直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我该如何利用文心一言、kimi等已有的大语言模型去作个性化训练?

回答

已有的大语言模型如文心一言、kimi 等通常不支持个人进行个性化训练。

大语言模型的相关知识包括:

  • 国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域。
  • 大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强。
  • Transformer 是大语言模型训练架构,具备自我注意力机制能理解上下文和文本关联。
  • 大模型可能因错误数据导致给出错误答案,优质数据集对其很重要。
  • Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。
  • Fine tuning 是基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。

学习大型语言模型(LLM)的开发是一个系统性的过程,需要涵盖多个方面的知识和技能:

  • 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。
  • 理解 Transformer 和 BERT 等模型原理,掌握相关论文。
  • 学习 LLM 模型训练和微调,包括大规模文本语料预处理,使用预训练框架,以及微调 LLM 模型进行特定任务迁移。
  • 掌握 LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,以及模型服务化、在线推理、多语言支持等。
  • 进行 LLM 工程实践和案例学习,结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。
  • 持续跟踪前沿发展动态。

机器学习是人工智能的一个子领域,深度学习是机器学习的一个子领域,大语言模型是深度学习在自然语言处理领域的应用之一,具有生成式 AI 的特点。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

02-基础通识课

[title]02-基础通识课[heading1]智能纪要[heading2]总结大语言模型的介绍与原理国内大模型的分类:国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI蛋白质结构预测等。大模型的体验:以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。大语言模型的工作原理:大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用b链形容大小。Transformer架构:Transformer是大语言模型训练架构,17年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的temperature。关于大语言模型的原理、应用及相关概念Transformer模型原理:通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。Prompt的分类和法则:分为system prompt、user prompt和assistant prompt,写好prompt的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。Fine tuning微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。RAG概念:未对RAG的具体内容进行详细阐述,仅提出了这个概念。

问:怎么系统学习 llm 开发?

[title]问:怎么系统学习llm开发?学习大型语言模型(LLM)的开发是一个系统性的过程,需要涵盖多个方面的知识和技能。以下是一些建议的学习路径和资源:1.掌握深度学习和自然语言处理基础-机器学习、深度学习、神经网络等基础理论-自然语言处理基础,如词向量、序列模型、注意力机制等-相关课程:吴恩达的深度学习课程、斯坦福cs224n等2.理解Transformer和BERT等模型原理- Transformer模型架构及自注意力机制原理- BERT的预训练和微调方法-掌握相关论文,如Attention is All You Need、BERT论文等3.学习LLM模型训练和微调-大规模文本语料预处理- LLM预训练框架,如PyTorch、TensorFlow等-微调LLM模型进行特定任务迁移-相关资源:HuggingFace课程、论文及开源仓库等4.LLM模型优化和部署-模型压缩、蒸馏、并行等优化技术-模型评估和可解释性-模型服务化、在线推理、多语言支持等-相关资源:ONNX、TVM、BentoML等开源工具5.LLM工程实践和案例学习-结合行业场景,进行个性化的LLM训练-分析和优化具体LLM工程案例-研究LLM新模型、新方法的最新进展6.持续跟踪前沿发展动态

