Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI与低空经济未来

Answer

以下是关于 AI 与未来经济相关的一些信息:

AGI 实现后,未来 20 年人类社会可能会发生以下变革:

  1. 社会结构变化:劳动力、经济与治理方面,AGI 带来的超高生产率可能挑战现有经济体系基础。传统市场经济建立在稀缺性和劳动力参与之上,而 AGI 可能令充裕成为常态,人工劳动不再是主要创造价值手段,现行的资本主义或社会主义模式都将受到冲击。
  2. 经济体系与分配:可能迈向“后稀缺经济”,在 AGI 和自动化极大降低生产成本后,许多商品和服务近乎免费,人类基本需求容易满足,金钱和竞争在某些领域的重要性下降。例如,未来也许会出现“零工资经济”,人人无需为了生计而工作,AGI 带来的丰富产出能够满足全社会需求。

Sam Altman 对 AI 的相关观点包括:

  1. 人类是工具的创造者,每一代人都在前人的发现基础上创造出更强大的工具,AGI 是人类进步脚手架上的又一个工具,也可能是某种开端。未来面临的经济增长看起来令人惊叹,十年后,也许地球上的每个人都能完成的成就将超过今天最具影响力的个人所能达到的水平。
  2. 关于 AI 经济学的三点观察:
    • AI 模型的智能水平大致等于用于训练和运行它的资源的对数,花费足够多的资金能获得连续且可预测的收益。
    • AI 成本每年下降 10 倍,使用门槛正以前所未有的速度降低。
    • 智能增长带来超指数级经济价值,AI 代理人的出现将颠覆知识型工作,经济体系将随之变革。

同时,Sam Altman 强调 AGI 影响力的扩散将不均衡,科学研究可能成为最先受益的领域,而社会如何适应这种转变将成为未来最大的挑战。

Content generated by AI large model, please carefully verify (powered by aily)

References

[趋势研究]Deep Research - AGI 实现后未来 20 年人类社会的变革

AGI带来的超高生产率可能挑战现有经济体系的基础。传统市场经济建立在稀缺性和劳动力参与之上,而如果AGI令充裕成为常态、人工劳动不再是主要创造价值的手段,那么现行的资本主义或社会主义模式都将受到冲击[forwardfuture.ai](https://www.forwardfuture.ai/p/scale-is-all-you-need-part-4-2-the-post-agi-world#:~:text=The%20complete%20integration%20of%20AGI,in%20history%20as%20a%20historical)。有观点认为,我们可能迈向“后稀缺经济”——在AGI和自动化极大降低生产成本后,许多商品和服务近乎免费,人类基本需求容易满足,金钱和竞争在某些领域的重要性下降[forwardfuture.ai](https://www.forwardfuture.ai/p/scale-is-all-you-need-part-4-2-the-post-agi-world#:~:text=In%20such%20a%20system%2C%20economic,All%20I%27m%20saying%20is)。例如,未来也许会出现**“零工资经济”**,人人无需为了生计而工作,AGI带来的丰富产出能够满足全社会需求[forwardfuture.ai](https://www.forwardfuture.ai/p/scale-is-all-you-need-part-4-2-the-post-agi-world#:~:text=based%20on%20a%20universal%20basic,example%20in%20particular%20illustrates%20the)。

Sam Altman又给AI打了针“强心针”

