Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI训练师是什么职业

Answer

AI 训练师是一种新兴职业,其职责和工作内容因具体领域和应用场景而有所不同。

例如,在 AI 教育培训和商业应用方面,像星动 AI 联合创始人李先森所从事的工作,可能包括对学员进行 AI 相关知识和技能的培训,以及参与 AI 项目的测评和指导等。

在 AI 设计领域,AI 训练师可能需要负责 AI 风格的开发和调试工作,参与项目的整体风格和审美定义。根据产品需求完成风格渲染的研发、测试、配置和维护,熟练使用 StableDiffusion Web UI 等 AI 框架进行风格研发,负责 AI 模型(如 LoRA,Prompt/Prompt Sentence)的训练、参数调整以及性能优化,编写高质量的渲染记录文档,进行配置和模型训练质量控制,并为团队提供技术支持和指导,解决技术难题。

总之,AI 训练师需要具备相关的专业知识和技能,以帮助 AI 系统更好地学习和优化,从而实现各种应用目标。

Content generated by AI large model, please carefully verify (powered by aily)

References

北京分队介绍

OhTqYuth1rLcr92InIh)|序号|昵称|技能与经验|职业与工作领域|兴趣爱好与活动|坐标|<br>|-|-|-|-|-|-|<br>|129|U|业余配音演员,业余歌手,擅长音频剪辑,也可简单视频剪辑。||||<br>|130|萝卜|生图生视频剪辑均可,剪辑方面有从业经验。sd comfyui等在学。||||<br>|131|李先森|星动AI联合创始人,致力于AI教育培训和AI商业应用,AI培训师、AI测评师。希望与各位经常交流、学习、合作||||<br>|132|石头|在央视工作,爱好aigc,希望可以和各位老师多多学习交流||||<br>|133|桥豆麻袋|设计师职业,对ai比较感兴趣,也有一些简单的小尝试,希望大家多多指点||||<br>|134|Minmin|有用stable diffusion和controlnet做一些图像生成的经验,希望学习更多图像和视频生成的技术[呲牙]||||<br>|135|张律师|泰和泰律师事务所律师,对AI也很感兴趣,很高兴认识大家,希望能多多跨行交流||||<br>|136|Ren|来自汇丰,主要做开设海外账户和财富管理,包括储蓄保障和投资理财产品,我对AI挺感兴趣的,很高兴认识大家,希望能多交流学习,一起成长~||||

最近招聘信息-持续更新中

[heading1]AI stylist我们正在寻找会使用StableDiffusion,对AI设计充满热情渴望学习成长的伙伴中!需要熟练使用SD Web UI,根据需求测试并搭配Check Point,Prompt,LoRA,ControlNet等来达成目标。[heading4]岗位职责:[content]负责AI风格的开发和调试工作,参与项目的整体风格和审美定义;根据产品需求完成风格渲染的研发、测试、配置和维护;熟练使用StableDiffusion Web UI等AI框架进行风格研发;负责AI模型(如LoRA,Prompt/Prompt Sentence)的训练、参数调整以及性能优化;编写高质量的渲染记录文档,进行配置和模型训练质量控制;为团队提供技术支持和指导,解决技术难题。[heading4]任职要求:[content]具有至少半年的StableDiffusion Web UI使用经验,知道如何安装对应插件和models并使用;英文水平需要能看懂Web UI,Hugging Face上的英文文档;能根据需求去完成对应的渲染测试,包括但不局限于t2i,i2i以及视频渲染;能熟练的根据不同的check point,prompt和LoRA来结合CFG(和i2i的DS指)和ControlNet来达到测试需求;能够独立进行模型训练和参数调优;拥有良好的记录和沟通习惯,结构清晰,命名规范,逻辑性强,能够对团队进行技术指导;思路清晰、积极主动、认真踏实、良好的沟通能力和团队合作精神,有敏捷研发经验优先。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家” AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

Others are asking
请帮我找出在课堂可以使用的AI