融合RL与LLM思想,探寻世界模型以迈向AGI/ASI的第一性原理反思和探索「RL×LLM×WM>AI4S>AGI>ASI」

[title]融合RL与LLM思想,探寻世界模型以迈向AGI/ASI的第一性原理反思和探索「RL×LLM×WM>AI4S>AGI>ASI」[heading1]「上篇」[heading3]回归第一性原理[heading4]LLM洞察&阐释:LLM大家都已经再熟知不过了,为了承上启下,这里针对LLM再做一些简单的概念以及自认为一些关键内涵的回顾。从概念分类角度上看,大语言模型是深度学习的分支。其中:机器学习是人工智能(AI)的一个子领域,它的核心是让计算机系统能够通过对数据的学习来提高性能。在机器学习中,我们不是直接编程告诉计算机如何完成任务,而是提供大量的数据,让机器通过数据找出隐藏的模式或规律,然后用这些规律来预测新的、未知的数据。深度学习是机器学习的一个子领域,它尝试模拟人脑的工作方式,创建所谓的人工神经网络来处理数据。这些神经网络包含多个处理层,因此被称为“深度”学习。深度学习模型能够学习和表示大量复杂的模式,这使它们在诸如图像识别、语音识别和自然语言处理等任务中非常有效。大语言模型是深度学习的应用之一,尤其在自然语言处理(NLP)领域。这些模型的目标是理解和生成人类语言。为了实现这个目标,模型需要在大量文本数据上进行训练,以学习语言的各种模式和结构。如ChatGPT,文心一言,就是一个大语言模型的例子。被训练来理解和生成人类语言,以便进行有效的对话和解答各种问题。如下图所示中LLM与ML、DL的关系:同时,LLM还有一个可以说独有的特点,即生成式AI,这也是区别与其它传统模型或训练任务的Uniqueness,表面上看,这种技术包括用于生成文本、图像、音频和视频等各种类型的内容的模型,其关键特性是,它不仅可以理解和分析数据,还可以创造新的、独特的输出,这些输出是从学习的数据模式中派生出来的。