(*在此处使用AGI一词,目的是为了清晰地沟通。我们在这里使用“AGI”这个词,是为了把意思说清楚,避免断章取义的解读,并不是想借此修改或重新解读我们和微软之间现有合作关系的那些定义和流程。我们完全期望能和微软长期合作下去。)⼈类是⼯具的创造者,拥有与⽣俱来的理解和创造驱动⼒,这推动世界对我们所有⼈都越来越好。每⼀代⼈都在前⼈的发现基础上再接再厉,创造出更强⼤的⼯具⸺电⼒、晶体管、计算机、互联⽹,⽽很快就会是AGI。长期以来,⼈类创新时断时续却总体稳步向前,让⼈们的⽣活在⼏乎各⽅⾯都获得了原本难以想象的繁荣与改善。从某种意义上说,AGI只是⼈类共同搭建的这座不断增⾼的进步脚⼿架上的⼜⼀个⼯具。但从另⼀个⻆度来看,它⼜像某种开端,让⼈忍不住想说“这次不⼀样”;未来⾯临的经济增长看起来令⼈惊叹,我们可以想象⼀个世界⸺在这个世界⾥,我们可以治愈所有疾病,拥有更多的时间陪伴家⼈,并能充分发挥我们的创造潜能。⼗年后,也许地球上的每个⼈都能完成的成就将超过今天最具影响⼒的个⼈所能达到的⽔平。我们持续看到AI的快速发展。以下是关于AI经济学的三点观察:1.AI模型的智能⽔平⼤致等于⽤于训练和运⾏它的资源的对数。这些资源主要是训练计算量、数据和推理计算量。看起来只要花费⾜够多的资⾦,就能获得连续且可预测的收益;预测这⼀点的扩展定律在多个数量级上都相当准确。

Sam Altman又给AI打了针“强心针”

图源:Getty Images出品丨INDIGO的数字镜像(ID:indigo-dm)出处丨https://blog.samaltman.com/three-observations今天,AI经济学迎来新的里程碑。OpenAI CEO Sam Altman在其博客中发表了重磅文章《Three Observations》,从三个核心视角解析AI的发展趋势,并释放出关于AGI未来的关键信号:1️⃣AI智能水平与计算资源呈对数关系——计算资源越多,AI的智能提升呈现可预测的增长趋势。2️⃣AI成本每年下降10倍——AI的使用门槛正以前所未有的速度降低,这一趋势类似于摩尔定律,但加速更快。3️⃣智能增长带来超指数级经济价值——AI代理人的出现将颠覆知识型工作,经济体系将随之变革。Altman认为,AI代理(AI Agents)将逐步发展成“虚拟同事”,未来可以在短时间内完成顶级软件工程师才能完成的工作。这种变革不仅影响企业运营,还可能改变全球生产力格局。与此同时,他强调,AGI影响力的扩散将不均衡,科学研究可能成为最先受益的领域,而社会如何适应这种转变,将成为未来最大的挑战。AGI真的要来了?社会是否已经做好准备?这场变革值得每一个人思考。以下为《三大观察》全文:我们的使命是确保AGI(通⽤⼈⼯智能)惠及全⼈类。开始指向AGI*的系统正在逐渐显现,因此我们认为理解当下所处的时刻⾮常重要。AGI是⼀个定义不够明确的术语,但通常⽽⾔,我们⽤它来指能够在许多领域以⼈类⽔平应对⽇益复杂问题的系统。