以下是在课堂中可以使用的一些 AI 应用和方法: 1. 让 AI 出题,如出 Python 题,可先出 20 道再挑选修改。 2. 利用 AI 进行智慧课程设计,例如围绕巴以冲突出相关数学题,将维基百科的史料借助 AI 变成数学课教案,让孩子从生活中学习多学科知识。 3. 输入书上例题,让 AI 生成新颖解法,引发学生思考。 4. 进行交互式学习,随时要求 AI 解释关键代码并举例,为学生提供支架。 5. 利用 AI 分担低阶认知,让人有精力投入高阶认知加工。 6. 借助 AI 工具,将知识作为解决问题的方法来教。 7. 声音克隆:可在 Elevenlabs.io、speechify.com 等网站进行,还能通过 HeyGen 定制“数字分身”。 8. 视频生成:如用 runway 让互联网梗图动起来,用 lumalabs.ai 让图片动起来。 同时要注意对学生思维训练的引导,关注和设法引导“偷懒”的学生,避免差距拉大。
2025-02-16
哪个AI查文献靠谱
以下是一些在查文献方面较为靠谱的 AI 工具和平台: 专利审查方面: 1. 专利检索与分类: Google Patents:使用 AI 技术帮助用户检索和分析专利文献。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地检索和分类专利文献,提高检索的准确性和效率。 2. 专利分析和评估: TurboPatent:使用 AI 技术进行专利文档的自动审查和分析,评估专利的授权可能性和潜在风险。 PatentBot:AI 驱动的平台,可以自动分析专利文本,评估专利的技术范围和创新性。 3. 自动化专利申请: Specifio:利用 AI 技术自动生成专利申请文件,包括专利说明书和权利要求书,提高专利申请的效率。 PatentPal:使用 AI 技术自动生成和编辑专利申请文件,减少人工工作量。 4. 专利图像和图表分析: Aulive:利用 AI 技术分析专利中的图像和图表,自动识别技术内容和创新点。 AIpowered image recognition tools:用于专利文献中的图像识别和分析,提高图像处理的效率和准确性。 5. 专利趋势分析和预测: Innography:利用 AI 技术分析专利数据,提供技术趋势分析和竞争情报。 PatSnap:AI 驱动的平台,分析专利数据和技术趋势,提供全面的专利情报和市场分析。 论文写作方面: 1. 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 使用这些平台时,通常需要以下步骤: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献或输入检索关键词:如在专利审查平台上传待审查的专利文献,在论文写作平台输入相关主题关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成等功能,在论文写作平台选择相应的辅助功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果等。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件或完善论文内容。 需要注意的是,这些内容由 AI 大模型生成,请仔细甄别。
2025-02-16
AI工具换衣服面料
以下是关于 AI 工具换衣服面料的相关内容: 在使用某些 AI 工具进行换衣操作时,例如在 Stable Diffusion(SD)中,可按照以下步骤进行: 1. 进入图生图模式,若蒙版有 bug 看不见,错误时可手动保存。 2. 输入提示词如“蓝色毛衣”,将蒙版区域内容处理改为“填充”,尺寸改为和图像一致,重绘幅度设为 1。但由于蒙版区域较大,可能会出现与之前的手衔接不上的问题,此时可通过降低重绘幅度或添加 openpose 控制人物身体姿势来解决。 3. 除了图生图的局部重绘,还可使用 controlnet 的局部重绘功能,控制模式选择“更注重提示词”,具体效果可自行试验选择。 在 MidJourney 中,有以下实用技巧: 1. 角色一致性:使用 cref 后接角色图片的 URL 可保持角色形象一致性,通过 cw 调整参考强度,范围 100 到 0,默认 100 会使用面部、头发和衣服,强度为 0 时只专注面部,适合更换服装或发型等。 2. 风格一致性:使用 sref 后接风格参考图像的 URL,可生成风格一致的图像,可添加多个风格参考链接,并通过 :: 后跟权重数字设置不同风格的相对重要性。还可结合使用垫图和 sref,垫图影响画面构图和元素,sref 影响画风。 