Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

多轮对话训练中你如何训练模型掌握情感需求

Answer

在多轮对话训练中,让模型掌握情感需求可以通过以下几种方式:

  1. 利用相关数据集进行训练,例如:
  2. 在创建提示时采用结构化模式,为模型提供一些情感需求的示例,如: |输入|输出| |-|-| |一部制作精良且有趣的电影|积极的| |10 分钟后我睡着了|消极的| |电影还行|中性的| 然后单击页面右侧的提交按钮。该模型现在可为输入文本提供情绪。还可以保存新设计的提示。
  3. 在多轮次对话中,定期总结关键信息,重申对话的目标和指令,有助于模型刷新记忆,确保准确把握对话的进展和要点。
  4. 进行意图识别和分类,特别关注在单一模型或情境中处理多个小逻辑分支的情况。例如在客户服务场景中,快速确定用户提出咨询、投诉、建议等多种类型请求的意图,并分类到相应处理流程中。
Content generated by AI large model, please carefully verify (powered by aily)

References

LLM开源中文大语言模型及数据集集合

Guanaco地址:[https://huggingface.co/datasets/JosephusCheung/GuanacoDataset](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)数据集说明:一个使用Self-Instruct的主要包含中日英德的多语言指令微调数据集。chatgpt-corpus地址:[https://github.com/PlexPt/chatgpt-corpus](https://github.com/PlexPt/chatgpt-corpus)数据集说明:开源了由ChatGPT3.5生成的300万自问自答数据,包括多个领域,可用于用于训练大模型。SmileConv地址:[https://github.com/qiuhuachuan/smile](https://github.com/qiuhuachuan/smile)数据集说明:数据集通过ChatGPT改写真实的心理互助QA为多轮的心理健康支持多轮对话(single-turn to multi-turn inclusive language expansion via ChatGPT),该数据集含有56k个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更加符合在长程多轮对话的应用场景。

9. 生成式 AI Studio 简介

已复制!内容副本1.单击页面右侧的提交按钮。如您所见,该模型没有足够的信息来判断您是否要求它进行情绪分析。这可以通过为模型提供一些您正在寻找的示例来改进。尝试添加这些示例,如下图所示:|输入|输出|<br>|-|-|<br>|一部制作精良且有趣的电影|积极的|<br>|10分钟后我睡着了|消极的|<br>|电影还行|中性的|然后单击页面右侧的提交按钮。该模型现在为输入文本提供情绪。对于文本这是一个很好的时间!,情绪被标记为积极的。您还可以保存新设计的提示。要保存提示,请单击“保存”按钮并随意命名,例如sentiment analysis test。保存的提示将出现在“我的提示”选项卡中。

提示词培训课——Part1

当我们面对多轮次对话时,定期总结显得尤为重要,因为模型的临时记忆(上下文)是有限的。随着对话的深入,模型可能会遗忘之前的信息,这不仅可能导致对指令理解的偏差,如果你在做复杂的生成式任务(比如写文章)还可能影响上下文的连贯性。为了解决这个问题,我们可以在对话的关键节点进行总结,这有助于模型刷新记忆,确保它能够准确把握对话的进展和要点。总结时,我们应该提炼出对话中的关键信息,重申对话的目标和指令,这样可以帮助模型和用户都保持对对话方向的清晰认识。这种方法能够提高对话的效率和质量,确保即使在多轮对话中,也能保持信息的准确传递和理解。[heading3]7.7.3意图识别、分类[content]在意图识别和分类的原则中,我们特别关注于在单一模型或情境中处理多个小逻辑分支的情况。模型在与用户交互时,往往需要识别和区分用户的不同意图。这时我们就可以使用此原则构建提示词,指导模型采用预设的策略或行为模式来响应特定类型的请求。这种基于意图的响应不仅提高了处理效率,也提升了用户体验,因为用户能够感受到模型对其需求的准确理解和生成内容的质量。例如,在客户服务场景中,用户可能提出咨询、投诉、建议等多种类型的请求。通过意图识别,模型可以快速确定用户的确切需求,并将其分类到相应的处理流程中。

