Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek支持function calling,在dify的agent的prompt里要如何写才能调用工具。我说的是如何写提示词,才能让deepseek通过Function Calling调用工具。

Answer

要在 Dify 的 agent 的 prompt 里让 DeepSeek 通过 Function Calling 调用工具,您可以参考以下内容:

  1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。
    • 提示词注入:将工具信息及使用工具的提示词添加到系统提示中。INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时注意用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,可动态调整。REUTRN_FORMAT 定义调用 API 的格式。
    • 工具结果回传:利用正则表达式抓取输出中的“tool”和“parameters”参数。对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码。通过识别 LLM 返回的调用工具的字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受该角色的 LLM 接口,可改为回传给 user 角色。
  2. 当模型判断需要调用工具函数时,检测到返回的 json 里 function_call 字段不为空,则执行异步函数调用,采用回调方式获取函数返回结果。通过判断返回的 functionCall 的名称执行不同函数并返回结果。
  3. 在大模型请求中,最大的两个变量是 Messages 和 Tools。Messages 里放 sys prompt、memory、user query;Tools 里放能力的 Json Scheme,两者组合形成整个完全的 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。短期记忆在 messages 里的历史 QA 对,长期记忆是 summary 之后的文本再塞回 system prompt。RAG 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。Action 是触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型交互,没有 tool_calls 标记则循环结束。Multi Agents 是更换 system prompt 和 tools。
Content generated by AI large model, please carefully verify (powered by aily)

References

无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能

本文采用的提示词工程主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析tool calling的输出,并将工具返回的内容再次嵌入LLM。[heading2]1、提示词注入阶段[content]INSTRUCTION为最后注入到系统提示中的字符串,他又包含了TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT三个部分。TOOL_EAXMPLE用于提示LLM如何理解tool以及如何使用tool。在编写TOOL_EAXMPLE时,请注意用一些无关紧要的工具作为示例,例如本文使用的将数字加一和数字减一的工具,从而避免LLM混淆真正可以使用的工具与示例工具。tools_instructions是由目前通用的工具字典转换成LLM可读的工具列表。实际使用LLM时,可以通过输入不同的工具来动态调整tools_instructions,让LLM得知目前可用的工具有哪些以及如何使用。REUTRN_FORMAT定义了调用API的格式。[heading2]2、工具结果回传阶段[content]利用正则表达式抓取输出中的"tool"和"parameters"参数。对于interpreter工具,使用了另一种正则表达式来提取LLM输出的代码,提高LLM使用interpreter工具的成功率。本文使用代码如下:通过识别LLM返回的调用工具的字典,提取出对应的值,再传入相应的工具函数,最后将工具返回的结果以observation的角色返回给LLM。对于一些不接受observation、tool、function角色的LLM接口,可以改为回传给user角色,例如:通过以上提示词工程,可以避免微调,让完全没有tool calling能力的LLM获得稳定的tool calling能力。

游戏实操| 利用LLM进行环境叙事和解谜——《Im Here2》

[title]游戏实操|利用LLM进行环境叙事和解谜——《Im Here2》[heading1]三、Demo实现[heading2]3.2提示词设计具体而言,当模型判断需要调用工具函数时,即检测到返回的json里面function_call字段不为空,则执行异步函数调用,这里采用回调的方式以获取函数返回的结果。通过判断返回的functionCall的名称来执行不同的函数,执行逻辑同时返回结果。1.对守卫者和指引者一类具有单一明确任务的代理来说,虽然不同代理负责不同的谜题如一般谜题和世界观谜题,但由于指令结构的存在保持着一定的兼容性,所以只要调试出一个可行的结构,进一步更换谜题和回答正确后提供的线索即可。在这里调试它们的指示预设更像是尝试使它们输出特定的内容,有点像:《完蛋!我被LLM包围了!》,感兴趣的可以试玩一下:[https://huggingface.co/spaces/LLMRiddles/LLMRiddles](https://huggingface.co/spaces/LLMRiddles/LLMRiddles)[https://modelscope.cn/studios/LLMRiddles/LLMRiddles/summary](https://modelscope.cn/studios/LLMRiddles/LLMRiddles/summary)这里举了两个有不同谜题的代理示例,可以试着一段段输入测试查看模型输出的结果,指令预设如下:守卫者1:【角色预设+谜题】