Others are asking
如何搭建一个工作流来做ai agent 的事情,帮助学生找工作的整个流程,从找合适岗位-> 投递简历 -> 和hr联系 ->做面试前的search工作和面试准备-> 提醒参加面试-> 面试结果追踪,后续的复盘,得到面试经验
搭建一个用于帮助学生找工作的 AI Agent 工作流可以参考以下步骤: 1. 规划 总结任务目标与执行形式,明确帮助学生从找合适岗位到面试结果追踪及复盘的全过程。 将任务分解为可管理的子任务,例如找合适岗位、投递简历、与 HR 联系、面试前准备、提醒参加面试、面试结果追踪和复盘等,并确立它们的逻辑顺序和依赖关系。 设计每个子任务的执行方法,比如确定合适的岗位筛选标准、制定简历投递策略、规划与 HR 沟通的方式等。 2. 实施 在相应的平台(如 Coze 等)上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,例如设置岗位筛选的参数、简历模板和投递渠道、与 HR 联系的话术等,并验证每个子任务的可用性。 3. 完善 整体试运行工作流,识别功能和性能的卡点。 通过反复测试和迭代,优化工作流,直至达到预期效果,例如提高学生找到合适工作的成功率、提升面试表现等。 此外,在技术实现方面,例如实现无代码开发和工具调用,您可以参考以下操作: 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的工作流,也可以直接将相关工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 从 ollama 的 github 仓库找到对应版本并下载,启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。如果 ollama 连接不上,很可能是代理服务器的问题,请将您的 127.0.0.1:11434 添加到不使用代理服务器的列表中。
2025-02-27
AI生成放烟花代码
以下是关于生成放烟花代码的相关信息: 1. 使用 Cursor 写代码时,可能会遇到 AI 输出混乱的情况。.cursorrules 是一个放在项目根目录的“说明书”,提前把编码规则、项目结构、注意事项写在这个文件里,AI 就会自动按照要求写代码。 2. 在独立游戏开发中,对于一些小功能可以让 AI 生成代码。例如在《玩具帝国》中,把不方便配表而又需要撰写的简单、模板化、多是调用 API 且只牵涉小部分特殊逻辑的代码交给 AI。以 Buff 系统为例,尝试让 AI 仿照代码写一些 Buff,生成结果有时可以直接用。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 可能更方便。在与 AI 交互时,像哄小孩一样,正确的要及时肯定,指出错误要克制。 3. 然而,针对您具体的放烟花代码需求,上述内容未提供直接可用的代码,还需要您进一步明确具体的开发语言、功能需求等细节,以便为您提供更准确的帮助。
2025-02-27
ai 与临床
AI 在临床方面有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:加速药物研发过程,如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 AGI 实现后,未来 20 年临床方面可能会有以下变革: 1. 医疗诊断更加精准快速,AGI 能综合海量医学文献、患者症状和检查结果给出诊断和治疗方案。 2. 患者可能先与 AI 健康助手交流,降低医疗咨询门槛,缓解医生短缺问题。 3. 在医学成像诊断上,AGI 进一步提升能力,减少漏诊误诊。 4. AGI 可定制优化治疗方案,参与手术规划和机器人手术操作,让手术更安全。 5. 远程医疗更实用,偏远地区患者可通过 AI 获得权威医疗意见,AI 协助人类医生进行远程手术。 6. AGI 可能在精神健康领域充当心理疗愈师的角色。 此外,除临床领域外,还出现了其他专门为协助特定任务而设计的 AI 驱动工具和教练,如搭配服装、提供职业建议、提升沟通能力等。未来每个人可能拥有理解个人生活独特背景的个性化聊天机器人,在面临生活变化时得到有共鸣的建议和支持。
2025-02-27
ai 医学 文献