其他人在问
国内都有哪些类似于文心一言类的AIGC应用?
国内类似于文心一言的 AIGC 应用有: 语言文字类:百度的文心一言、阿里云的通义千问等。 语音声音类:Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2024-11-14
gpt-4和文心一言
GPT4 是由 OpenAI 开发的先进且广泛使用的大型语言模型,在多种任务上表现卓越,如文本生成、理解、翻译及专业和创意写作等,通过大量数据学习,能处理复杂问题和理解上下文。 文心一言是百度开发的语言模型,文心一言 4.0 有网页版和 API 版本。在 2023 年,百度的“文心 4.0”是国内能力较好的模型之一。 除了 GPT4 和文心一言,还有其他重要的大型语言模型,如 Anthropic 公司的 Claude 3、谷歌的 Gemini、阿里巴巴的通义大模型等。在 2023 年度中文大模型基准测评报告中,对众多模型进行了评测和列举。2023 年中美在 AGI 技术上仍有差距,国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 有差距。国内大厂在冲击 AGI 方面虽有资源,但实际效果尚不明确,且受多种因素影响。
2024-11-12
现在国内语言生成式AI有多少个在做的,比如说百度的文心一言和阿里的通义
目前国内在做语言生成式 AI 的有不少,例如百度的文心一言、阿里的通义千问、讯飞的讯飞星火、智谱华章的智谱清言、字节跳动的豆包、腾讯的元宝、昆仑万维的天工 AI 等。 此外,还有一些在特定时间上线的大模型,如 8 月正式上线的包括北京的百度(文心一言)、抖音(云雀大模型)、智谱 AI(GLM 大模型)、中科院(紫东太初大模型)、百川智能(百川大模型),上海的商汤(日日新大模型)、MiniMax(ABAB 大模型)、上海人工智能实验室(书生通用大模型)。 需要注意的是,不同的大模型具有各自的特点和功能,在使用和应用场景上可能存在差异。
2024-11-06
文心一言和智普清言哪个更好用
文心一言和智谱清言在不同方面各有特点。 在对结构化 prompt 的响应方面: 智谱清言能够按照 prompt 指示回答,理解意图较好,输出格式基本符合要求,内容相对具体,体验感较好。 文心一言在某些任务中可能没有完全执行提示词要求,需要二次提示和引导。 在复杂提示词理解和执行的测评中: 智谱清言表现亮眼,对提示词结构的执行较完整,生成内容丰富,格式美观,但案例部分未完全按要求列举。 文心一言在这轮表现中相对较差。 综合来看,两者的表现取决于具体的使用场景和需求。如果需要更准确和完整地执行提示词,智谱清言可能更具优势;但如果对特定领域的理论性输出有需求,文心一言也可能有一定的价值。
2024-11-03
通义千问和文心一言有什么不一样
通义千问和文心一言的不同点主要体现在以下几个方面: 1. 开发团队:文心一言由百度出品,通义千问由阿里云开发。 2. 功能特点: 文心一言定位为智能伙伴,能写文案、想点子,陪用户聊天、答疑解惑。 通义千问能够与人交互、回答问题及协作创作。 3. 在一些具体应用场景中的表现: 在律师答辩状 prompt 评测中,文心一言 3.5 输入起诉状后,直接给出起诉状范本,未理解 prompt 输出答辩状,提示后主体少、不专业、错误多,输出应诉方案能按 prompt 结构,内容简洁可作框架。 通义千问在律师答辩状 prompt 评测中,欢迎语直接,输入起诉状后两个答辩人正确,能按 prompt 结构输出但专业性稍差,未引用法律条文,提示输出应诉方案能按 prompt 结构,整体内容及格无亮点。
2024-10-20
比较一下豆包和文心一言
以下是豆包和文心一言的一些比较信息: 豆包: 是字节跳动官方网页版产品。 在中文大模型基准测评 2023 年度报告的 SuperCLUE 基准传统安全能力专项中表现优秀。 文心一言: 由百度全新一代知识增强大语言模型,于 2023 年 3 月 16 日正式发布,10 月 17 日发布 V4.0 版本。 目前已有 7000 万用户。 在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。各项能力表现均衡且绝大部分能力有很高水平,综合来看是国内非常有竞争力的大模型。 能力栈较为广泛,可应用的场景较多。重点推荐在查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面的应用。由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力。 此外,文心一言和豆包在国内都有一定的知名度,且文心一言与 Kimi 智能助手、通义千问等都是国内免费的 APP。
2024-10-12
我该如何让ai生成一篇教学设计
以下是一些让 AI 生成教学设计的方法: 1. 对于教师,可以利用如沃顿商学院提供的提示词库。首先,AI 作为教学助理向老师介绍自己并询问教学科目及学生层次,等待回复。然后请老师上传教学大纲(若有)或详细描述课程内容,再根据老师的反馈提供针对性帮助。 2. 对于教育工作者,可尝试以下方式: AI 辅助教案设计:使用 AI 帮助设计课程大纲或生成教学材料的想法。 个性化学习路径:利用 AI 分析学生学习数据,为不同学生制定个性化学习计划。 创新教学方法:将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 AI 素养教育:开发简单课程模块,教导学生了解 AI 基础知识、应用领域及对社会的影响。 3. 教师可根据不同教学场景设计恰当的提示词,用生成式人工智能辅助教学,例如收集整理语料,不断迭代和更新提示词以提升效果。还可以利用 AI 进行搜索总结、制作思维导图、PPT 制作、论文润色、专业翻译、摘要重点提取、会议纪要撰写、公文撰写等。