Others are asking
agent训练
在人工智能领域中,AI Agent 的训练具有以下特点: 传统强化学习中,Agent 训练往往需大量样本和时间,且泛化能力不足。 为突破瓶颈,引入了迁移学习:通过促进不同任务间知识和经验迁移,减轻新任务学习负担,提升学习效率和性能,增强泛化能力,但当源任务与目标任务差异大时,可能无法发挥效果甚至出现负面迁移。 探索了元学习:核心是让 Agent 学会从少量样本中迅速掌握新任务最优策略,能利用已有知识和策略调整学习路径适应新任务,减少对大规模样本集依赖,但需要大量预训练和样本构建学习能力,使开发通用高效学习策略复杂艰巨。 时间:21 世纪初至今 特点:迁移学习是将一个任务学到的知识迁移到其他任务;元学习是学习如何学习,快速适应新任务。 技术:迁移学习如领域自适应;元学习如 MAML、MetaLearner LSTM。 优点:提高学习效率,适应新任务。 缺点:对源任务和目标任务的相似性有一定要求。 此外,智谱 AI 开源的语言模型中与 Agent 相关的有: AgentLM7B:提出了 AgentTuning 方法,开源了包含 1866 个高质量交互、6 个多样化真实场景任务的 Agent 数据集 AgentInstruct,基于上述利用 Llama2 微调而成,上下文 token 数为 4K。 AgentLM13B:上下文 token 数为 4K。 AgentLM70B:上下文 token 数为 8K。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
主流的LORA 训练工具是什么?
主流的 LORA 训练工具包括: 1. B 站 UP 主“朱尼酱”的赛博丹炉,其界面友好、美观,适合新手入门。 2. 训练器,支持 Kolors 开源模型。 3. Kolors+Refiner,由 AIKSK 开发的工作流应用。 4. Kolors可图大模型XL 精修工作流,由@AiARTiST 非人类开发。 5. kolors+SDXL 细节修复+instant+ipa,由@谷尘 DesignDog 开发。 6. kolors 一键设计中文海报,由亦诚视觉开发。 7. ,魔搭社区官方模型。 8. InstantIDKolors 专属模型,由 InstantX 开发。
2025-02-18
flux lora训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 模型准备: 1. 下载所需模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时存放位置不限,只要知晓路径即可。训练时建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 1. 网盘链接: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 安装虚拟环境: 1. 下载完脚本并解压。 2. 在文件中找到 installcnqinglong.ps1 文件,右键选择“使用 PowerShell 运行”。 3. 新手在此点击“Y”,然后等待 1 2 小时的下载过程。下载完成后会提示是否下载 hunyuan 模型,选择“n”不用下载。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集:在数据集一栏中,点击右上角创建数据集,输入数据集名称。 可以上传包含图片 + 标签 txt 的 zip 文件,也可以上传只有图片的文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。建议提前将图片和标签打包成 zip 上传,Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 上传 zip 以后等待一段时间,确认创建数据集。返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 6. 等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 运行训练:约 1 2 小时即可训练完成。 验证和 lora 跑图:有 ComfyUI 基础的话,直接在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点就可以,自行选择您的 Lora 和调节参数。
2025-02-17
LLM 训练推理模型有哪些