有用Agent产品开发踩坑及思考

其实只要看过官方文档的应该都能知道,大模型请求中,最大的两个变量:Messages和Tools。Messages里面放的是sys prompt,memory,user query;Tools里面放的是一些能力的Json Scheme;而这两者组合在一起,就形成整个完全的Prompt。所以Agent应用开发的本质是什么?动态Prompt拼接。通过工程化的手段,不断把业务需求转述成新的prompt。短期记忆:messages里的历史QA对;长期记忆:summary之后的本文,再塞回system prompt;RAG是啥?向量相似性检索,然后放在system prompt里或者通过tools触发检索Action:触发tool_calls标记,进入请求循环,拿模型生成的请求参数进行API request,再把结果返回给大模型进行交互;没有tool_calls标记了,循环结束。对应页面上就是对话一轮对话结束。Multi Agents是啥?把system prompt和tools换一换,A就变成B了。还有啥?没了呀,本质就是这些东西。当然,这也就是最基本的原理,想做深,做好,肯定还有很多坑需要踩。

Others are asking
是否有《普通人如何抓住deepseek红利》清华大学链接
以下是关于《普通人如何抓住 DeepSeek 红利》的相关链接: 清华大学新闻与传播学院撰写的报告:https://waytoagi.feishu.cn/record/T2yDrJ4NjeJFmccnBgzc5A7InIq 相关 PPT 课件:https://bl7rsz9526.feishu.cn/wiki/Gec9wxIGhiqSsAkrqzPc3ObLnpb (由清华大学新闻与传播学院、新媒体研究中心、元宇宙文化实验室、@新媒沈阳团队的陶炜博士生团队制作)
2025-02-20
你知道deepseek吗
DeepSeek 在春节期间非常火爆,不仅在各大平台刷屏,还引起了广泛讨论。 从非技术人的角度来看,对 DeepSeek 的研究主要围绕以下话题: 1. 天才养成记:DeepSeek R1 之所以聪明的原因。 2. “填鸭”之困:传统大模型训练的瓶颈。 3. 自学成才:DeepSeek R1 的破局之道。 4. 纯强化学习:再次带来 AI 超越人类的希望。 DeepSeek 是一个品牌名,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。DeepSeek 公司名为深度求索,其网页和手机应用目前免费,API 调用收费。DeepSeek 大模型,尤其是有推理功能的 DeepSeek R1 大模型,权重文件开源,可本地部署。
2025-02-20
清华出品的deepseek应用手册在哪里下载
清华出品的 DeepSeek 相关应用手册的下载链接如下: 清华大学沈少阳:《 北航&清华大学:《 《 其它一些报告发布在 。
2025-02-20
给出实际的操作案例,结合deepseek、kimi、豆包工具。
以下是结合 deepseek、kimi、豆包工具的实际操作案例: 在 2025 年 1 月的国内月活榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,活跃用户达 7068 万人,环比变化为 24.3616%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,活跃用户为 779 万人,环比变化为 0.1911%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,活跃用户为 591 万人,环比变化为 0.1135%,所属公司为月之暗面。 在 2025 年 1 月的国内流量榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,访问量达 22541 万,环比变化为 20.4093%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,访问量为 3457 万,环比变化为 0.1041%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,访问量为 3282 万,环比变化为 0.1283%,所属公司为月之暗面。 此外,在使用效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上天衣无缝。
2025-02-20
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 其秘方具有硅谷风格: 不是“中国式创新”的产物,不能简单地将其比喻成“AI 界的拼多多”或认为其秘方只是多快好省。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 是中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷风格。 2. V3 可能是 DeepSeek 的 GPT3 时刻,未来发展充满未知但值得期待。 3. 关于提示词 HiDeepSeek: 效果对比:可通过 Coze 做小测试并对比。 使用方法:包括搜索网站、点击“开始对话”、发送装有提示词的代码、阅读开场白后开始对话等步骤。 设计思路:将 Agent 封装成 Prompt 并储存在文件,实现多种功能,优化输出质量,设计阈值系统,用 XML 进行规范设定等。 完整提示词:v 1.3。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。
2025-02-20
deepseek怎么用
