Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

模型微调怎么解决多轮对话容易受到上轮对话的影响问题

Answer

在解决模型微调中多轮对话容易受到上轮对话影响的问题时:

  • 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。
  • 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。
  • 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。
  • 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。
  • 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
Content generated by AI large model, please carefully verify (powered by aily)

References

RAG提示工程(一):基础概念

在先前的讨论中,我们主要关注的是单轮问答的情境。然而,在现实世界的对话中,我们往往需要处理连续的多轮对话。在自然的人类语言交流中,多轮对话常常伴随着指代问题的产生,例如使用代词“它”、“他们”、“我们”等。在这种情况下,如果仅仅依据用户的原始提问来检索相关知识片段,可能会导致检索结果的不精确或者无法检索到相关信息。此外,由于我们对模型的回复内容施加了限制,使得模型不再依赖其内部知识库来生成答案,有时这可能会导致多轮对话的流畅性受到影响,甚至出现对话中断的情况。因此,为了提升对话系统的性能和用户体验,我们需要开发提示词来解决多轮对话中的指代消解问题,并确保模型能够在连续的交流中提供准确、连贯的回答。不过,由于“指代消解”需要多轮对话来完成,单次交互是无法达成的(至少目前看来是这样),所以我们需要将测试形式进行转换。首先解决”指代消解“的问题,然后再进行下一轮答复。首先,我们准备指代消解所需的提示词:大家可以看到,这里使用的“指代消解”提示词是使用CoT写出的思维链,我们在这个思维链中列举了不同情况的推理情景,目的就是让模型能够适应并成功推理出需要消解的代词,然后根据消解代词的结果重新组织问题。接着我们开始尝试复现指代消解的步骤:步骤1:进行第一轮对话在第一轮对话中,我们提出问题”尼罗河是什么?“,接着,系统成功召回了关于“尼罗河“的知识片段,并做出了回复。步骤2:开始指代消解

19. RAG 提示工程系列(一)

在先前的讨论中,我们主要关注的是单轮问答的情境。然而,在现实世界的对话中,我们往往需要处理连续的多轮对话。在自然的人类语言交流中,多轮对话常常伴随着指代问题的产生,例如使用代词“它”、“他们”、“我们”等。在这种情况下,如果仅仅依据用户的原始提问来检索相关知识片段,可能会导致检索结果的不精确或者无法检索到相关信息。此外,由于我们对模型的回复内容施加了限制,使得模型不再依赖其内部知识库来生成答案,有时这可能会导致多轮对话的流畅性受到影响,甚至出现对话中断的情况。因此,为了提升对话系统的性能和用户体验,我们需要开发提示词来解决多轮对话中的指代消解问题,并确保模型能够在连续的交流中提供准确、连贯的回答。不过,由于“指代消解”需要多轮对话来完成,单次交互是无法达成的(至少目前看来是这样),所以我们需要将测试形式进行转换。首先解决”指代消解“的问题,然后再进行下一轮答复。首先,我们准备指代消解所需的提示词:大家可以看到,这里使用的“指代消解”提示词是使用CoT写出的思维链,我们在这个思维链中列举了不同情况的推理情景,目的就是让模型能够适应并成功推理出需要消解的代词,然后根据消解代词的结果重新组织问题。接着我们开始尝试复现指代消解的步骤:步骤1:进行第一轮对话在第一轮对话中,我们提出问题”尼罗河是什么?“,接着,系统成功召回了关于“尼罗河“的知识片段,并做出了回复。步骤2:开始指代消解

会话补全(Chat completions)

聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由text-davinci-003等指令遵循模型提供的任务)。下面是一个API调用的例子:messages参数是主要的输入。messages必须是一哥的消息对象(message object)数组,每个对象拥有一个role(“system”,“user”,或“assistant”)和content(消息的内容)。会话可以少至1条消息或者是有许多条。通常,会话首先使用系统消息(“system”)格式化,然后交替使用用户消息(“user”)和助手消息(“assistant”)。系统消息有助于设定助手的行为。在上面的例子中,助手被说明为“你是一个能干的助手”。用户消息帮助指示助手。它们可以由应用的用户生成,也可以由开发者设置为指令。助手消息用于存储之前的响应。它们也可以是由开发者编写用于获取期望响应的示例。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。在前面的例子中,用户最后的问题“在哪里举办的?”只有在前面关于世界职业棒球大赛的上下文中有意义。因为模型不能记住前面的请求,所以全部的相关信息必须在会话中提供。如果会话包含的token超出了模型的限制,则需要用一些方法去缩减会话。

Others are asking
AI对话,怎么去AI化
要实现 AI 对话的去 AI 化,可以从以下几个方面入手: 1. 语言风格: 使其具有生活化的语言习惯,使用语气词如嗯、吧、啊、哈哈哈等,增加口语化词语。 塑造搞笑人设,通过设置夸张、比喻、双关、对比、反差等手法实现幽默。 让回答变得不正经、放肆,例如大胆地开一些“玩笑”,但要注意避免侵犯他人。 2. 交流技巧: 像教实习生一样,给 AI 明确的“操作手册”,清晰表达自己的需求。 像拼乐高一样,将复杂任务拆成小模块,逐个击破。 像打乒乓球一样,进行有来有往的多回合交流,不断优化答案。 3. 准备工作: 交流前通过主题阅读相关书籍让大脑进入相关氛围。 清晰表达脑海中的想法,不能放弃指挥权,不能完全依赖 AI 随机生成。 注意框架的使用,将复杂场景拆细,同时根据不同场景灵活调整框架的维度。 4. 提示词运用: 根据场景决定提示词的约束和泛化,如公司固定的 SOP 需强约束,探讨发散场景则利用泛化能力。 练习提示词的压缩表达,先将想法用一段话描述,再浓缩,尝试用一个词或一个字精准概括。 需要注意的是,在让 AI 变得更像人类交流的过程中,最终还是要以内容质量为核心。
2025-03-18
谷歌AI 生成访谈对话
以下是关于谷歌 AI 相关的信息: 谷歌推出的 NotebookLM ,有人称它为笔记工具,有人说它是 AI 学习工具,还有人认为它是播客生成器。体验地址:https://notebooklm.google/ 。只要上传文档、音频或感兴趣的网页链接,如 YouTube 链接,它就能生成专业的播客,其中两个主持人的对话生动自然,包含各种人类的语气和行为。 Character.ai 是一款由 Noam Shazeer 和 Daniel De Freitas 于 2022 年 9 月创建的基于 LLM 的聊天机器人网站。该网站预先创建了许多聊天角色,用户可以与之交流,也能自己创作角色。与 ChatGPT 不同,它更注重人格属性,试图满足社交、情感、陪伴、支持等需求,还支持创建房间,多人可用不同角色聊天。目前没有商业变现途径,但计划在不久的将来推出付费订阅模式,也可能采用广告支持模式。 生成式 AI Studio : 详细功能介绍: 创建对话:包括指定对话上下文、示例、测试对话。 集成到应用程序:提供 API 和 SDK ,需下载适合编程语言(如 Python 或 Curl )的 Vertex AI SDK ,按照示例代码和 API 文档将代码插入应用程序。 调整大型语言模型的挑战与解决方案: 挑战:微小的措辞或词序变化可能影响模型结果,模型响应可能不完全可预测,模型响应质量不一,微调大型模型可能耗时且成本高,为大模型提供服务可能涉及额外麻烦和成本。 解决方案:参数有效调整,通过仅训练一部分参数来减轻微调 LLM 的挑战,这些参数可能是现有模型参数的子集或全新的参数,例如向模型添加额外的层或额外的嵌入到提示中。
2025-03-17
我想用扣子搭建有着我自己思维的智能体,让他能进行日常对话和创作
以下是用扣子搭建具有自己思维的智能体,使其能进行日常对话和创作的步骤: 1. 创建智能体:使用单 Agent 对话流模式。 2. 编排对话流:点击创建新的对话流并与智能体关联,在获取笔记详情节点和笔记评论节点分别配置 cookie,note_link 使用开始节点的 USER_INPUT,使用代码节点进行数据处理,注意代码节点输出的配置格式。 3. 测试:找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据,同时在智能体的编排页面进行测试,确保对话流执行成功。 4. 发布:点击发布后选择多维表格,进行配置,包括输出类型选文本、输入类型选字段选择器,完善上架信息,填写表格,选发布范围时可选择仅自己可用以加快审核。 此外,扣子的知识库功能强大,可上传和存储知识内容,提供多种查找方法,能解决大模型的知识不足问题。在智能体中可运用自己的知识库,如收集地道口语表达的短句。还可为智能体添加开场白以提升体验。 在多智能体模式设置中,包括全局设置和多个代理之间的编排协调。全局设置涉及角色设定与回复逻辑、记忆管理和对话体验等,在设计智能体交互流程时应形成完整互动链条,采用循环机制而非单向流程,可通过旅游场景中景点推荐、路线规划和食宿安排等智能体的例子来理解。