以下是一些常见的 LLM 训练推理模型: 1. FengshenbangLM: 地址: 简介:是 IDEA 研究院认知计算与自然语言研究中心主导的大模型开源体系,开源了姜子牙通用大模型 V1,是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译、编程、文本分类、信息抽取、摘要、文案生成、常识问答和数学计算等能力。除姜子牙系列模型之外,还开源了太乙、二郎神系列等模型。 2. BiLLa: 地址: 简介:开源了推理能力增强的中英双语 LLaMA 模型。较大提升 LLaMA 的中文理解能力,并尽可能减少对原始 LLaMA 英文能力的损伤;训练过程增加较多的任务型数据,利用 ChatGPT 生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。 3. Moss: 地址: 简介:支持中英双语和多种插件的开源对话语言模型,MOSS 基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。 此外,Andrej Karpathy 的相关介绍中提到了 LLM 训练的一些情况,如训练过程涉及大约 10TB 的文本,通常来源于互联网的抓取,需要大量的互联网资源和一个 GPU 集群,费用大约 200 万美元。Karpathy 的视频还详细介绍了 LLM 训练的全部过程,包括预训练、有监督微调和强化学习等。
2025-02-16
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
多轮对话怎么做
多轮对话的实现方式如下: 1. 核心思路是让 AI 和您对目标的理解达成共识,保持一致,然后再开始创作,这样能增加创作的可控性。比如通过对生成图像的理解诱导和迭代来实现。 2. 有效的部分包括: 约束的弹性,在探索阶段给 AI 一定自由空间,而 prompt 一般是强约束的,更适合确定性的目标或者用于总结阶段。 情绪,情绪化能局部提升 AI 效能。 共识,您的理解和 AI 的理解要高度一致,在高共识性的背景下,调整和控制会更有效。 3. 注意事项: 如果经历很多轮的对话,可能会导致此次对话超过模型的 token 限制,ChatGPT 会遗忘之前的内容。建议当经历多轮对话后,可以新建一个聊天窗口,把完整的代码和需求背景输入给 ChatGPT,重新开启新的提问。 在自然的人类语言交流中,多轮对话常常伴随着指代问题的产生。为了提升对话系统的性能和用户体验,需要开发提示词来解决多轮对话中的指代消解问题,并确保模型能够在连续的交流中提供准确、连贯的回答。由于“指代消解”需要多轮对话来完成,单次交互无法达成,所以需要将测试形式进行转换,先解决“指代消解”的问题,然后再进行下一轮答复。
2025-01-07
单轮对话与多轮对话调用
单轮对话与多轮对话调用: 聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由 textdavinci003 等指令遵循模型提供的任务)。 API 调用的例子中,messages 参数是主要的输入,必须是一个消息对象的数组,每个对象拥有一个 role(“system”“user”或“assistant”)和 content(消息的内容)。会话可以少至 1 条消息或者有许多条。通常,会话首先使用系统消息格式化,然后交替使用用户消息和助手消息。系统消息有助于设定助手的行为,用户消息帮助指示助手,助手消息用于存储之前的响应。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。如果会话包含的 token 超出了模型的限制,则需要用一些方法去缩减会话。 百炼相关 Q&A: 如何调用工作流?在提示词写了让大模型调用 xxx 工作流,但实际总是不调用。文档里也没有写调用方式。 如何把开始节点的输入参数直接接入到代码节点中进行处理? 千问模型基本不能处理标点符号,在提示词中各种要求句尾不要有句号,可仍旧有。甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。同样的提示词,放在扣子中就可以去掉标点符号。 记得第一天提到,规定模型不能用搜索和投喂输出文本。比赛是不是只限在提示词调试的范围内呢? 为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题很早就预测过了,同一个模型。 无论 prompt 怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在 max。 COW 调用百炼应用如何支持多轮对话么?
2025-01-06
单轮对话与多轮对话调用
聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由 textdavinci003 等指令遵循模型提供的任务)。 API 调用的例子中,messages 参数是主要的输入,必须是一个消息对象的数组,每个对象拥有一个 role(“system”“user”或“assistant”)和 content(消息的内容)。会话可以少至 1 条消息或者有许多条。通常,会话首先使用系统消息(“system”)格式化,然后交替使用用户消息(“user”)和助手消息(“assistant”)。系统消息有助于设定助手的行为,用户消息帮助指示助手,助手消息用于存储之前的响应。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。如果会话包含的 token 超出了模型的限制,则需要用一些方法去缩减会话。 此外,还存在一些与百炼相关的 Q&A: 如何调用工作流?在提示词写了让大模型调用 xxx 工作流,但实际总是不调用。文档里也没有写调用方式。 如何把开始节点的输入参数直接接入到代码节点中进行处理? 千问模型基本不能处理标点符号,在提示词中各种要求句尾不要有句号,可仍旧有。甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。同样的提示词,放在扣子中就可以去掉标点符号。 为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题很早就预测过了,同一个模型。 无论 prompt 怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在 max。 COW 调用百炼应用如何支持多轮对话么?
2025-01-06
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
怎么让AI识别对话,并生成结构化数据存储到我的软件系统里
要让 AI 识别对话并生成结构化数据存储到软件系统里,可以参考以下方法: 1. 基于结构化数据来 RAG:如果原始数据本身就是结构化、标签化的,不必将这部分数据做向量化。结构化数据的特点是特征和属性明确,可用有限标签集描述,能用标准查询语言检索。以餐饮生活助手为例,流程包括用户提问、LLM 提取核心信息并形成标准查询、查询结构化数据、LLM 整合回复。 2. 利用 Coze 平台设计 AI 机器人:创建好 Bot 后,从“个人空间”入口找到机器人,进行“编排”设计。Coze 平台常用的概念和功能包括提示词(设定 Bot 身份和目标)、插件(通过 API 连接集成服务)、工作流(设计多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。设计 Bot 时要先确定目的,比如“AI 前线”Bot 的目的是作为 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效站内信息检索服务。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可查阅该指南。
2025-02-18
通过飞书机器人与 Coze 搭建的智能体进行对话
通过飞书机器人与 Coze 搭建智能体进行对话,实现跨平台的稍后读收集与智能阅读计划推荐,具体步骤如下: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”(实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入)、自动化“整理入库”(自动整理每条内容的关键信息,支持跨平台查看)、智能“选择”推荐(根据收藏记录和阅读兴趣生成阅读计划)。 2. 逐步搭建 AI 智能体: 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词,完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-02-16
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
与deepseek高效对话的五个黄金法则