以下是关于 DeepSeek 的使用方法: 1. 访问 www.deepseek.com ,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek 。 3. 认真阅读开场白之后,正式开始对话。 此外,获取 DeepSeekR1 满血版密钥的步骤如下: 1. 注册并登录火山引擎,点击立即体验进入控制台。链接为:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台,在 AI 领域最为大众所熟知的应该是“豆包大模型”,这里就是源头) 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。然后可能会提示:“该模型未开通,开通后可创建推理接入点”。如果有提示,就点击“立即开通”,开通一下就可以了。如果无提示则直接到:第 5 步,点击确认接入。 4. 点击“立即开通”跳转到此页面,勾选全部模型和协议,一路点击开通即可。(这里是免费的) 5. 确认以下无误后,点击“确认接入”按钮。 6. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”(我们刚才自己设置的命名)。重点来了:这个就是推理点的 ID,复制他放到您的微信里,发给自己保存一下。 7. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 如果您已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】。 9. 把这个复制好之后,也放到您自己微信里,保存好。 DeepSeek 的设计思路包括: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 关于 DeepSeek 的使用分享: 1. DP 模型的功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 2. 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 3. 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 4. 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 5. 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 6. 使用场景:包括阅读、育儿、写作、随意交流等方面。 7. 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 另外,DeepSeek 文档可以在 3 群和 4 群分享中获取,也可在 v to a gi 的飞书知识库中搜索获取。未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek 。
2025-02-20
你调用的是哪个大模型?
我调用的是抖音集团的云雀大模型。在一些项目中,还会涉及到其他大模型的调用,比如在 COW 项目中可直接调用千问的某一模型,需更改 key 和 model 等操作,且要实名认证。此外,军师联盟 BOT 工作流中会调用月之暗面 KIMI、豆包、Minimax、通义千问和智谱清言这五个大模型。
2025-02-14
coze 能调用用户自己部署的大模型吗
Coze 可以调用用户自己部署的大模型。例如: 在 Coze 上搭建工作流框架时,可通过“个人空间工作流创建工作流”进行操作,在编辑面板中拖入对应的大模型节点来实现各项文本内容的生成。 当在 COW 中直接调用千问的某一个大模型时,需要更改 key 和 model 等配置。获取 key 可参考相关的视频和图文教程,同时需要完成实名认证,否则可能出现报错。 在使用 Coze 做智能报表助手的过程中,也涉及到对大模型的运用,如将用户问题转换为 SQL 等。
2025-02-12
我应该如何调用你的知识库并用在本地部署的deepseek上呢
要在本地部署的 DeepSeek 上调用知识库,您可以参考以下步骤: 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项包括最大召回数量、最小匹配度和调用方式等。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 此外,关于 DeepSeek 的提示词相关内容: 效果对比:用 Coze 做了个小测试,大家可以对比看看,参考 。 如何使用: Step1:搜索 www.deepseek.com,点击“开始对话”。 Step2:将装有提示词的代码发给 Deepseek。 Step3:认真阅读开场白之后,正式开始对话。 设计思路: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定)。 DeepSeekR1 提示词系统的核心原理认知包括: AI 特性定位:多模态理解,支持文本/代码/数学公式混合输入;动态上下文,对话式连续记忆(约 4K tokens 上下文窗口);任务适应性,可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架方面,如果不知道如何表达,还是可以套用框架指令,包括四要素模板和格式控制语法。格式控制语法中,强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 进阶控制技巧包括思维链引导和知识库调用。思维链引导中的分步标记法为请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问为在得出最终结论前,请先列举三个可能存在的认知偏差。知识库调用包括领域限定指令和文献引用模式。
2025-02-11
请提供deepSeek api的具体调用文档
以下是关于 DeepSeek 的相关信息: 网址:https://www.deepseek.com/zh 。国内能访问,网页登录方便,目前完全免费。 使用方法: 搜索 www.deepseek.com ,点击“开始对话”。 将装有提示词的代码发给 DeepSeek 。 认真阅读开场白之后,正式开始对话。 特点: 很方便,只需要获得游戏代码即可。 对于新手较为推荐。 相关工具:HiDeepSeek 能让 DeepSeek 的能力更上一层楼,它能让 AI 像人类交流时那样展示思考过程,不是要让 AI 变得更聪明,而是要让其思考过程更易理解。使用时可参考以下步骤: 用 Coze 做小测试进行效果对比。 设计思路包括将 Agent 封装成 Prompt 并储存在文件、通过提示词文件让 DeepSeek 实现联网和深度思考功能、优化输出质量等。 完整提示词版本为 v 1.3 。 特别鸣谢李继刚和 Thinking Claude 等为相关设计提供帮助和灵感。
2025-02-08
你能调用deepseekR1的API吗?