另外,关于基于 AI 的换衣工作流,可参考以下步骤: 1. 下载文件链接:https://ixqye9ulc13.feishu.cn/drive/folder/Q8D0fvjPll59o7dMKVvcWowOnQh?from=space_personal_filelist 。 2. 载入工作流后若发现缺少节点,需下载文件夹 custom_nodes 中的“ComfyUIIDMVTON.rar”压缩包,解压到 customs 路径下作为节点使用,并将文件夹“LayerNorm”放入指定路径(如 C:\\Users\\Admin\\Desktop\\ComfyUIakiv1.3\\custom_nodes\\comfyui_controlnet_aux\\ckpts)。 3. 若重新打开出现问题,可将节点 custom_nodes“Marigold”、“KwaiKolorWrapper”、"mixlabnodes"剪切放到桌面(不要放在 comfyui 中),先跑工作流。
2025-02-16
Ai换衣服材质
以下是关于 AI 换衣服材质的相关信息: 在 AIGC 1.0 时代,AIGC 主要起到产生参考图像的作用,仅使用 controlnet 无法精确控制特征材质,如阿牛的橙色身体部分、蓝色金属牛角等,适合整体全身材质风格替换,可使用正视图或手绘线稿图输入 controlnet 进行控制。 在 AIGC 2.0 时代,基于 Stable diffusion 的 Lora 模型训练能直出较高质量的形象,但对于要求高的场景仍有问题,如四肢比例失调、手指数量错误等,随着 SDXL 大模型的更新,这些问题有望解决。目前 AIGC 工具存在问题,仍需专业设计师大量介入与修复,但它是设计师的强大辅助工具。 对于人物服装的选择,可使用万能固定句式“「主题」+「风格」+「材质」+「元素」+「玄学佐料」”来尝试。例如,服装示例咒语关键词:Chinese dress,生成思路:一个穿着中国清代宫廷刺绣旗袍,宽袖渐变红色加上刺绣雪纺面料,镶钻工艺,上面还有金丝雀和白玫瑰元素等刺绣元素。添加材质装饰细节后服装会更精致。 在【SD】商业换装中,可通过以下步骤进行: 1. 在扩展面板中使用网址安装 Segment Anything,guthub 地址:https://github.com/continuerevolution/sdwebuisegmentanything。 2. 重启后安装 SAM 模型,github 上有三个 SAM 模型,由大到小分别是 vit_h,大部分情况下选择 vit_l 即可。 3. 将下载好的 SAM 模型放在指定路径下。 4. 测试 SAM 模型效果,左键点击要保留的部分打上黑点,右键点击不要的部分打上红点,双击不需要的点可移除。 5. 预览分离结果,选择合适的蒙版进行服装或背景替换。 6. 点开“展开蒙版设置”,设定蒙版扩展量,建议 30,然后点击发送到“重绘蒙版”。
2025-02-16
AI会取代人工吗?
AI 不会完全取代人工,但会对一些行业和岗位产生影响。 在编程领域,AI 编程技术的突破使初级程序员受到冲击,但中高级岗位仍有需求。软件开发仍需人工主导复杂流程,AI 更像是“助手”而非“接管者”,AI 辅助编程可提高效率,但普及需解决工具配套与数据安全等问题。 在音乐行业,版权公司不必为 AI 带来的大量版权涌入而焦虑,因为这与过去独立音乐人版权涌入类似,版权公司仍可通过独到的内容把控能力挑选优质作品。但也需警惕人类把想象和思考的权力交给 AI 而逐渐退化思考和自主决策的能力。 GPT4 等 AI 在各种任务和领域中的出色表现挑战了人类和机器在许多职业中相对专业知识的概念和假设,可能会引发对 AI 进步对高技能和备受尊敬的专业领域潜在影响的担忧,适合由 AI 自动化的任务范围可能会显著扩大,也可能会引发有关多年教育、培训和专业知识发展投资所扮演的角色的讨论,以及在新的 AI 能力下适应、重新技能或重新调整职业道路的需要。
2025-02-16
你是一名电商专家,有没有哪个AI大模型或者智能体可以完成以下功能:输入材质图片,得到经过设计后的成品衣服
目前尚未有成熟的 AI 大模型或智能体能够直接实现输入材质图片就得到经过设计后的成品衣服的功能。但在 AI 领域的不断发展中,可能会有相关的技术和模型在未来出现。
2025-02-16
找了好久也没找到,记得老师是建筑设计师,设计了在深圳大楼,做了有关于 stablediffution 的分享,你能帮我找到是哪个视频吗