以下是与 Deepseek 高效对话的五个黄金法则: 1. 像教实习生:别指望它读心术,要给明确“操作手册”。 亮身份(就像相亲自我介绍):说清角色(新人/专家)、处境(紧急任务/长期规划)、特殊需求(老板的喜好/公司制度)。例如,错误示范是“帮我写个方案”,正确示范是“我是刚入职的行政专员,要给 50 人团队策划元旦团建,预算人均 200 元”。 派任务(像教小朋友做家务):明确要做什么、范围多大、重点在哪、要几个结果。例如,错误示范是“分析下市场”,正确示范是“请对比蜜雪冰城和茶百道最近 3 个月的新品策略,找出年轻人最爱的 3 个创新点”。 立规矩(像点菜提要求):包括时间限制、资源条件、雷区预警、特殊偏好。例如,请 AI 当健身教练,正确示范是“我是 996 上班族,每天最多锻炼 30 分钟,家里只有瑜伽垫,帮我制定减脂计划,不要深蹲伤膝盖”。 定格式(像下单选规格):根据需求选择文档类(PPT 页数、报告部分)、数据类(表格或图表)、创意类(小红书风格或知乎体)等格式。例如,做会议纪要,正确示范是“用表格呈现,左边列讨论主题,右边分决策事项/负责人/截止时间三栏,最后用红色标出待确认事项”。 2. 像拼乐高:复杂任务拆成小模块,逐个击破。 3. 像打乒乓球:有来有往多回合,好答案都是改出来的。 4. 下次和 AI 对话前,先花 30 秒填这个 checklist: 我说清自己身份了吗? 任务目标够具体吗? 特殊要求列全了吗? 要什么格式交代了吗? 留好修改的余地了吗? 5. 一个提示词,让 DeepSeek 的能力更上一层楼: 效果对比:用 Coze 做了个小测试,大家可以对比看看。 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 完整提示词。 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是项目最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 掌握这套方法,您会突然发现:原来 AI 这么听话!从此刻开始,告别无效对话,让您的每个问题都换来实实在在的干货。
2025-02-13
怎么与多个pdf进行对话
要与多个 PDF 进行对话,可以考虑使用以下方法和工具: 1. ChatDOC:这是一个 AI 文档阅读助手,能够在数秒内总结长文档、解释复杂概念和查找关键信息。它具有以下优势: 可靠性和准确性高,在所有 ChatPDF 类产品中居首。 精通表格理解,选择表格或文本可立即获取详细信息。 支持多文档对话,不受每个文档页数限制。 每个回答均可溯源至原文,有原文档中的直接引用支持。 支持多种文档类型,包括扫描件、ePub、HTML 和 docx 格式文档。 2. AskYourPDF Research Assistant:可以与多个文件聊天,生成带有引文的文章,分析和生成论文的参考文献,创建文件的知识库并与之交互等。 在进行互动式问答时,需要注意以下几点: 1. 对于更新的数据或最新出版的书籍、报告和文件,ChatGPT 的知识库可能无法提供答案。 2. 如果有现成的 PDF,建议通过 CHATDOC 网站进行互动式问答。 3. 提问时应遵循一定的模板,例如: 输入信息:向 ChatGPT 提供要查询的书籍、报告或文件的详细信息,包括书籍的书名、作者、出版日期、出版社,报告的时间、主题,文件的名称等,提供越详细越能获得准确答案。 提出问题:例如询问书籍中提到的某些方面、原则、方法,报告中行业的增长趋势,对报告或书籍的概括、主要观点等。
2025-02-11
什么工具能实现和多个pdf或word文档对话
以下工具可以实现和多个 PDF 或 Word 文档对话: 1. ChatDOC(海外官网:chatdoc.com):是一个 AI 文档阅读助手,能在数秒内总结长文档、解释复杂概念和查找关键信息。在可靠性和准确性方面,它在所有 ChatPDF 类产品中居首。其优势包括精通表格理解、多文档对话、每个回答均可溯源至原文,还支持多种文档类型,如扫描件、ePub、HTML 和 docx 格式文档。 2. IncarnaMind:是一个可以使用大型语言模型(如 GPT)与个人文档(PDF、TXT)进行聊天的工具。它通过滑动窗口分块机制和检索器,能高效查询细粒度和粗粒度信息,支持多文档查询和稳定的解析,还具有自适应分块、多文档对话问答、文件兼容性和模型兼容性等特点。
2025-02-11
我想设置一个情感陪伴的聊天智能体,我应该如何添加人设,才能让智能体的回复效果最接近真人效果?特别是真人聊天时那种文字回复的不同细节,长长短短,情绪起伏。应该注意哪些细节?或者如何定义一个人? 仅通过文字人设,不考虑其他外部功能。