2025-03-16
如何与AI对话
以下是关于如何与 AI 对话的相关内容: 在 Trae 中指定上下文进行 AI 对话的方式有以下几种: 1. 方式一:将编辑器内的内容作为上下文 当编辑器中有正在编辑的代码文件时,AI 助手默认能看到当前文件,可直接提问与当前文件相关的问题。 若对文件中的某段代码提问:选中代码,点击悬浮菜单中的添加到对话按钮,将选中内容作为上下文添加至侧边对话框。指定的上下文会显示在侧边对话底部的输入框,还可继续添加编辑器中的其他内容片段或其他来源的上下文,然后在上下文旁输入问题并发送给 AI 助手。 2. 方式二:将终端中的内容作为上下文 若对终端中的输出内容提问(如修复报错):在终端中点击输出内容片段,在内容片段区域的右上角点击添加到对话按钮,将选中内容作为上下文添加至侧边对话框。指定的上下文会显示在侧边对话底部的输入框,还可继续添加终端中的其他内容片段或其他来源的上下文,然后在上下文旁输入问题并发送给 AI 助手。 3. 方式三:使用键添加上下文 在侧边对话的输入框中,可通过符号添加多种类的上下文,包括代码、文件、文件夹和工作区。通常情况下,列表中将展示与编辑器中当前打开文件相关的内容作为推荐的上下文,但仍可自行搜索所需的上下文并添加到输入框中。基于问题,可以组合添加各种来源的相关上下文(例如同时添加代码和文件)。 通过Code,可将函数或类的相关代码作为与 AI 助手对话的上下文。列表中默认展示当前编辑器内打开的文件中的函数或类。选择前,可预览列表中推荐的函数或类的相关代码。若推荐的内容非所需,可通过关键词搜索所需的函数或类。 若 Trae 中不存在对应语言的 LSP,请提前安装,否则可能导致无法识别代码符号。具体步骤为:在输入框中输入,或直接点击输入框左下角的引用按钮,输入框上方显示上下文类型选择列表;在列表中选择 Code(或在符号后手动输入 Code),然后按下回车键,列表将展示编辑器中当前打开的文件中存在的函数和类。将鼠标悬浮在列表中的某个条目后,左侧会展示该函数或类的代码内容,供预览;若推荐的函数和类非所需,在Code:后输入想要的函数或类的名称或关键词;从列表中选择需指定为上下文的函数或类,在输入框的代码标识后,输入问题并发送。 此外,关于文本补全(Text completion): API 非常擅长与人类甚至自己进行对话。只需几行指令,就能看到 API 作为智能客服聊天机器人,能智能地回答问题,或作为机智的对话伙伴制造笑话和双关语。关键在于告诉 API 它应该如何行事,然后提供一些例子。创建一个能够进行对话的聊天机器人,要告诉 API 意图和如何行事,还要给 API 赋予一个身份。为创建有趣且有用的聊天机器人,可提供几个问题和答案示例,向 API 展示如何回复。 API 是一种语言模型,熟悉各种用于表达信息的单词和字符的方式,包括自然语言文本、代码以及英语以外的其他语言,还能够理解内容,从而进行总结、转换并以不同的方式表达。在此示例中,展示了如何将 API 从英语转换为法语、西班牙语和日本语。若将英文翻译成 API 不熟悉的一种语言,则需要提供更多示例甚至微调模型才能流利地完成。
2025-03-12
AI赋能办公,包含AI+对话、AI+写作与PPT、图片与视频生成和数据分析,还有面向HR、行政、财务、营销等岗位的AI赋能课
以下是关于 AI 赋能办公的相关内容: GPT 使用场景: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 演示:https://chat.openai.com/ 、https://bard.google.com/extensions 、https://claude.ai/ 2. 聊天机器人:作为聊天机器人后端,提供自然对话体验。 演示: 3. 问答系统:为用户提供准确答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:虽非专门设计,但有不错表现。 6. 群聊总结: 7. 代码生成:GPT3 及后续版本可生成代码片段,帮助解决编程问题。 