DeepSeekR1 的 API 调用步骤如下: 1. 首先到 DeepSeek 的官网(https://www.deepseek.com/),进入右上角的 API 开放平台。 2. 早期 DeepSeek 有赠送额度,如果没有赠送的余额,可以选择去充值。支持美元和人民币两种结算方式,以及各种个性化的充值方式。 3. 创建一个 API key,注意,API key 只会出现一次,请及时保存下来。 4. 接下来,下载 Cursor(https://www.cursor.com/),或者 VSCode(https://code.visualstudio.com/),只要代码编辑器可以下载插件即可。 5. 以 Cursor 作为代码编辑器为例,下载安装后,在插件页面搜索并安装 Roocline。 6. 安装完后,打开三角箭头,就可以看到 RooCline,选中并点击齿轮,进入设置,依次设置: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 语言偏好设置。 小贴士:记得把 HighRisk 选项都打开,这样 AI 才能帮您自动生成文件。 7. 最后做完所有不要忘记点击 Done 保存修改。 8. 在聊天框输入产品需求,输入需求后点击星星优化提示词,最终得到想要的结果。
2025-02-05
coze平台有没有DeepSeek的mml可以调用
在 Coze 平台上,DeepSeek 是可以调用的。以下是相关的具体信息: 效果对比:用 Coze 做了个小测试,大家可以对比看看,相关视频 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 这个项目是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。
2025-02-03
目前有哪些专门的培训设计的AI工具
目前专门用于培训设计的 AI 工具包括: 1. MindShow: 网址:国内网站,不需要魔法。地址:https://www.mindshow.fun//home 输入大纲和要点:提供导入大纲和要点、输入主题自动生成大纲和要求两种方式。 选择模版并生成 PPT。 导出。 2. 爱设计: 网址:国内网站,不需要魔法。输入地址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite,进行注册和登录。 输入大纲和要点:确定操作方式,提供导入大纲和要点、输入主题自动生成大纲和要求两种方式。 选择模版并生成 PPT。 导出。 此外,用于产品原型设计的 AIGC 工具包括: 1. UIzard:利用 AI 技术生成用户界面。 2. Figma:基于云的设计工具,提供自动布局和组件库,社区有 AI 插件。 3. Sketch:流行的矢量图形设计工具,插件系统中有利用 AI 技术辅助设计的插件。
2025-02-20
最好的ai视频生成工具推荐
以下是为您推荐的一些优秀的 AI 视频生成工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作且支持视频编辑。 2. SVD:Stable Diffusion 的插件,可在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 6. PixVerse:多模态输入,支持文本到视频和图像到视频转换,提供多种风格选项,可精细化控制生成内容,有社区支持,生成效率高,提供视频上采样功能,但 Web 应用和 Discord 服务器生成的视频质量有差异,使用时仍需准确的文本描述。 7. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架。 8. Pictory:允许用户轻松创建和编辑高质量视频,可根据文本描述生成相应内容。 9. VEED.IO:提供 AI 图像和脚本生成器,帮助用户从图像制作视频并规划内容。 10. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 这些工具适用于不同的应用场景和需求,您可以根据自身情况进行选择。更多的文生视频网站可查看:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-20
我想优化PPT,用什么AI工具
以下是一些可用于优化 PPT 的 AI 工具及相关信息: 目前市面上大多数 AI 生成 PPT 通常按照以下思路来完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 为您推荐以下一些 AI PPT 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 此外,您还可以参考以下两篇市场分析的文章: 1. 《》 2. 《》 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-02-20
推荐文生图的工具,我需要生成一个logo