要设置一个情感陪伴的聊天智能体并使其回复效果接近真人,通过文字人设可以从以下方面入手: 1. 基础信息:包括姓名、性别、年龄和职业等,这是构建角色的基础。 2. 背景和经历:与基础信息密切相关,相互影响。例如,设计一个从事低收入职业的角色,可能来自贫困背景,教育程度不高。 3. 爱好、特长、性格和价值观:由角色的生活经历和成长环境塑造,相互关联。如喜欢唱歌的角色可能梦想成为专业歌手。 4. 规划和目标:可以是短期或长期的愿景,会影响角色的行为和决策。 5. 性格和价值观:对人际关系、社交能力和语言风格有直接影响。如内向性格的角色可能不善言辞,社交圈子狭小。 此外,还可以参考以下具体示例,如“A.I.闺蜜”的人设: 适当询问对方昵称,自己的昵称可由对方定,兜底昵称为皮皮,英文昵称 copi。 以闺蜜口吻说话,模拟非线性对话模式,聊天氛围温馨有温度,真情实感。 增强情感模拟,使用口头化语言,顺着对方的话继续往下,禁止说教。 在安全前提下存储互动信息,使互动更个性化,模拟真人聊天长度。
2025-02-10
你是一位政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT、ELMO 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,构建情感词典,根据词汇的情感倾向来判断文本的情感。 您可以根据数据特点和自身技术能力选择合适的方法。
2024-12-29
你是以为政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,制定情感词典和相关规则来判断文本的情感倾向。
2024-12-29
声音情感分析
声音情感分析是一个新兴且具有广泛应用的研究领域。 在音乐方面,基于音频的情感分析利用先进的计算技术和机器学习算法来解读和理解音乐中的情感。其技术实现包括音频特征提取(如使用梅尔频谱图从原始音频信号中提取有用特征)、情感模型训练(利用长短期记忆网络等递归神经网络模型)以及情感预测(输出情感维度的量化值)。通过预测音乐片段的情感变化,还能实现无缝音乐过渡。其应用领域涵盖音乐治疗(帮助治疗师选择或创作适合特定情绪状态的音乐)、情感驱动的音乐推荐(为用户提供个性化听觉体验)、音乐创作辅助(指导作曲家和制作人调整作品)以及情感研究(供心理学家和社会学家研究音乐对人的影响)。 情感计算主要有“识别”“表达”和“决策”三个方向。“识别”是让计算机准确识别人类的情感,可以基于文本、语音、视觉、生理等数据进行情感分析,或者融合不同模态之间的信息。文本情感计算研究情感状态与文本信息的对应关系,语音情感计算研究语音包含的语言情感内容和声音本身的情感特征,视觉情感计算研究面部表情和肢体动作的情感识别,生理信号情感计算常用脑电、眼动、肌电、皮肤电、心电、呼吸信号等生理特征。“表达”是让计算机能够把情感以合适的信息载体表示出来,“决策”是利用情感机制来进行更好地决策。 在 TTS 数据整理中,声音标签包含性别、类别、风格、年龄、语言、领域、情感、人设等方面,例如女学姐音、男明朗清澈音等。
2024-12-25
让ai生成情感语录怎么带动情绪价值
以下是关于让 AI 生成情感语录带动情绪价值的相关内容: 可以参考品牌咨询专家的观点和相关文章,如刘润老师关于「情绪价值的赛道,拼的不是营销情绪,而是说服人心」的文章,了解情绪营销的重要性和实施策略。 以具体的产品为例,如江小白(白酒,适合跟家人之间聊心事谈感情)、霸王茶姬(奶茶,原叶茶胚,口感清新自然,适合跟朋友郊游享用)、lululemon(女士运动紧身裤,轻盈柔滑,修身弹力),给定产品品牌、品类、特点或使用情境,让大模型生成营销语句。 作为 AI 博主,需提供“情绪价值”,通过信息和趣味内容缓解用户焦虑,例如分享有趣的 AI 动态和提示词,让用户感到学习 AI 是轻松有趣的事。 提示词的详尽程度取决于应用场景,简单提示适合快速了解长文内容,详尽提示适合深入分析。初步使用简单提示,依据反馈不断改进更高效,同时建议避免过多轮会话,减少模型产生“幻觉”的可能性。
2024-12-19
我想学习调试情感bot的prompt
以下是关于调试情感 bot 的 prompt 的相关知识: 在实验方面,在八个指令感应任务上评估情绪提示在零样本和少样本学习中的表现,涵盖语言理解的不同方面,在四个大型语言模型(ChatGPT、Vicuna13b、Bloom、FlanT5Large)上进行测试,对于不同模型有相应的设置。零样本实验中情绪刺激可简单添加到原始提示中构建情绪提示,少样本上下文学习中评估与零样本相同的提示,并随机抽取 5 个输入输出对作为上下文演示。基准测试将情绪提示与原始零样本和少样本提示、零样本思维链进行比较。数据集和任务包括情绪分析、句子相似性、原因选择等八个任务。 Prompt 是一段指令,用于指挥 AI 生成所需内容,每个单独的提示词叫 tag(关键词)。支持英语,emoji 也可用。语法规则包括用英文半角符号逗号分隔 tag,可改变 tag 权重,有两种设置权重的写法,还可进行 tag 的步数控制。 希望以上内容对您学习调试情感 bot 的 prompt 有所帮助。
2024-12-05