以下是为您提供的关于 AI 医学文献的相关信息: 在医疗保健方面,AGI 会带来重大变革。医疗诊断将更精准快速,能综合海量医学文献、患者症状和检查结果给出诊断和治疗方案。在一些问诊场景中,ChatGPT 的表现甚至超过真人医生。未来患者可能先与 AI 健康助手交流,AI 能降低医疗咨询门槛,缓解医生短缺问题。在医学成像诊断上,AI 已显示出高水平,AGI 会进一步提升能力,减少漏诊误诊。治疗方面,AGI 可定制优化方案,参与手术规划和操作。远程医疗也会因 AGI 更实用,精神健康领域 AGI 可能充当心理疗愈师角色,但也存在对其治疗效果和隐私的顾虑,需要医疗监管机构制定标准。 在蛋白质结构预测和合成方面,ChatGPT 引发的范式转移涉及该领域,过去两周有大量突破。用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质,如 AlphaFold 等多个系统在蛋白质结构预测方面表现出色,还有新的 AI 系统能创造自然界中不存在的蛋白质,以及用于识别个体细胞中蛋白质模式等的新工具。相关文献参考:https://www.sciencedaily.com/releases/2023/05/230504121014.htm 、https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions 、https://www.sciencedirect.com/science/article/pii/S0958166923000514 。 如果您有一篇医学课题需要 AI 帮您给出修改意见,可以考虑使用以下工具: 1. Scite.ai:是为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:是科研神器,能提取结构化数据,生成文章概要等。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见。 这些工具可从不同角度审视和改进您的医学课题,您可根据具体需求选择合适的工具尝试。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-02-27
AI 在金融领域的应用与场景
AI 在金融领域有以下应用与场景: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 的服务,回答常见问题。 金融服务业接纳生成式 AI 可能带来重大变革。与传统 AI/ML 侧重于基于现有数据进行预测或分类不同,生成式 AI 能创造全新内容,结合对大量非结构化数据的训练和无限计算能力,有望成为金融服务市场数十年来最大的变革。 在金融投资领域,Coze bot 可发挥重要作用。金融分析师和投资者能通过它自动接收最新市场动态、股市新闻和财务报告,从多个金融资讯平台抓取数据并生成分析报告,推送到常用交流平台,实现实时跟踪市场动向、捕捉投资机会、自动生成财务报告和方便团队协作等效果。
2025-02-27
有什么AI结合办 公场景的课程
以下是一些 AI 结合办公场景的课程: 【已结束】AIPO:校园 AI 创投活动 10 月 16 日 20:00,视频课程,讲师 EM7 南柒,课程标题为“AI 视频创作指南 商业片制作”,相关资料包括老师课件: 10 月 17 日 20:00,模型训练课程,讲师忠忠,课程标题为“0 基础模型训练”,相关资料:厚德云,课程回放: 10 月 18 日 20:00,comfyUI + 建站课程,讲师海辛/阿文,课程标题为“ComfyUI + Cursor 搭建应用”,相关资料:comfyUI、Cursor,课程回放: 10 月 20 日 14:00 18:00,校园 AIPO 线下路演 10 月 21 日 20:00,颁奖 Build on Trae AI 编程挑战 2 月 18 日 20:00 开始,分享材料(”,分享人 Super 黄 Eric,无作业要求 2 月 19 日 20:00 开始,分享材料(视频回放),内容为“AI 编程训练营 环境准备”,分享人 super 黄 2 月 20 日 20:00 开始,分享材料(视频回放) 2 月 21 日 20:00 开始,分享材料(视频回放) 2 月 22 日 20:00 开始,分享材料(视频回放) DAY1 必须了解的企业级 AI 应用开发知识点,本次共学课程会带着大家以“逛”+“体验”的模式,去云游一下阿里云百炼平台的市场,里面目前包含了市面上大量的可以直接使用的 API 能力、场景化的解决方案能力。在本次共学课程中仅需通过简单的界面操作,在几分钟内开发出一款大模型应用、在几小时内训练出一个专属模型,将更多精力专注于应用创新。
2025-02-27
根据数智经济、银发经济、低空经济、单身经济其中有什么痛点和创新发展内容