以下为您推荐一些文生图的工具及相关操作流程: Tusiart 1. 定主题:明确您需要生成的图片的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. ControlNet:可用于控制图片中特定的图像,如人物姿态、生成特定文字、艺术化二维码等,属于高阶技能。 5. 局部重绘:下篇再教。 6. 设置 VAE:选择 840000 即可。 7. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 8. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,同样用单词和短语组合,用英文半角逗号隔开,不用管语法。 9. 采样算法:一般选择 DPM++2M Karras,也可参考模型作者推荐的采样器。 10. 采样次数:选择 DPM++2M Karras 时,采样次数在 30 40 之间。 11. 尺寸:根据个人喜好和需求选择。 SD(Stable Diffusion) 1. 制作思路 将中文字做成白底黑字,存成图片样式。 使用文生图的方式,使用大模型真实系,如 realisticVisionV20_v20.safetensorsControlNet 预设置。 输入关键词,如奶油的英文单词“Cream+Cake”(加强质感),反关键词“Easynegative”(负能量),反复刷机,得到满意的效果。 同理可输出 C4D 模型,可自由贴图材质效果,如 3d,blender,oc rendering。 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 打开高清修复,分辨率联系 1024 以上,步数:29 60。 Liblibai 1. 定主题:明确生成图片的主题、风格和信息。 2. 选择 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设成 2。 6. Prompt 提示词:用英文写想要 AI 生成的内容,单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 7. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,单词和短语组合,用英文半角逗号隔开,不用管语法。 8. 采样方法:一般选择 DPM++2M Karras,参考模型作者推荐的采样器更有保障。 9. 迭代步数:选择 DPM++2M Karras 时,迭代步数在 30 40 之间。 10. 尺寸:根据个人喜好和需求选择。 11. 生成批次:默认 1 批。 希望这些信息对您有所帮助,祝您生成满意的 logo!
2025-02-20
最近很火的AI工具
以下是一些最近很火的 AI 工具: 1. Unity 推出的两款 AI 工具: Copliot 工具:可通过与 Muse Chat 聊天快速启动创建游戏项目,如一键生成塔防类游戏基础框架、让人物角色做动作,还能协助编码和创建 3D 材质、动画等内容。现可申请加入等待列表:https://create.unity.com/aibeta ,官方提示暑假会进一步开放。 Unity Sentis:是第一个将 AI 模型嵌入到实时 3D 引擎中的跨平台解决方案,能在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强游戏玩法和其他功能,目前还在封测阶段。 2. NotebookLM:2024 年热门 AI 产品,12 月更新了新功能“加入”,用户可成为播客节目一环。但该功能存在一些限制,如很早之前就在 Google 开发者大会上展示过,最近才有 BETA 版;对部分地区用户有强限制,注意检查网络设置;“加入”功能使用不稳定,需多点耐心;目前只支持英语发言,上传文本语言不受限;目前只支持网页版,没有移动端。使用地址: 3. Writerbuddy AI 分析了 3000 多种 AI 工具,选出访问量最大的 50 个工具,ChatGPT 独占 60%流量。 4. MotionGPT 是多模态运动语言模型,可通过文字聊天生成逼真人体运动,并发布了演示视频。 5. Radishes 是开源无版权音乐平台,支持 Windows、macOS、Linux 和 Web,功能包括音乐搜索、下载、每日歌单推荐等。
2025-02-20
functioncall
Function Calling 是一种在 AI 领域中重要的技术和应用方式: 在 ChatGPT 中:为让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能选择输出包含调用函数所需参数的 JSON 对象,这是将 GPT 能力与外部工具和 API 连接的新方法。好处是减少 SQL 注入风险,可本地写函数执行查询,也可让函数改为 SQL 查询,根据实际业务需求选择函数查询或 SQL 查询,使 AI 输出更可控。 在谷歌 Gemini 中:在金融业务用例中,如搜索欧元兑美元的当前汇率,需做好配置,使用 Gemini 1.5 Flash 模型。函数调用为 AI 系统带来多个优势,包括简化用户体验、减少错误发生可能性、为更高级自动化开辟道路,能处理如酒店预订或制定旅行计划等复杂操作,重新定义了人与技术的互动方式。