2024-11-06
我是初学者,我该如何学习AI知识,如何一步一步的由浅入深的学习呢?
对于初学者学习 AI 知识,由浅入深的学习路径如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-04
我该怎么用AI让我的短视频文案写的更好
以下是一些利用 AI 让短视频文案写得更好的方法: 1. 对于像《AI 你·南京》AIGC 城市宣传 MV 这类项目,若打算采用旁白朗诵方式,需对文案有较高要求。直接让 GPT 写文案可能效果平淡,应更具体地提出需求,例如可利用 360 浏览器字幕提取功能捕捉相关视频文案,再让 kimi 和 GPT 进行分析和学习,理解目标写作风格并融会贯通。写作时可同时对比 kimi 和 GPT 的结果,在中文理解和写作能力上,kimi 表现更突出。完成文案后可稍作调整,使其更顺口,如让 kimi 将“钟山风雨起苍黄,江南佳丽地,金粉六朝都”改为“钟山风雨起苍黄,古都烟云梦犹长”。 2. 以美妆行业为例,在电商带货本地生活方面,表明身份、描述需求并提出回答要求,用 ChatGPT 生成短视频选题文案和短视频文案。之后按照以下步骤生成虚拟数字人短视频:第一步,打开特定网站(需科学上网);第二步,在右侧文字框输入 ChatGPT 生成的内容,选择想要的头像、不同国家和声音;第三步,点击“Create Video”等待生成。生成后结合产品讲解即可发布用于视频带货。 3. 对于文案创作到一定阶段,如为朗诵配音确定视频时长和分镜数量时,若 AI 语音效果不佳,可考虑让 AI 进行歌词改写和歌曲取名,如将写好的文字复制给 AI,并定义歌词风格和时间长度。对比 kimi 和 GPT 的结果后进行修改定稿。
2024-10-28
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。并且得到的结果必须与原文所表达的内容不出现差错,翻译结果读起来流畅自然
很抱歉,知识库中的内容没有直接针对您如何翻译日漫以获得更自然流畅且准确结果的相关指导。但一般来说,要实现这样的翻译效果,您可以从以下几个方面考虑: 1. 深入理解日漫的文化背景、角色性格和情节发展,以便更好地把握原文的“意”。 2. 注重上下文的连贯和逻辑,不仅仅是逐句翻译,而是从整体上把握语义。 3. 避免过于拘泥于原文的句式和词汇,灵活运用目标语言的表达方式。 4. 多参考优秀的日漫翻译作品,学习他人的翻译技巧和风格。 5. 对于一些特定的文化元素或术语,要进行适当的解释或转换,以确保目标读者能够理解。
2024-10-27
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。还有当翻译时ai遇到比较敏感的话题通常会拒绝回答或者委婉的回答,我不想这样,
在让 AI 翻译日漫时,如果您希望得到更接近正常人说话的翻译结果,而非简单的直译,您可以这样提问:“请以符合自然语言表达习惯和逻辑的方式,为我翻译这段日漫内容,注重语言的流畅性和生动性,避免生硬的直译。” 关于 AI 遇到敏感话题可能拒绝回答或委婉回答的情况,如果您不想这样,需要注意的是,AI 遵循一定的道德和法律规范,对于确实不适合或不被允许处理的敏感内容,强制要求其回答是不可取且不恰当的。但如果您认为某些话题并非真正敏感,只是被误判,您可以尝试更清晰准确地描述相关内容,以减少误解的可能性。
2024-10-27
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译
要让日漫的翻译结果更接近正常人说话而不是简单直译,您可以这样提问: 1. 请在翻译时充分考虑上下文和角色的情感,使译文更符合日常交流的表达方式。 2. 能否以符合中文语言习惯和文化背景的方式进行翻译,避免生硬的直译? 3. 翻译过程中请注重语言的流畅性和自然度,让译文更贴近日常口语。 4. 麻烦在翻译时融入适当的语气和情感色彩,使译文更生动形象,像正常人说话一样。
2024-10-27
关于kimi提问播客的提示词
以下是关于 Kimi 的相关提示词信息: 对于 Kimi Copilot 网页总结助手插件: 提示词包括:“你是一个擅长总结长文本的助手,能够总结用户给出的文本,并生成摘要。” 工作流程为:“让我们一步一步思考,阅读我提供的内容,并做出以下操作:一句话总结这篇文章,标题为‘概述’;总结文章内容并写成摘要,标题为‘摘要’;总是用中文回答;当你输出标题时,应该使用 markdown 格式。文章链接:https:// 。如果你无法访问这个链接,请根据下面的文本内容回答。” 文末的 ZIP 格式插件可能可以自定义提示词。 对于 Kimi chat: 输入 prompt 后很简洁。输入起诉状后,前面的回答温馨且专业,但存在一些问题,如主体缺少答辩人、引用废止的《合同法》等,总体能达到及格往上的成绩。输入应诉方案后,整体简洁明了但需继续细化,答辩策略对应答辩状,庭审准备和风险控制较抽象。 与智谱清言对比,智谱清言输入起诉状后的输出在主体等方面有其特点,输入“请输出应诉方案”后的输出在准备工作等方面表现良好。