数智经济的痛点可能包括数据安全与隐私保护问题、数字鸿沟导致的发展不平衡、技术更新换代快带来的高投入成本等。创新发展方面,可以加强数据治理和安全防护技术,推动数字技术与传统产业深度融合,拓展数字经济新场景。 银发经济的痛点或许有产品和服务针对性不足、市场标准和规范不完善、养老服务专业人才短缺等。创新发展可着眼于开发个性化的老年产品和服务,建立健全行业标准,加强养老服务人才培养。 低空经济的痛点可能存在政策法规不完善、基础设施建设不足、技术创新能力有待提高等。创新发展可以从完善政策法规、加大基础设施投资、推动技术研发和应用等方面入手。 单身经济的痛点也许是消费市场细分不够精准、社交需求满足不足、部分产品和服务质量参差不齐等。创新发展能够在精准定位消费需求、创新社交模式、提升产品和服务品质上下功夫。
2024-10-29
未来AI可以给人幸福感吗
未来 AI 有可能给人带来幸福感。在接下来的几十年里,我们将能够做到在祖辈看来如同魔法般的事情。人们的能力随着时间显著提升,如今能完成前人认为不可能的任务,这并非源于基因变化,而是得益于更智能、更强大的社会基础设施。AI 会为人们提供解决难题的工具,帮助我们为人类进步的架构增添新的支撑。例如,我们将很快能与帮助我们完成更多任务的 AI 合作,甚至拥有由不同领域虚拟专家组成的个人 AI 团队,创造几乎任何能想象的事物。孩子们会有能提供个性化教学的虚拟导师,在医疗保健、软件创造等方面也会有更多可能。有了这些新能力,我们能实现前所未有的共同繁荣,让每个人的生活都变得更好。虽然繁荣本身不一定使人快乐,但它会切实改善世界各地人们的生活。同时,也有人坚信,尽可能简单地试用 AI 本身就是让普通人在这场 AI 的发展中受益并获得幸福的最好方式。
2025-02-23
未来5年AI的发展方向
未来 5 年 AI 的发展方向可能包括以下几个方面: 1. 模型发展:从小模型阶段向更强大的模型演进,如 GPT 的出现标志着 AGI 的拐点,Sora 的出现打开了 AGI 的大门,未来可能加大算力和训练,与具身机器人结合,加速智能提升。 2. 能力提升:从能与人类交流到具备对世界力量的感知和与物理世界互动的能力,逐步发展到强人工智能。 3. 应用拓展:在关键领域改变成本结构和提高生产力,如降低医疗、教育等领域的成本,使服务更易获得和负担得起。AI 涉及的领域不断扩大,应用范围更加广泛。 4. 社会影响:可能带来更好的教育、更健康的人口和更有生产力的人,解放人力去解决更重要的问题,创造更美好的社会。但也需要政府和民营企业共同努力,进行人员再培训和能力增强,以应对可能的就业机会变化。 5. 技术突破:如没有编码能力的人独自创建的应用程序或网站走红,OpenAl o1 的开源替代品在推理基准测试中超越它,苹果设备上的研究成果加速个人设备上 AI 的发展等。同时,在一些领域也存在挑战,如对人形机器人的投资水平可能下降,挑战者难以对 NVIDIA 的市场地位造成重大打击等。此外,还可能面临国家安全审查、立法实施等方面的问题。
2025-02-20
AI全称是什么 和传统搜索引擎有什么不同,为什么说AI未来会取代人类
AI 的全称是“Artificial Intelligence”,即人工智能。 AI 搜索引擎与传统搜索引擎的不同主要体现在以下方面: 1. 信息处理方式:AI 搜索引擎能够更高效地处理信息,例如智能摘要功能,可辅助快速筛选信息,实现信息降噪。 2. 信息表达:用自然语言描述就能生成美观可用的图片,降低了创作门槛和周期,使信息表达更简便。 3. 工作流重塑:AI 可以重新构建工作流,如产品经理可使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。 4. 协同关系:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,协作流程有所差异。 5. 知识传播与管理:正在发生的生成式 AI 革命正在吞噬搜索与社交网络时代的全部数字信息,未来知识可能由机器通过 AI 拥有和管理。 关于“AI 未来会取代人类”这种说法是不准确的。虽然 AI 在某些方面表现出强大的能力,但人类具有独特的创造力、情感、判断力和复杂问题解决能力等,AI 更多是辅助和增强人类的能力,而非完全取代。
2025-02-08
未来类似deepseek这种推理大模型普及,结构化提示词是不是会成为过时的知识