8. 教育:用于教育领域,帮助学生解答问题或提供学习材料。 9. 浏览器插件:webpilot 10. PDF 对话:演示 www.chatpdf.com PPT 相关: 1. 2. AiPPT.cn:爱设计&AiPPT.cn 是一家 AIGC 数字科技企业,致力于打造“下一代个人与组织的 Ai 工作站”。旗下产品包括 AiPPT 等超过 10 余款应用 AI 能力的内容创作工具。23 年在 Ai+办公领域推出 AiPPT.cn/AiPPT.com,帮助用户“一分钟一键生成 PPT”,是国内 AiPPT 赛道创业公司第 1 的产品,全球第 4,国内所有 AIGC 产品 PC 端 Top10。目标市场主要是市场、运营、销售、人力、财务、行政、技术、产品、总助、公务员、学生、老师等基层及中高层管理岗位人员。 3. 在众多的 PPT 工具中,AI 带来便捷高效体验。深入了解了五大 AI PPT 工具:MindShow、爱设计、闪击、Process ON、WPS AI,它们各自有鲜明特色和擅长场景。选择合适工具要根据实际需求调整,试用和体验比盲目跟风更明智。 其他: 1. 音视频提取总结:https://bibigpt.co/r/AJ 2. 播客总结:https://podwise.xyz/dashboard/trending 3. 生成脑图:https://xmind.ai/editor/
2025-03-12
如何对一组对话进行分析,并且进行评分
对一组对话进行分析和评分通常可以遵循以下步骤和依据: 1. 明确任务形式和要求:例如给定一组参考文档和问题,要求模型按照指定格式生成答案,问题包含多种类型。 2. 确定评测指标: 赛事主办方会根据选手提供的回答与参考答案进行对比,并根据关键字段命中情况进行评分。 关键词命中总次数表示在题目中命中 keylist 中元素的总次数(包括多小题)。 关键词总数表示 keylist 中定义的关键字段总数。 小题数指每个题目包含的小题数量。 得分:结果完全正确的回答得满分 1 分,部分正确则根据命中比例计算得分。 3. 示例参考:如在金融行业·大模型挑战赛中,对包含多个小题的多轮对话题目进行评测计算,根据每个小题的回答正确情况给出相应得分,最后计算总得分。 4. 非聊天场景的情绪分析:对于非聊天场景,如情绪分析,可以使用特定的提示,如让助手对语音数据中的情绪进行 110 的评分,并解释评分原因。 5. 问答对话场景:在类似智谱 BigModel 共学营的活动中,根据对问题的理解和准确回答能力、回答的真实性和有趣程度等方面进行评分,还可以使用特定的测试问题如弱智吧问题来评价提示词的生成效果。
2025-03-11
产品经理想进入AI行业,成为AI产品经理,应该怎么准备,能够快速应付面试拿到offer?我的背景是过去3年集中在用户功能产品,有过1份AI多轮对话解决用户求职问题的AI项目经历
如果产品经理想进入 AI 行业成为 AI 产品经理并快速应付面试拿到 offer,可以从以下几个方面准备: 1. 了解 AI 市场: 鱼龙混杂,求职者要做好信息甄别。即使面试通过拿到 offer,除了看 boss 直聘的招聘评价,一定要提前收集其他信息,如在脉脉上搜一下这家公司靠不靠谱。 一些公司实际上没搞懂用 AI 能为自己企业带来什么价值,只是处于焦虑或跟风心态要做 AI,这部分企业可以聊,但要求求职者要有咨询和商业化的思维,能帮公司厘清业务增长机会。 不同公司对 AI 产品经理的定位不同,所以招聘市场上对 AI 产品经理的岗位职责和任职要求也不同,慢慢会统一标准,这也是产品经理转型的机会。 有行业沉淀和认知的产品经理转型会更有机会,类似之前的“互联网+”,目前应用层的机会在“AI+行业”,只懂 AI 或只懂行业是不够的。还有就是业务创新,找到细分的场景痛点并完成 PMF 验证,海外有很多优秀案例。 2. 掌握岗位技能: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 需要注意的是,观察上面的岗位需求,其实公司并不是需要一个 prompt 工程师,而是一个 AI 互联网产品经理。
2025-02-25
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
多轮对话怎么做
