用 Markdown 格式清晰表达问题有助于提高与大模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-11-17
我现在是一个AI小白,我想学习AI相关知识,我要怎么进阶学习?
对于 AI 小白的进阶学习,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品创作自己的作品。 分享实践后的经验和成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的体验,激发对 AI 潜力的认识。 同时,您还需要掌握以下基础知识: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-14
我要用Sd做图片细化,要怎么做?给出具体方法
以下是使用 SD 做图片细化的具体方法: 1. 对于更精确的蒙版,如人物的眼睛或配饰等,可使用 Segment Anything 中的 GroundingDINO。启用 GroundingDINO 后,AI 会自动下载模型,若没有魔法,可去云盘下载并放到指定文件目录下。在检测提示词中输入相关内容,如“eye”,AI 可自动检测并设置蒙版,还可通过预览箱体得到编号来选择调整单一部分。选择要修改的蒙版上传到重绘蒙版中,并添加提示词,如“闭眼”,点击生成即可完成修改。 2. 给人物换背景时,加载生成的背景蒙版。大模型选择 revAnimated_v122,正向提示词可设为“简单背景、花、国画、工笔”,蒙版模式选择“重绘非蒙版内容”。若头发部分没抠好,可将其放入图生图中,使用 tile 模型做整体细化,还能给人物衣服添加国风元素。 3. SD 扩图时,若原本图片尺寸为 1152x1152 需增高高度,可设置为(1152x1526)。ControlNet 设置方面,若无法识别处理,可采取以下措施:提高 ControlNet 的权重(增加预处理权重,降低引导介入时机直到为 0,增加引导终止时机直到为 1);降低重绘幅度(高清修复大图时使用);把原始的黑白二维码叠加在二维码上方(正片叠底,保留 4 个定位点,擦去其他地方),调节透明度;使劲抽卡。 4. SD 放大通常重绘幅度设置在 0.3 以下,使用 tile 模型时可提高重绘幅度,如保持重绘幅度为 1 放大 1.5 倍绘图,能加强画面细节且不崩坏。对于草图,可将其导入 ControlNet 中,添加提示词进行细化,还可通过改变控制模式和增加关键词来优化效果,如实现随机提示词转换,用提示词对参考图做出调整。
2024-11-09
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 国产哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前国产的 AI 产品中,很难说哪一家 100%能够保证回答正确且不会瞎说。不同的产品在不同的领域和场景中可能表现各异。您可以考虑一些在教育领域有一定口碑和应用案例的产品,并进行充分的测试和评估。 3. 以下是一些创建智能体的建议: 明确智能体的职责和功能,例如是主要进行课程规划、生成测验还是提供学习指导等。 为智能体提供详细准确的提示词,清晰地描述其任务和目标。 像导演一样,将复杂的任务拆分成科学合理的步骤,并确保每个步骤的结果能为后续步骤提供基础。 对于生成的内容,要进行检查和优化,不断调整和改进智能体的表现。 此外,您还可以参考一些相关的提示词库,例如沃顿商学院给教师和学生的提示词库,其中包含了结构化题型设计师和测验生成器等方面的内容。同时,很多 AI 网站都支持创建智能体,您可以为其配置提示词、知识库和能力等。
2024-11-21
国产AI工具最好用的有哪些?
以下是一些好用的国产 AI 工具: 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,图像质量高,但价格相对较高,重度用户年费最高可达几千元,临时或轻度使用有免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,生成图像质量高、细节丰富,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可,但在某些方面存在局限性,如某些类型图像因监管要求无法生成,处理非中文语言或国际化内容可能不够出色。 AI 助手平台: 传音智库:公司内部平台,功能类似 Poe,仅内网可访问,可用 kimi 替代。 Kimichat:https://kimi.moonshot.cn/ 秘塔 AI:https://metaso.cn/ 此外,还有一些在特定领域有讨论度的国产 AI 工具,如 Brev.AI 能生成更好听的中文歌等。
2024-11-18
为什么国内目前仍有一些人在盲目夸耀国产AI不错,有出息,等等