未来类似 DeepSeek 这种推理大模型普及,结构化提示词不会成为过时的知识。 虽然未来模型可能在某些情况下无需提示词,仅通过简单对话就能理解用户意图,但基础的如何与模型对话的认知仍需具备,这就涉及提示词。例如李继刚老师的结构化提示词能让模型给出更优质、完整的答案。操作过程中有很多有意思的提示词,如“酷老师”“抬杠高手”等,近期提示词有升级,李继刚老师将其玩到新高度,cloud 等大语言模型可直接显示编译结果内容。输入特定提示词可生成卡片,小创业项目可利用并改变提示词形成独到见解或小应用。 从工程视角看,AI 提示词在游戏创作及优化中也有应用。此外,提示工程的本质是提供足够的信息来明确指定要求,即使模型在理解上下文方面变得更好,能够清晰地陈述目标始终很重要,仍需要明确预期结果的能力和技巧。未来可能会更多地利用提示工程来让模型为我们生成、调整提示词,对于没有太多提示工程经验的人来说,提示词生成器可以帮助他们。未来的提示可能更像是一种自省,模型会尝试理解用户真正在思考什么、需要什么。 在 R1 时代,使用 AI 提示词的关键在于提供足够的背景信息,而非复杂的结构。简单大白话仍然有效,但信息量不足则难以得到理想结果。示例和框架可帮助理清思路,但最终影响在于用户的思考和表达。利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考,从而激发更高的创意和效果。“有用的不是技巧,而是你的思考!”
2025-02-07
到目前为止,人工只能已经发展到什么样的一个程度了,未来前景怎么样?普通人如何通过人工智能挣到钱
目前人工智能的发展呈现出复杂的态势: 预计明年会有团体花费超过 10 亿美元训练单个大规模模型,通用人工智能的热潮仍在持续,但其成本也在不断增加。 政府和大型科技公司都面临着计算需求超出电网支持能力的问题。 人工智能对选举的影响尚未完全显现,但仍需关注。 以 OpenAI、Meta 以及中国实验室为代表,竞争激烈。 未来前景方面: 深度学习被证明有效,且随着规模扩大预期会改善,能帮助解决更多难题,对全球人民生活产生有意义的改善。 人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,并推动各领域科学进展。 对于普通人如何通过人工智能挣钱,以下是一些可能的途径: 学习相关技能,如编程、数据分析等,参与人工智能项目的开发和维护。 利用人工智能工具进行内容创作,如写作、绘画等,并通过相关平台实现盈利。 关注人工智能领域的新兴应用,寻找创业机会。
2025-02-05
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
AI对经济影响研究
AI 对经济的影响主要体现在以下几个方面: 1. AI 模型的智能水平大致等于用于训练和运行它的资源的对数,这些资源主要包括训练计算量、数据和推理计算量。只要投入足够资金,就能获得连续且可预测的收益,这一扩展定律在多个数量级上都相当准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,价格下降导致使用量大幅增加。例如从 2023 年初的 GPT4 到 2024 年中期的 GPT4o,每个令牌的价格在该时间段内下降了约 150 倍。 3. 社会经济上线性提升智力的价值具有超指数性质,因此看不出在不久的将来会停止对 AI 进行指数级投入的理由。 此外,如果上述观察继续成立,对社会的影响将是重大的。现在已经开始推出人工智能代理,它们最终将感觉像虚拟同事。以软件工程师代理为例,它最终能够完成大部分一名顶尖公司、工作几年的软件工程师在两三天内可以做的任务,但需要大量人类的监督和引导,且在某些方面表现出色,某些方面糟糕。想象拥有大量这样的虚拟同事存在于每一个知识工作领域。从某种程度上来说,AI 在经济上可能会像晶体管一样,是一项重大的科学发现,能很好地实现规模效应,并渗透到经济的几乎各个角落。 需要注意的是,世界不会一夜之间改变,短期内生活的大部分会与往常相同,2025 年人们的生活方式与 2024 年不会有太大差别。人们依然会相爱,组建家庭,在网上吵架,去大自然中远足等等。
2025-02-19
推荐科研人专用AI(经济学)
以下是为科研人(经济学)推荐的一些 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,能简化您的学术工作。 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 这些工具可以帮助您从不同的角度审视和改进您的课题,提供专业的修改意见和建议。您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-04
我现在需要根据一系列的 yaml 和 markdown 构建一个知识库,并且需要支持 AI 问答,每次 AI 问答的结果都要保存成一个新的内容放到知识库中,请问从经济效益来看,有哪些服务可以使用?