多轮对话的实现方式如下: 1. 核心思路是让 AI 和您对目标的理解达成共识,保持一致,然后再开始创作,这样能增加创作的可控性。比如通过对生成图像的理解诱导和迭代来实现。 2. 有效的部分包括: 约束的弹性,在探索阶段给 AI 一定自由空间,而 prompt 一般是强约束的,更适合确定性的目标或者用于总结阶段。 情绪,情绪化能局部提升 AI 效能。 共识,您的理解和 AI 的理解要高度一致,在高共识性的背景下,调整和控制会更有效。 3. 注意事项: 如果经历很多轮的对话,可能会导致此次对话超过模型的 token 限制,ChatGPT 会遗忘之前的内容。建议当经历多轮对话后,可以新建一个聊天窗口,把完整的代码和需求背景输入给 ChatGPT,重新开启新的提问。 在自然的人类语言交流中,多轮对话常常伴随着指代问题的产生。为了提升对话系统的性能和用户体验,需要开发提示词来解决多轮对话中的指代消解问题,并确保模型能够在连续的交流中提供准确、连贯的回答。由于“指代消解”需要多轮对话来完成,单次交互无法达成,所以需要将测试形式进行转换,先解决“指代消解”的问题,然后再进行下一轮答复。
2025-01-07
单轮对话与多轮对话调用
单轮对话与多轮对话调用: 聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由 textdavinci003 等指令遵循模型提供的任务)。 API 调用的例子中,messages 参数是主要的输入,必须是一个消息对象的数组,每个对象拥有一个 role(“system”“user”或“assistant”)和 content(消息的内容)。会话可以少至 1 条消息或者有许多条。通常,会话首先使用系统消息格式化,然后交替使用用户消息和助手消息。系统消息有助于设定助手的行为,用户消息帮助指示助手,助手消息用于存储之前的响应。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。如果会话包含的 token 超出了模型的限制,则需要用一些方法去缩减会话。 百炼相关 Q&A: 如何调用工作流?在提示词写了让大模型调用 xxx 工作流,但实际总是不调用。文档里也没有写调用方式。 如何把开始节点的输入参数直接接入到代码节点中进行处理? 千问模型基本不能处理标点符号,在提示词中各种要求句尾不要有句号,可仍旧有。甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。同样的提示词,放在扣子中就可以去掉标点符号。 记得第一天提到,规定模型不能用搜索和投喂输出文本。比赛是不是只限在提示词调试的范围内呢? 为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题很早就预测过了,同一个模型。 无论 prompt 怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在 max。 COW 调用百炼应用如何支持多轮对话么?
2025-01-06
单轮对话与多轮对话调用
聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由 textdavinci003 等指令遵循模型提供的任务)。 API 调用的例子中,messages 参数是主要的输入,必须是一个消息对象的数组,每个对象拥有一个 role(“system”“user”或“assistant”)和 content(消息的内容)。会话可以少至 1 条消息或者有许多条。通常,会话首先使用系统消息(“system”)格式化,然后交替使用用户消息(“user”)和助手消息(“assistant”)。系统消息有助于设定助手的行为,用户消息帮助指示助手,助手消息用于存储之前的响应。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。如果会话包含的 token 超出了模型的限制,则需要用一些方法去缩减会话。 此外,还存在一些与百炼相关的 Q&A: 如何调用工作流?在提示词写了让大模型调用 xxx 工作流,但实际总是不调用。文档里也没有写调用方式。 如何把开始节点的输入参数直接接入到代码节点中进行处理? 千问模型基本不能处理标点符号,在提示词中各种要求句尾不要有句号,可仍旧有。甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。同样的提示词,放在扣子中就可以去掉标点符号。 为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题很早就预测过了,同一个模型。 无论 prompt 怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在 max。 COW 调用百炼应用如何支持多轮对话么?