以下是为您找到的相关视频信息: 1. 爆肝博主 ZHO 去年 10 月份发布的一系列围绕 Stable Diffusion 的系统整理视频,深入浅出地介绍了整个生态的发展和梳理,包括论文原理和应用技术等多方面内容,分了四集,一共 4 小时,超 5 万字。系列导览: 认识 Stable Diffusion、一周年回顾和 SD 生态圈三方面展开,形成基础认识。 从 AIGC 浪潮聚焦到扩散的系统梳理,从理论的角度理解扩散模型如何实现 0 到 1 的跨越。 将围绕 SD 展开从模型到生态的全面盘点,一起探究 SD 的创新与未来。 对各类 GUI 的盘点、聚焦 ComfyUI,从设计到实际操作做全面梳理。系列视频:b23.tv/NVRRqqQ 2. EP.3 IP Adapter 对话阿文,阿文老师介绍自己是发布会 PPT 设计师,2022 年 4 月开始关注 diffusion 领域,早期跟了很多工具的发布以及测评,比如 DallE 和 Stable Diffusion,一直尝试把 AI 工具用到平面工作流当中。
2024-10-09
如何凭借comfyUI,成为自由职业工作者
ComfyUI 是一种具有独特特点和优势的工具,以下是关于如何凭借它成为自由职业工作者的相关内容: ComfyUI 的概念和重要性: ComfyUI 的 UI 界面相较于 SD WebUI 更为复杂,除输入框外还有很多块状元素和复杂连线。 虽然学习成本较高,但连线并不复杂,小方块与 SD WebUI 的输入框和按钮作用相同,都是对参数进行配置,连线类似搭建自动化工作流,从左到右依次运行。 ComfyUI 的功能和优势: 从功能角度看,它与 SD WebUI 提供的功能相同,但以连线方式呈现。 通过改变节点可实现不同功能,如一个是直接加载图片,一个是通过画板绘制图片,从而实现导入图片生图或绘图生图等不同功能。 选择 ComfyUI 的核心原因在于其自由和拓展性,可根据自身需求搭建适合自己的工作流,无需依赖开发者,还能开发并改造节点。 ComfyUI 的基础界面和操作: 熟悉基本界面,如创建第一个工作流时,要进行加载 Latent(设置图片宽高和批次)、加载 VAE 等操作。 节点分为起始节点、最终输出节点和过程执行节点,将各节点按规则串联,如 checkpoint 加载器、CLIP 对应链接正向和负向提示词等,最终得到工作流。 要成为凭借 ComfyUI 的自由职业工作者,需要多练习和使用,尝试通过变现图片获取收益。
2025-02-10
ai职业规划和跳槽找工作
以下是关于 AI 职业规划和跳槽找工作的相关内容: 对于学生和应届毕业生: 职业选择和规划:通过了解 AI 技术在不同职业中的应用,评估自身兴趣和技能,选择合适路径并制定详细规划。 技能提升:依据职业目标获取个性化学习建议和资源,为就业做准备。 对于职场新人和职业转换者: 职业发展指导:根据自身职业目标和市场需求制定发展计划,明确短期和长期目标。 职业转型支持:对于从其他领域转型到 AI 相关领域的从业者,提供转型路径和必要技能培训资源。 对于企业: 人才招聘和培养:评估应聘者 AI 技能水平,选择合适候选人,为现有员工提供职业发展规划和技能提升建议,培养内部 AI 人才。 员工职业发展:为员工制定个性化职业发展计划,提供持续指导和培训,提升满意度和留任率。 对于教育机构: 职业指导服务:将相关产品作为学生职业指导一部分,帮助了解 AI 领域职业机会和发展路径,提升就业率。 课程设计和优化:根据市场需求和学生职业规划优化课程设置,提供针对性 AI 技能培训。 对于职业咨询师: 辅助工具:使用相关产品为客户提供更精准职业规划建议和技能评估,提升咨询服务质量和效率。 数据支持:基于产品提供的市场数据和职业趋势分析,为客户提供更全面和前瞻性的指导。 在 AI 时代,技术专业人士需发展 AI 难以替代的技能,如团队建设、跨文化交流、创新解决方案设计等。对于从事可能被 AI 取代风险工作的技术工作者,需重新思考职业生涯规划,学习新技能或转向更需要人类特质的工作领域。 2024 年,时代浪潮从移动互联网应用转向 AI 应用。一方面行业大佬预判这是比移动互联网更大的红利;另一方面个人面临就业或创业选择,此时对行业和趋势的判断尤为重要。从务实角度,以自身信念和目标预判未来 10 年是可行的,如雷军、傅盛等的经历。00 后也有越来越多人创业当老板或加入创业公司。
2025-01-27
我是做供应链相关的岗位,AI可以为我的职业赋能那些能力呢