2025-02-14
Function Calling in AI
以下是关于“Function Calling in AI”的相关内容: 函数调用为 AI 系统带来了诸多重要优势。以谷歌 Gemini 为例,它简化了用户体验,使用户无需在模型和应用程序间繁琐地复制粘贴信息,过程更流畅直观;显著减少错误发生的可能性,降低输入不正确信息的风险,提高准确性;为更高级的自动化开辟道路,能处理如酒店预订或制定旅行计划等复杂操作,用户通过简单语音命令即可完成一系列复杂任务,重新定义了人与技术的互动方式。 对于 ChatGPT,为让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 于当地时间 6 月 13 日发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能输出包含调用函数所需参数的 JSON 对象,这是连接 GPT 能力与外部工具和 API 的新方法。结合函数调用,本地控制返回 JSON 格式,prompt 定制更简单,AI 输出更可控,可根据实际业务需求选择函数查询或 SQL 查询。 在 AI 智能体方面,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新层。工具本质是预先编写的代码组件,执行特定操作,如网页浏览、代码解释和授权认证等。系统向 LLM 呈现可用工具,LLM 选择并构建必要的结构化 JSON 输入触发 API 执行产生最终操作。例如 Omni 的“计算 AI”功能,利用 LLM 直接输出适当的 Excel 函数到电子表格中执行计算并生成复杂查询。但工具使用仅凭自身不能视为“主动性”,逻辑控制流程仍由应用程序预先定义。
2024-11-22
Function Calling in AI
以下是关于“Function Calling in AI”的相关内容: 函数调用为 AI 系统带来了诸多重要优势,包括简化用户体验,使用户无需在模型和应用程序间繁琐地复制粘贴信息,过程更流畅直观;显著减少错误发生的可能性,降低输入不正确信息的风险,提高准确性;为更高级的自动化开辟道路,能够处理如酒店预订或制定旅行计划等复杂操作,用户通过简单的语音命令就能完成一系列复杂任务,重新定义了人与技术的互动方式。 在 ChatGPT 中,为让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 于当地时间 6 月 13 日发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能地选择输出包含调用函数所需参数的 JSON 对象,这是将 GPT 能力与外部工具和 API 连接的新方法。结合函数调用,本地控制返回 JSON 格式,prompt 定制更简单,AI 输出更可控,可根据实际业务需求选择函数查询或 SQL 查询。 在 AI 智能体方面,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新层。工具本质上是预先编写的代码组件,执行特定操作,如网页浏览、代码解释和授权认证等。系统向 LLM 呈现可用工具,LLM 选择工具、构建必要的结构化 JSON 输入并触发 API 执行以产生最终操作。例如 Omni 的“计算 AI”功能,利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。但工具使用仅凭自身不能视为“主动性”,逻辑控制流程仍由应用程序预先定义。
2024-11-06
deepseek支持function calling,在dify的agent的prompt里要如何写才能调用工具
在 Dify 的 agent 的 prompt 中实现调用工具的方法如下: 1. 提示词注入阶段: INSTRUCTION 为注入到系统提示中的字符串,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。 TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应使用无关紧要的工具作为示例,避免 LLM 混淆。 tools_instructions 是将通用的工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整。 REUTRN_FORMAT 定义了调用 API 的格式。 2. 工具结果回传阶段: 利用正则表达式抓取输出中的“tool”和“parameters”参数。 对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。 通过识别 LLM 返回的调用工具的字典,提取对应的值,传入相应的工具函数,将工具返回的结果以 observation 的角色返回给 LLM。