目前从经济效益的角度来看,以下一些服务可能有助于您构建这样的知识库并支持 AI 问答以及结果保存: 1. 云服务提供商,如阿里云、腾讯云、AWS 等,它们提供可扩展的计算和存储资源,您可以根据实际需求灵活配置,避免过度投入硬件成本。 2. 开源的知识管理和问答系统框架,例如使用 Elasticsearch 结合相关插件来实现问答功能,成本相对较低,但可能需要一定的技术投入进行搭建和维护。 3. 一些专门针对知识管理和 AI 应用的 SaaS 服务,它们通常按使用量计费,初期投入较小,适合小规模应用。 需要注意的是,具体选择哪种服务取决于您的业务规模、技术能力、预算以及对性能和功能的要求。
2025-02-01
地方国民经济和社会发展规划、产业规划编制的Ai工具
以下是一些可以用于地方国民经济和社会发展规划、产业规划编制的 AI 工具: 在绘制逻辑视图、功能视图、部署视图方面: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建相关视图。 6. draw.io(现称为 diagrams.net):免费在线图表软件,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 在审核规划平面图方面: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型。 2. Maket.ai:面向住宅行业,在户型和室内软装设计方面有 AI 技术探索。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,实现建筑全寿命周期内信息集成与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-01-10
完善数字经济的发展路径
以下是关于完善数字经济发展路径的相关内容: 在过去的十年中,数字技术已经改变了经济和社会,影响了所有活动领域和日常生活。数据处于这种转变的中心,数据驱动的创新将为联盟公民和经济带来巨大利益,例如改善和个性化医疗、提供新的移动性,并有助于 2019 年 12 月 11 日委员会关于欧洲绿色协议的沟通。为了使数据驱动的经济对所有联盟公民具有包容性,必须特别关注减少数字鸿沟,促进妇女参与数据经济,并培养技术领域的前沿欧洲专业知识。数据经济的构建方式应使企业,特别是委员会建议 2003/361/EC 中定义的微型、小型和中型企业(SMEs)以及初创企业能够蓬勃发展,确保数据访问的中立性、数据的可移植性和互操作性,并避免锁定效应。在 2020 年 2 月 19 日关于欧洲数据战略(“欧洲数据战略”)的沟通中,委员会描述了一个共同的欧洲数据空间的愿景,即一个内部数据市场,在符合适用法律的情况下,数据可以不受其在联盟中的物理存储位置的影响而被使用,这尤其可能对人工智能技术的快速发展至关重要。 数据是数字经济的核心组成部分,也是确保绿色和数字转型的重要资源。近年来,人类和机器生成的数据量呈指数级增长。然而,大多数数据未被使用,或者其价值集中在相对较少的大型公司手中。低信任度、相互冲突的经济激励和技术障碍阻碍了数据驱动创新潜力的充分实现。因此,通过为数据的再利用提供机会,并消除符合欧洲规则和充分尊重欧洲价值观的欧洲数据经济发展的障碍,以及按照减少数字鸿沟的使命,使每个人都受益,从而释放这种潜力至关重要。 这些发展需要在联盟中建立一个强大且更一致的数据保护框架,并得到强有力的执行,鉴于建立信任对于数字经济在整个内部市场发展的重要性。自然人应该对自己的个人数据有控制权。应加强自然人、经济运营商和公共当局的法律和实际确定性。
2024-11-19
根据数智经济你觉得它的发展是怎样的
数智经济在过去十年中已极大地改变了经济和社会,影响了所有活动领域和日常生活。数据处于这一变革的核心,数据驱动的创新为欧盟公民和经济带来了巨大利益,例如改善和个性化医疗、提供新的出行方式,并有助于实现欧洲绿色协议。为使数据驱动经济惠及所有欧盟公民,必须特别关注缩小数字鸿沟、促进女性参与数据经济以及培养欧洲在技术领域的前沿专业知识。 发展需要一个强大且更协调的数据保护框架,以增强自然人和相关机构的法律及实际确定性。同时,要改善内部市场的数据共享条件,创建统一框架,制定数据治理的基本要求,特别关注促进成员国之间的合作。特定行业的欧盟法律可根据行业特点进一步发展、调整并提出新的补充元素。某些经济部门已受特定的欧盟法律监管,包括与跨境或跨欧盟的数据共享或访问相关的规则。 总之,数智经济的发展前景广阔,但也需要在法律、政策和技术等多方面不断完善和协调,以实现可持续和包容性的增长。
2024-10-29