AI 可以为您从事的供应链相关岗位赋能以下能力: 1. 预测性维护:通过分析设备运行数据预测可能的故障,帮助避免供应链中的生产停机。 2. 质量控制:检测产品缺陷,确保供应链中产品的高质量。 3. 优化供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等方案,提高供应链效率和降低成本。 在制造业领域,AI 的应用包括: 1. 产品设计和开发:利用 AI 生成工具快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:分析设备运行数据预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,提升客户体验。 在医疗药品零售领域,AI 的应用有: 1. 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 2. 药品库存管理:通过分析历史销售数据、天气、疫情等因素,预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 3. 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 4. 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 5. 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 6. 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 7. 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。
2025-01-26
AI智能体对个人工作及职业规划的启示
AI 智能体对个人工作及职业规划具有多方面的启示: 在职业规划方面: 1. 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来趋势。 2. 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 3. 职业匹配与推荐:根据兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化建议。 4. 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 在个人工作方面: 1. 掌握基本概念和潜在影响:对于生成式人工智能,应迅速了解其基本概念和潜在影响,无需深入技术细节,重点在于理解其对工作方式和行业格局的革新。 2. 应用现有产品和工具:深入了解市场上的人工智能产品和工具,并积极应用于实际工作,通过实践学习其优势和局限性。 3. 学习提示词技术:掌握提示词技术,编写清晰、精确的指令,引导 AI 工具产生所需结果,提升工作效率和产出质量。 4. 探索构建智能体:构建智能体,赋予其特定角色和任务,协同工作,提高工作效率和创新能力。 总之,AI 智能体为个人提供了提效的可能,如同拥有数字员工,在职业规划和工作中都能发挥重要作用。
2025-01-22
如何构建自己的AI职业
以下是关于构建自己的 AI 职业的一些建议: 1. 掌握 Prompt 工程:了解 Claude 的 5 层 Prompt 体系,将其应用到日常工作中,如市场研究、写作、数据分析等项目,以提升驾驭 AI 的能力。 2. 借助元学习:鉴于人工智能依赖的神经网络基础,通过元学习让 AI 更快地获得知识,与人类共同进步。 3. 实践打造微信 AI 机器人: 确定功能范围,如支持用户发送“关键字”获取“AI 相关资料链接”,回答 AI 相关知识,作为微信客服助手发布在微信公众号上。 准备实现所需的内容,包括编写 prompt 提示词,整理“关键字”与“AI 相关资料链接”的对应关系,创建知识库、工作流,准备微信公众号。
2025-01-12
AI对哪些职业影响最大
以下是一些受到 AI 影响较大的职业: 1. 编程领域:传统的程序员岗位面临巨大挑战,如软件工程和算法开发等领域,随着 AI 的进步,可能会有更多程序员岗位被自动化技术取代。 2. 高薪工作:OpenAI 和宾夕法尼亚大学 Eloundou 等人的研究发现,生成式 AI 对高薪工作的影响更大。 3. 商业和社会中的一些职能角色: 软件工程师:负责编写软件应用程序并确保稳健运行。 机器学习工程师:负责实现人工智能,熟悉大模型、RAG、finetuning。 产品经理:负责识别和界定项目,确保项目对用户有用。 提示词工程师:被认为是炒作的职位,实际可能担任了机器学习工程师的部分职责。 其他岗位如数据工程师、数据科学家、项目主管、机器学习研究员等。 4. 销售、市场营销、用户运营、客户服务等岗位:麦肯锡研究了这些岗位将受到 AI 的影响。 5. 知识型工作:生成式 AI 将会对知识型工作产生更大的影响。 需要注意的是,虽然某些职业受到较大影响,但劳动力可能不容易被完全取代,更专业的服务将加速出现,熟练 AI 的专业人员能够产生高附加值。