2025-01-06
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
AI模型微调
以下是关于 AI 模型微调的全面介绍: 介绍: 微调可让您从 API 提供的模型中获得更多收益,包括比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练更多示例改进小样本学习,在大量任务中取得更好结果。对模型进行微调后,不再需要在提示中提供示例,节省成本并实现更低延迟请求。 哪些模型可以微调: 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。 安装: 建议使用 OpenAI 命令行界面。要安装,运行(以下说明适用于 0.9.4 及更高版本。此外,OpenAI CLI 需要 python 3。),通过设置环境变量 OPENAI_API_KEY 来准备。 创建微调模型: 假设已准备好训练数据,使用 OpenAI CLI 开始微调工作。从 ada、babbage、curie 或 davinci 等基本模型开始,可使用后缀参数自定义微调模型的名称。运行命令会上传文件、创建微调作业、流式传输事件直到作业完成。每个微调工作默认从 curie 基本模型开始,模型选择影响性能和成本。开始微调作业后,可能需要几分钟到几小时完成,若事件流中断可恢复。除创建作业外,还可列出现有作业、检索作业状态或取消作业。
2025-03-17
本地部署ollama+deep seek后怎么有效搭机械领域建知识库或微调为机械领域
以下是本地部署 ollama + deep seek 后有效搭建机械领域知识库或微调为机械领域的步骤: 1. 下载 Ollama 程序:官方网址为 https://ollama.com/ 。默认下载到 C 盘,若想修改安装目录到 D 盘,后续会有相关说明。下载完成后,右下角会出现 Ollama 的图标,打开命令行输入相应命令回车。根据自身独立显卡性能选择模型,如英伟达 2060Super 可选择 Deepseekr1:14b 的模型。若下载速度慢,可按 Ctrl+C 强制退出重新下载。下载完毕后,再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相应命令,下载好后直接退出终端。 2. 配置模型:返回 RAGFlow 中,打开右上角设置,进入模型提供商进行配置。选择 Ollama,并配置相关信息,基础 URL 按要求设置,设置完成后点击确定。 3. 导入嵌入模型:导入一个嵌入模型用于文本向量化。 4. 设置系统模型:完成相关设置。 5. 创建知识库:返回知识库,进入数据集,可导入文件或设置文件夹当作知识库,自行设置。导入完毕后,对文件进行解析,解析速度取决于本机 GPU 性能,越好的显卡解析越快。解析完成后,进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。
2025-03-07
Deepseek微调
DeepSeek 微调相关信息如下: DeepSeek 有更聪明的 R1zero 实验版本,它采用完全从零开始的强化学习,无需人类监督训练,学会了用更多思考步骤解决推理任务和反思推理步骤,但存在输出内容可读性差、语言混合、风险不可控等问题,所以常见的是经过冷启动与微调的 R1 版本,以确保生成内容稳定、安全、道德、无害。 在模型蒸馏微调方面,会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 DeepSeek 在 2024 年 4 月推出的 DeepSeekMath 模型中首次采用了 GRPO(Group Relative Policy Optimization)算法,之后的 V3 和 R1 也应用了该算法提升模型的推理能力。
2025-03-06
我想完全本地化部署deepseek,然后,将我的文档,文本,图片等内容丢给它训练,微调。我要完全本地化,因为我的文档设计隐私。我要免费开源流程。如何实现,
要完全本地化部署 DeepSeek 并使用您的文档、文本、图片等内容进行训练和微调,以下是一些相关的信息和步骤: 1. 模型训练与平台服务: 模型复现与微调:1:1 复现通常没问题,但理解细节并自行制作需要基础知识。有手把手教程、数据集等可帮助 1:1 复现,微调在特定领域可降低幻觉,参数量不变但权重变化。 训练模型的学习方法:先会用再学会训,从训的过程中倒推学习参数调整,这是以用导学的学习方法。 模型回答效果对比:微调后的模型在回答排列组合等问题时,思考前几乎无反馈,答案多为英文且格式稳定,但仍可能答错。 2. 平台服务介绍: 阿里云提供多种解决方案。 百炼是提供多种模型服务的 Maas 平台。 派平台是提供云服务的 PaaS 平台,二者在定位、服务内容和核心差异上有所不同。 3. 关于模型训练与数据集相关问题: 数据资源情况:默认提供公共数据训练集,百派平台能匹配模型和数据,通义开源了不少数据集。 