国内在 AI 领域的发展情况较为复杂。在 2023 年之前,国内 AI 行业曾自认为与美国差距不大且有人口数据优势,但 ChatGPT 和 GPT4 的出现打破了这种认知,直接拉开了 2 年的技术差距。上半年国内坚信靠资金和卡能发展,但试验后发现不易,下半年纷纷转向“垂直应用”“商业化”,不提 AGI,这种转向是短视且致命的。目前国内最领先的模型水平大概在准 ChatGPT3.5,与 GPT4 有差距。 国内大厂在人才、GPU、数据和资金储备上有冲击 AGI 的能力,但受内部短期考核压力等影响,实际效果不明显。具体来说,百度的“文心 4.0”和阿里的“通义千问”是比较突出的。同时,智谱一年间推出了 4 代 GLM,MiniMax 推出了新模型和“星野”APP,月之暗面在长 Token 能力上表现不错。 在图像 AI 领域,国内产品发展迅速,如快手团队开发的“可灵”能生成高质量图像和视频,但价格较高;阿里的“通义万相”在中文理解处理方面出色,操作界面友好,且目前免费,但存在一些局限性。 在硬件层,国内仍面临芯片卡脖子问题,目前没有能胜任大模型训练的芯片,在推理上虽有 Nvidia 的替代产品出现,但华为昇腾因稳定性和生态问题还需时间打磨。
2024-11-03
国产AI与国外AI的实际差距
国产 AI 与国外 AI 存在一定的差距,但情况较为复杂,且在不同方面表现有所不同。 在 2023 年之前,国内 AI 行业曾自认为与美国差距不大,但 ChatGPT 和 GPT4 的出现打破了这种认知,OpenAI 直接拉开了 2 年的技术差距。当时国内出现了从追求创造国产 AGI 到转向做“垂直应用”“商业化”的转变。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 仍有差距。大厂在人才、GPU、数据和资金储备上有冲击 AGI 的能力,但实际效果尚不明确,且受内部短期考核压力等因素影响。 然而到了 2024 年,竞争达到白热化阶段。在文本到视频扩散模型方面,Google DeepMind 和 OpenAI 展示了强大的成果,但中国的相关情况在报告中未详细说明,不过国内也涌现出了一系列表现出色的 AI 生成视频工具,生成结果甚至远超国外。Llama 3.1 在某些任务中能与 GPT4 相抗衡,而中国的一些模型如由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了前沿水平。中国模型在计算效率、数据集建设等方面各有优势,能弥补 GPU 访问的限制等不足。
2024-11-03
有哪些生成音乐的国产AI产品
以下是一些生成音乐的国产 AI 产品: 1. 海绵音乐:https://www.haimian.com/featured 2. MusicFX:https://aitestkitchen.withgoogle.com/zh/tools/musicfx 3. 剪映 4. TikTok 5. Mubert 6. 唱鸭 7. 网易天音 此外,还有一些国际上知名的 AI 音乐生成工具,如: 1. Suno:https://suno.com/ ,通过先进的深度学习技术,能将用户输入转化为富有情感且高质量的音乐作品。 2. Udio:https://www.udio.com/ ,由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。 另外,还有一些其他相关的产品: 1. 由 AI 驱动的软件引擎,可以生成音乐,能对手势、动作、代码或其他声音作出反应。 2. 全球最大的音乐教育平台。 3. 用于创作歌曲和音频录制的应用程序。 4. 提供无缝录音室体验的一体化在线协作平台。 5. 专业音频、语音、声音和音乐的扩展服务。 6. 视频编辑的音频解决方案。 7. 由 AI 驱动的音乐工作室。 8. 通过直观的软件/硬件生态系统为音乐演奏者提供世界级声音的民主化访问。 9. AI 音频插件和社区,弥合 AI 研究与创意之间的差距。 10. 为音乐人、制作人和内容创作者提供 AI 驱动的混音服务。 11. 为创作者提供的在线音乐软件:音乐母带处理、数字音乐发行、分期付款插件、免费样本包和协作工具。 12. (被 Meta 收购) 为创作者提供的音频和视频编辑软件。 13. 音乐人的应用程序。 14. (前身为 Tonz) 实时神经信号处理。 15. 奥地利制造的音频软硬件。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-14
国产 大模型
以下是关于国产大模型的相关信息: Qwen 是国内唯一出现在 OpenAI 视野里、可以参与国际竞争的国产大模型。OpenAI 创始人奥特曼在 X 上转发了相关消息,Qwen 多次冲进 LMSys 榜单,其开源模型累计下载量突破 1600 万,国内外有海量开发者基于它开发模型和应用,海外开发者对其评价颇高。通义大模型用行动证明了开源开放的力量。 在中文大模型基准测评 2023 年度报告的专业与技能专项基准中,GPT4 Turbo 领先幅度较大,国内中文心一言 4.0 表现不俗,在开源模型中,阿里云的 Qwen72BChat 表现可圈可点,是国内开源模型中唯一超过 60 分的模型。总体来看,国内第一梯队大模型在专业与知识能力上与国外最好模型有较大距离,但差距正在不断缩小。 在语言与知识的测评中,GPT4 Turbo 依然领先,国内大模型表现相对较好,有 14 个模型得分高于 GPT3.5,有 9 个模型得分高于 GeminiPro。OPPO 的 AndesGPT、阿里云的通义千问 2.0、月之暗面的 Moonshot 分列国内 1 3 位,较为接近 GPT4。在开源模型中,零一万物的 Yi34BChat、阿里云的 Qwen72BChat、百川智能的 Baichuan213BChat 取得不错成绩,均超过 50 分,分列国内模型的 1 3 名。总体来看,在中文语言与知识能力上,国内大模型已基本追赶上国外头部大模型,未来最可能率先形成超越。
2024-09-30