2025-01-04
LLM 训练推理模型有哪些
以下是一些常见的 LLM 训练推理模型: 1. FengshenbangLM: 地址: 简介:是 IDEA 研究院认知计算与自然语言研究中心主导的大模型开源体系,开源了姜子牙通用大模型 V1,是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译、编程、文本分类、信息抽取、摘要、文案生成、常识问答和数学计算等能力。除姜子牙系列模型之外,还开源了太乙、二郎神系列等模型。 2. BiLLa: 地址: 简介:开源了推理能力增强的中英双语 LLaMA 模型。较大提升 LLaMA 的中文理解能力,并尽可能减少对原始 LLaMA 英文能力的损伤;训练过程增加较多的任务型数据,利用 ChatGPT 生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。 3. Moss: 地址: 简介:支持中英双语和多种插件的开源对话语言模型,MOSS 基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。 此外,Andrej Karpathy 的相关介绍中提到了 LLM 训练的一些情况,如训练过程涉及大约 10TB 的文本,通常来源于互联网的抓取,需要大量的互联网资源和一个 GPU 集群,费用大约 200 万美元。Karpathy 的视频还详细介绍了 LLM 训练的全部过程,包括预训练、有监督微调和强化学习等。
2025-02-16
RVC声音模型训练
RVC 声音模型训练是将输入音频转换为训练的声音,即变声。它对训练素材量级要求较高,最少需要 20 分钟的素材才能达到理想效果,并且可以选择是否关联音高,以区分说话和唱歌两个不同场景。 在节目《马上封喉》中,负责马季老师语音生成部分的人员提到,AI 语音主要涉及 TTS(文本转语音)和 RVC 两项技术。此次的 AI 马季主要以 gptsovits 为主。 在 AI 春晚《西游不能停》的创作过程中,尝试了用 RVC 进行 vocal 变声的两种办法,但效果均不理想。第一种方法是训练声音模型后直接变声,存在变声后 AI 味儿太重、丢失原有强调的问题;第二种方法是训练声音模型,自己录 rap 后再变声,但需要在录音时尽量模仿还原出特点和感觉,这涉及到专业配音技巧,超出了能力范围。此外,八戒和沙僧声音的训练文件丢失,效果也不理想。
2025-02-13
怎么训练适合自己的ai智能体
要训练适合自己的 AI 智能体,您可以参考以下内容: 1. 了解智能体的发展历程:智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来。 2. 认识智能体的特点:具有强大的学习能力、灵活性和泛化能力,能通过大量数据学习,适应不同任务和环境,将知识泛化到新情境。 3. 掌握核心要点:智能体的核心在于有效控制和利用大型模型,提示词设计直接影响智能体的表现和输出结果。 4. 实践操作: 基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等)尝试开发。 点击“浏览 GPTs”按钮和“Create”按钮创建自己的智能体。 使用自然语言对话或手工设置进行具体操作。 开始调试智能体并发布。 5. 在正式项目中部署 AI 智能体的建议: 先尝试使用提示,无法满足需求再考虑微调。 编写并测试提示,以其作为微调基线。 关注数据质量,必要时修正问题数据。 用真实场景数据微调,保留测试集。 选择适当的模型规模,设立快速评估指标。 执行完整评估,持续优化,灵活应变。
2025-02-12
大模型是怎么训练的