多模态训练:多模态有自身标注方式,如视频拉框标注。 参数量变化:通常训练模型参数量固定,若想改变需改模型层,但可能要从头调。 本地微调框架:可使用 llama factory 等框架,需搭建并部署。 开源数据下载:可在 GitHub、hugging face、Mo Model Scope 等平台获取。 数据集转化:将文档资料转成数据集可先手动形成 SOP,再逐步自动化,初期需大量人力。 4. 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 5. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 6. 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 7. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 R1 模型的强化学习:通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 R1 模型的蒸馏与微调:用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 R1 与其他模型的差别:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。 模型的相互帮助:Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 请注意,在进行本地化部署和训练微调时,需要具备一定的技术知识和经验,并且要遵循相关的法律法规和道德规范。
2025-03-04
哪里可以找到了解AI模型微调和RAG知识库的外包开发团队?
以下是一些可能找到了解 AI 模型微调和 RAG 知识库的外包开发团队的途径: 1. 相关技术社区和论坛:例如一些专注于 AI 开发的社区,开发者可能会在其中分享经验和提供服务。 2. 专业的自由职业者平台:如 Upwork、Freelancer 等,您可以在这些平台上发布需求,寻找合适的团队或个人。 3. 参考行业报告和研究:部分报告中可能会提及相关的优秀开发团队或公司。 4. 联系 AI 领域的知名机构或公司:他们可能会推荐或提供相关的外包服务。 5. 社交媒体和专业群组:在如 LinkedIn 等社交媒体上的 AI 相关群组中发布需求,可能会得到相关团队的回应。 另外,从提供的资料中,以下信息可能对您有所帮助: 红杉的相关分析提到,迁移学习技术如 RLHF 和微调正变得更加可用,开发者可以从 Hugging Face 下载开源模型并微调以实现优质性能,检索增强生成(RAG)正在引入关于业务或用户的上下文,像 Pinecone 这样的公司的向量数据库已成为 RAG 的基础设施支柱。彬子的经历中,有出海垂直领域 Agent 平台的项目经理咨询 RAG 策略优化。2024 人工智能报告中提到对增强生成检索(RAG)的兴趣增长促使了嵌入模型质量的提高,传统 RAG 解决方案中的问题得到解决。
2025-03-04
如何微调deepseek
微调 DeepSeek 可以通过以下步骤和方法: 1. 应用 KL 散度约束更新策略来调整策略的概率分布。例如,已知 ABC 策略初始概率分布为,根据相对优势调整后的权重可以通过指数函数来转换,以确保权重为正数且总和为 1。计算未归一化的权重,如 A: e^1≈2.178,B:e^0=1,C: e^1≈0.368,然后归一化权重,总和=2.718+1+0.368=4.086,新权重分别为 A: 2.718/4.086≈0.665,B: 1/4.086≈0.245,C: 0.368/4.086≈0.09。通过这样的步骤,策略 A 的总体优势最高,其权重增加,策略 B 表现中等,权重基本保持不变,策略 C 表现较差,权重减少。在不同场景(不同组)的计算中,每个策略的权重会相应调整以获得更高的分数。在文本生成阶段,可以用来评估和调整不同生成策略(比如贪婪搜索,随机采样,束搜索)的有效性,从而提高生成文本(尤其是复杂文本)的连贯性和多样性。 2. 模型蒸馏微调方面,用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。同时,Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 3. 在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 4. 关于部署方面,讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。同时介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948
2025-03-02