2024-11-16
Kimi是什么AI
Kimi 是由 Moonshot AI 出品的一个 AI 会话助手和智能助手。 它具有以下特点和功能: 1. 具备读取网页内容的能力,并能在此基础上生成一定的内容,读取完毕会显示绿色标点作为提示。但阅读能力有一定限制,可能无法一次性处理大量资讯或某些网站内容,可分批次提供资料。 2. 可以整理资讯内容,并能将其转化为吸引人的公众号文章。 3. 是 ChatGPT 的国产平替,实际上手体验好,适合新手入门学习和体验 AI。 4. 不用科学上网、不用付费、支持实时联网。 5. 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做得最好的 AI 产品。 6. 能一次搜索几十个数据来源,无广告,能定向指定搜索源,如小红书、学术搜索。 您可以通过以下链接使用: 网页端:https://kimi.moonshot.cn/?utm_campaign=TR_LgLmkEor&utm_content=&utm_medium=%E7%BD%91%E7%AB%99&utm_source=CH_tpOYmtV1&utm_term= 移动端 Android/ios:https://kimi.volctrack.com/a/E3w3Q1xa
2024-11-05
kimi探索版技术原理
Kimi 探索版的技术原理如下: 工作流方面:通过工作流输出的卡片绑定和多轮输出推动剧情发展,其中相对复杂的技术实现是工作流中嵌套的图像流。但此 bot 未涉及自有 plugin、数据库、用户状态、外部系统交互等技术组件。 模型选择:选用 kimi 的 32k 模型,可选模型有 GLM4、Moonshot、MinMax 和百川,不确定作者选定此模型的具体理由,个人倾向于通义,底模决定了 bot 的能力。 历史更新:2024 年 10 月 11 日,Kimi 和智谱同时发布了深度推理的功能。相关共学课程的课件和回放已发布。此外,还有关于转变对 AI 态度的相关论述,强调将 AI 作为协作伙伴,通过对话式编程提升工作效率,解锁其创造力。
2024-10-22
如何让kimi准确理解我需要它干的事
要让 Kimi 准确理解您需要它干的事,以下是一些关键要点: 1. 提供更多关于任务和要求的详细具体上下文信息。例如,明确您的角色(如幼儿园老师、初中语文教师等)、具体任务(如设计、总结等)、要求(如用表格输出、800 字等)、说明(如给出修改的建议、更详细的描述等)。 2. 对于教学相关的任务,如让学生掌握课文重点词汇和句式、提高文言文阅读能力、了解历史和作者写作意图、理解文言文字词和语法现象、把握作者观点、涵养精神品格等,要清晰地表述这些目标和期望。 3. 把 Kimi 想象成您的助理/伙伴/下属,以更明确地传达任务和要求。 4. 对于回答的形式和流程,如用户输入、AI 输出、排版等,也需要给出明确指示。 5. 当作为微信群里的教师回答学生提问时,要准确回答有信心的内容,对于条件不充分的提问可要求提供更多信息,回答尽量通俗易懂,可使用合适隐喻方便零基础学生理解。
2024-10-16
国内有类似kimi的AI吗
国内有类似于 Kimi 的 AI 产品,例如智谱清言。 Kimi 具有超长上下文能力,最初支持 20 万字的上下文,现在已提升到 200 万字,对于处理长文本或大量信息的任务有巨大优势。但在文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。 智谱清言背后的技术源自清华大学研发团队的科研成果转化,模型质量出色,在产品设计方面对标 ChatGPT,努力打造类似用户体验,是国内首批开放智能体应用的 AI 公司之一,在逻辑推理和处理复杂提示词方面表现出明显优势。 此外,Kimi 智能助手还被推荐为新手入门学习和体验 AI 的工具,不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做得最好的 AI 产品,能一次搜索几十个数据来源,无广告,能定向指定搜索源。
2024-10-16
kimi chat进行长文本分析的提示词举例
以下是关于 kimi chat 进行长文本分析的提示词相关内容: 在测评机制方面,包括以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,对文心一言 4.0、智谱清言、KimiChat 进行测评。能力考量涵盖复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力等。测评轮次分为多轮,如第一轮是复杂提示词理解和执行,包括 Markdown+英文 title 提示词测试、Markdown+中文 title 提示词测试、中文 title+自然段落提示词测试等任务。第五轮是长文本归纳总结能力,按提供的长文本进行归纳总结,逐步推理任务,遍历 3 个不同类型任务和 4 个大模型。 在聊天对话类 AI 产品中,Kimi 的显著特点是超长上下文能力,最初支持 20 万字,现提升到 200 万字,对处理长文本或大量信息任务有优势,但在文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。 在丰富大模型生成的尝试中,利用 Prompt 做出详细度设定作用微弱,如在对 KimiChat 的测试中,使用详细度 Prompt 后字符数有所增加,但效果不显著。
2024-10-14