大模型的训练过程可以类比为“上学参加工作”: 1. 找学校:训练大模型需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要大量的数据量,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成相应的词汇表。 此外,训练大模型的具体操作步骤如下: 1. 创建数据集:进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset),在数据集一栏中,点击右上角创建数据集,输入数据集名称。zip 文件可以是包含图片+标签 txt,也可以只有图片没有打标文件(之后可以在 c 站使用它的自动打标功能)。也可以一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。Zip 文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后就会上传成功,可以点击详情检查,可以预览到数据集的图片以及对应的标签。 2. Lora 训练:点击 Flux,基础模型会默认是 FLUX 1.0D 版本。选择数据集,点击右侧箭头,会跳出所有上传过的数据集。触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。然后就可以等待训练了,会显示预览时间和进度条。训练完成的会显示出每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 从原理层面,用数学来理解 Prompt:传统的机器学习是 p,假设 a 是训练出来的通用模型,这个模型没有经过人工标注,但什么都可以学会。给出的 Prompt 其实就是 x,然后让大模型基于这个 x 知道概率最大的 y,这样就避免了人工标注,但依赖于 x 给入的信息,去更大概率找到合适的 y。比如给一张照片,然后输入这是一个动物,这是什么,大模型根据这个输入,提取照片的特征和提示作为输入,最终返回猫。
2025-02-11
Ai训练营课程大纲
以下是 AI 实训营的课程大纲: 第一期: |时间|主题|课程内容| |||| |01/07 20:00<br><br>必须了解的企业级 AI 应用开发知识点|阿里云百炼大模型平台全解析<br>企业级服务场景对号入座<br>百闻不如体验,实操方有感知| |01/08 20:00<br><br>更好用的文本知识库应用跟学,快速上手阿里云百炼|生态能力解析:手把手案例带做<br>服务场景透视:企业级案例应用<br>AI 机器人搭建:企业知识问答场景全覆盖| |01/09 20:00<br><br>更热门的多模态交互案例带练,实操掌握 AI 应用开发|阿里云百炼大模型多模态能力解析<br>商家运营场景&企业级解决方案分享<br>实践课堂:拍立得场景构建| 第二期: |时间|主题|课程内容| |||| |01/22 20:00<br>|0 基础入门篇:写代码像聊天一样简单<br>可以进入钉钉群获取更多文档:https://alidocs.dingtalk.com/i/nodes/yQod3RxJKGvvkP3rfj5Lgoy7Jkb4Mw9r?utm_scene=person_space|AI 编程的能力与边界<br>通义灵码上手指南<br>一句话 AI 编程小游戏展示| |01/23 20:00<br>|AI 编程实战篇:人人都能“福从天降”|0 基础带练“福从天降”小游戏<br>自然语言生成更多小游戏<br>如何在 Github 部署并生成在线链接| 此外,入门篇还包括多模态能力及相关内容介绍,如前两日课程回顾、多模态能力介绍、应用案例体验、学习资源与作业、未来合作与更新等。
2025-02-10
如何训练一个辅助教学和备课的智能体
要训练一个辅助教学和备课的智能体,可以参考以下步骤和方法: 1. 利用大语言模型:例如 ChatGPT 等,探讨如何借助其辅助备课、解答学生疑问和生成教学材料。分享与大语言模型进行有效沟通的技巧,提升提问和指令的质量。 2. 注重教学应用:在训练过程中,考虑如何将智能体应用于教学的各个环节,如备课体系、作业批改、出题建议、辅助出题等。 3. 收集教育需求:提前收集教育领域的需求,包括办公提效、家校沟通、个性化教育、心理疏导等方面,让智能体能够针对性地提供服务。 4. 分析学生行为:基于教育心理学等,训练智能体能够分析学生行为,并给出相应的策略。 5. 模拟培训:如教师模拟培训、公开课备课辅助等。 6. 结合跨学科项目:像生物和信息科技老师合作带着学生训练 AI 模型。 7. 考虑多种教育场景:例如朗读、背诵评判,文生图、文生视频在备课时的针对性应用等。 同时,在与智能体交流时,要注意以下心得: 1. 把智能体当人看,用计算机神经网络模拟人脑工作,它表现得更像人,而不是准确的机器,也会不懂装懂,时对时错。 2. 智能体不需要休息,效率很高,但没有自驱力,被动回答。 此外,一些学校已经在行动,如北京市新英才学校的跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 的帮助下备课和授课等。
2025-02-10