对于不接受该角色的 LLM 接口,可改为回传给 user 角色。 此外,当模型判断需要调用工具函数时,即检测到返回的 json 里面 function_call 字段不为空,则执行异步函数调用,可通过判断返回的 functionCall 的名称来执行不同的函数并返回结果。 在提升可控性方面,有以下建议: 1. 放弃 JSON mode,虽然模型能力提升能输出 JSON,但仍会出错,且不能保证 100%正确,而模型厂家对 Function Calling 有微调优化。 2. 降低 System prompt 依赖,化繁为简,能在 Tools 里写的东西尽量写在里面。 3. API Response 增强 Prompt,这一步的准确率很高,可增加给大模型的约束和提示。 4. 尽量让模型做选择,而不是填空,减少 token 输出,提高速度和准确率。 5. 利用 Tools 来做 Route,构建 Multi Agent,术业有专攻。
2024-10-24
deepseek支持function calling,prompt里要如何写才能调用工具。
要在 DeepSeek 中通过提示词实现工具调用,主要通过以下提示词工程实现: 1. 实现原理: 提示词工程主要由提示词注入和工具结果回传两部分代码组成。提示词注入将工具信息及使用提示词添加到系统提示中,工具结果回传则解析工具调用的输出,并将返回内容嵌入 LLM。 2. 提示词注入阶段: INSTRUCTION 为注入到系统提示中的字符串,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 理解和使用工具,编写时应使用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换为 LLM 可读的工具列表,实际使用时可动态调整。REUTRN_FORMAT 定义了调用 API 的格式。 3. 工具结果回传阶段: 利用正则表达式抓取输出中的“tool”和“parameters”参数。对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码以提高成功率。通过识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受该角色的 LLM 接口,可改为回传给 user 角色。 在游戏实操中,当模型判断需要调用工具函数时(检测到返回的 json 里 function_call 字段不为空),执行异步函数调用,采用回调方式获取函数返回结果,通过判断返回的 functionCall 名称执行不同函数并返回结果。 对于 ChatGPT,为让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 发布函数调用及其他 API 更新后,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能输出包含调用函数所需参数的 JSON 对象。本地可根据 GPT 返回的函数名、参数进行数据查询,可采用函数查询或 SQL 查询,根据实际业务需求选择,使 AI 输出更可控。
2024-10-24
Function Calling in AI
以下是关于“Function Calling in AI”的相关内容: 函数调用为 AI 系统带来了诸多重要优势,包括大大简化用户体验,使用户无需在模型和应用程序间繁琐地复制粘贴信息,过程更流畅直观;显著减少错误发生的可能性,降低输入不正确信息的风险,提高准确性;为更高级的自动化开辟道路,能够处理如酒店预订或制定旅行计划等复杂操作,用户通过简单的语音命令就能完成一系列复杂任务,重新定义了人与技术的互动方式。 在 ChatGPT 中,为让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 于当地时间 6 月 13 日发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能输出包含调用函数所需参数的 JSON 对象,这是将 GPT 能力与外部工具和 API 连接的新方法。结合 GPT 与函数调用,本地控制返回 JSON 格式,prompt 定制更简单,AI 输出更可控,可根据实际业务需求选择函数查询或 SQL 查询。 在 AI 智能体方面,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新层。工具本质是预先编写的代码组件,执行特定操作,如网页浏览、代码解释和授权认证等。系统向 LLM 呈现可用工具,LLM 选择工具、构建必要的结构化 JSON 输入并触发 API 执行以产生最终操作。Omni 的“计算 AI”功能体现了这种方法,利用 LLM 直接输出适当的 Excel 函数到电子表格中执行计算并自动生成复杂查询供用户使用。但工具使用仅凭自身不能视为“主动性”,逻辑控制流程仍由应用程序预先定义。
2024-10-22